Quantum Information Theory, Spring 2019

Exercise Set 8

1. Warmup:

(a) Show that, if ρ and σ are both pure states, $D(\rho \| \sigma) \in\{0, \infty\}$.
(b) Find a state ρ and a channel Φ such that $H(\Phi[\rho])<H(\rho)$.
(c) Compute the relative entropy $D(\rho \| \sigma)$ for $\rho=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1|$ and $\sigma=\frac{1}{4}|+\rangle\langle+|+\frac{3}{4}|-\rangle\langle-|$.
2. Matrix logarithm: Recall that the logarithm of a positive definite operator with eigendecomposition $Q=\sum_{i} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|$ is defined as $\log (Q)=\sum_{i} \log \left(\lambda_{i}\right)\left|e_{i}\right\rangle\left\langle e_{i}\right|$ (as always, our logarithms are to base 2). Verify the following properties:
(a) $\log (c I)=\log (c) I$ for every $c \geq 0$.
(b) $\log (Q \otimes R)=\log (Q) \otimes I_{Y}+I_{X} \otimes \log (R)$ for all positive definite operators Q on \mathcal{X}, R on \mathcal{Y}.
(c) $\log \left(\sum_{x \in \Sigma} p_{x}|x\rangle\langle x| \otimes \rho_{x}\right)=\sum_{x \in \Sigma} \log \left(p_{x}\right)|x\rangle\langle x| \otimes I_{Y}+\sum_{x \in \Sigma}|x\rangle\langle x| \otimes \log \left(\rho_{x}\right)$ for every ensemble $\left\{p_{x}, \rho_{x}\right\}_{x \in \Sigma}$ of positive definite operators $\rho_{x} \in D(\mathcal{Y})$.

Warning: It is in general not true that $\log (Q R)=\log (Q)+\log (R)$!
3. From Relative Entropy to Entropy and Mutual Information: Use Problem 1 to verify the following claims from class:
(a) $D\left(\rho \| \frac{I_{X}}{d}\right)=\log d-H(\rho)$ for every $\rho \in D(\mathcal{X})$, where $d=\operatorname{dim} \mathcal{X}$.
(b) $D\left(\rho_{X Y} \| \rho_{X} \otimes \rho_{Y}\right)=I(X: Y)_{\rho_{X Y}}$ for every $\rho_{X Y} \in D(\mathcal{X} \otimes \mathcal{Y})$, where $\rho_{X}=\operatorname{Tr}_{Y}\left[\rho_{X Y}\right]$ and $\rho_{Y}=\operatorname{Tr}_{X}\left[\rho_{X Y}\right]$. You may assume that all three operators are positive definite.
4. Entropy and ensembles: In this problem, you will prove the upper bound on the Holevo information that we discussed in class: For every ensemble $\left\{p_{x}, \rho_{x}\right\}$,

$$
\chi\left(\left\{p_{x}, \rho_{x}\right\}\right) \leq H(p) \quad \text { or, equivalently, } \quad H\left(\sum_{x} p_{x} \rho_{x}\right) \leq H(p)+\sum_{x} p_{x} H\left(\rho_{x}\right) .
$$

Moreover, equality holds if and only if the ρ_{x} with $p_{x}>0$ have pairwise orthogonal image.
(a) First prove these claims assuming that each ρ_{x} is a pure state, i.e., $\rho_{x}=\left|\psi_{x}\right\rangle\left\langle\psi_{x}\right|$.

Hint: Consider the pure state $|\Phi\rangle=\sum_{x} \sqrt{p_{x}}|x\rangle \otimes\left|\psi_{x}\right\rangle$ and compare the entropy of the first system before and after measuring in the standard basis.
(b) Now prove the claims for general ρ_{x}.

Hint: Apply part (a) to a suitable ensemble obtained from the eigendecompositions of the ρ_{x}.
In terms of the cq-state corresponding to the ensemble, the above inequality can also be written as $H(X Y) \geq H(Y)$. This confirms a claim made in Problem 2 of last week's exercise set.

