Quantum Information Theory, Spring 2019

Exercise Set 7

in-class practice problems

- 1. Shannon entropy inequalities: In this problem you will see that the Shannon entropy of probability distributions is more constrained than the entropy of general quantum states. Let $p_{XY} \in \mathcal{P}(\Sigma \times \Gamma)$ be a joint probability distribution. The entropies of p_{XY} and its marginal distributions p_X and p_Y are denoted by H(XY), H(X), and H(Y), respectively.
 - (a) Show that p_{XY} can be decomposed as $p_{XY}(x, y) = p_X(x)p_{Y|X=x}(y)$, where $p_{Y|X=x}$ is a probability distribution for each $x \in \Sigma$.
 - (b) Deduce the following formula:

$$H(XY) = H(X) + \sum_{x \in \Sigma} p_X(x)H(p_{Y|X=x})$$

- (c) Conclude that the Shannon entropy satisfies the *monotonicity* inequality $H(XY) \ge H(X)$. Show that equality holds if and only if p_{XY} is of the form $p_{XY}(x,y) = p_X(x)\delta_{f(x),y}$ for some function $f: \Sigma \to \Gamma$ (i.e., the second random variable is a function of the first).
- (d) Conclude that $I(X : Y) \le \min\{H(X), H(Y)\} \le \log\min\{|\Sigma|, |\Gamma|\}.$
- 2. Entropy of classical-quantum states: Let $\{p_x, \rho_x\}$ be an ensemble, i.e., $p \in \mathcal{P}(\Sigma)$ and $\rho_x \in D(\mathcal{Y})$ for $x \in \Sigma$ and consider the corresponding *classical-quantum* (cq) state

$$\rho_{XY} = \sum_{x \in \Sigma} p_x |x\rangle \langle x| \otimes \rho_x$$

(a) Prove the following formula that we used in the lecture:

$$H(XY) = H(p) + \sum_{x \in \Sigma} p_x H(\rho_x)$$

(b) Conclude that $H(XY) \ge H(X)$. When does equality hold?

It is also true that $H(XY) \ge H(Y)$, but this requires a different argument (note that the situation is *not* symmetric since, unlike in Problem 1, system Y is not necessarily classical).

- 3. Weak monotonicity: For general quantum states, it is not true that $H(XY) \ge H(X)$ or, equivalently, that $I(X : Y) \le H(Y)$.
 - (a) Find a quantum state ρ_{XY} such that H(XY) < H(X).

However, the quantum entropy satisfies a weaker inequality, known as *weak monotonicity*: For every state $\rho_{XYZ} \in D(\mathcal{X} \otimes \mathcal{Y} \otimes \mathcal{Z})$, it holds that

$$H(XY) + H(YZ) \ge H(X) + H(Z).$$

(b) Show that this inequality follows from the strong subadditivity inequality discussed in class. *Hint: Use a purification.*