Quantum Information Theory, Spring 2019

Exercise Set 5

in-class practice problems

1. Monotonicity of the fidelity and trace distance: On Problem Set 2, you proved that the fidelity function has the following monotonicity property: If $\rho, \sigma \in D(\mathcal{X} \otimes \mathcal{Y})$ then

$$
F\left(\rho_{X}, \sigma_{X}\right) \geq F(\rho, \sigma)
$$

where $\rho_{X}=\operatorname{Tr}_{Y}[\rho], \sigma_{X}=\operatorname{Tr}_{Y}[\sigma]$.
(a) Prove that $\left\|\operatorname{Tr}_{Y}[A]\right\|_{1} \leq\|A\|_{1}$ for all $A \in L(\mathcal{X} \otimes \mathcal{Y})$.

Hint: Use the formula $\|A\|_{1}=\max _{\|B\|_{\infty} \leq 1}|\operatorname{Tr}[A B]|$ from Lecture 2.
(b) Conclude that the trace distance enjoys a similar monotonicity property (cf. Lecture 2):

$$
\frac{1}{2}\left\|\rho_{X}-\sigma_{X}\right\|_{1} \leq \frac{1}{2}\|\rho-\sigma\|_{1}
$$

(c) Why does the latter inequality go the other way around?
2. Fidelity and trace distance: For any $\rho, \sigma \in D(\mathcal{X})$, prove that

$$
F(\rho, \sigma) \leq \sqrt{1-\frac{1}{4}\|\rho-\sigma\|_{1}^{2}} .
$$

Hint: Combine Uhlmann's theorem, Homework Problem 1, and the monotonicity property of the trace distance.
3. Lossy vs. lossless compression: In class, we mostly discussed lossy (or fixed-length) compression protocols, which compress sequences emitted by a source into bitstrings of fixed length but may fail with some small probability. In practice, it is also interesting to consider lossless (or variable-length) compression protocols, which succeed always but may emit strings of any length. Given an (n, R, δ)-code as defined in class (which achieves lossy compression into bitstrings of length $\lfloor n R\rfloor$ with probability of failure $\leq \delta$), can you construct a lossless compression protocol with average rate close to R (for large n and small δ)?
4. Lexicographic order: The lexicographic order (denoted $\leq_{\text {lex }}$) on bitstrings of fixed length n is defined as follows: Given bitstrings x and y, we have that $x \leq_{\text {lex }} y$ if either $x=y$ or $x_{i}<y_{i}$ for the smallest i such that $x_{i} \neq y_{i}$. For example, $001 \leq_{\text {lex }} 010$. The lexicographic order defines a total order on $\{0,1\}^{n}$, hence also on the set of bitstrings of length n with k ones, which we denote by $B(n, k)$.
(a) Write down $B(5,2)$ in lexicographically increasing order.
(b) How can you recursively compute the m-th element of $B(n, k)$?
(c) How can you recursively compute the index of a given element in $B(n, k)$?

Hint: $|B(n, k)|=\binom{n}{k}$. Moreover, $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$ for all $1 \leq k \leq n-1$.

