Exercise Set 5

in-class practice problems

1. Monotonicity of the fidelity and trace distance: On Problem Set 2, you proved that the fidelity function has the following monotonicity property: If $\rho, \sigma \in D(\mathcal{X} \otimes \mathcal{Y})$ then

$$F(\rho_X, \sigma_X) \ge F(\rho, \sigma),$$

where $\rho_X = \operatorname{Tr}_Y[\rho], \, \sigma_X = \operatorname{Tr}_Y[\sigma].$

(a) Prove that $\|\operatorname{Tr}_{Y}[A]\|_{1} \leq \|A\|_{1}$ for all $A \in L(\mathcal{X} \otimes \mathcal{Y})$.

Hint: Use the formula $||A||_1 = \max_{||B||_{\infty} \leq 1} |\operatorname{Tr}[AB]|$ from Lecture 2.

(b) Conclude that the trace distance enjoys a similar monotonicity property (cf. Lecture 2):

$$\frac{1}{2} \|\rho_X - \sigma_X\|_1 \le \frac{1}{2} \|\rho - \sigma\|_1$$

- (c) Why does the latter inequality go the other way around?
- 2. Fidelity and trace distance: For any $\rho, \sigma \in D(\mathcal{X})$, prove that

$$F(\rho,\sigma) \le \sqrt{1 - \frac{1}{4} \|\rho - \sigma\|_1^2}$$

Hint: Combine Uhlmann's theorem, Homework Problem 1, and the monotonicity property of the trace distance.

3. Lossy vs. lossless compression: In class, we mostly discussed *lossy (or fixed-length) compression protocols*, which compress sequences emitted by a source into bitstrings of fixed length but may fail with some small probability. In practice, it is also interesting to consider *lossless (or variable-length) compression protocols*, which succeed always but may emit strings of any length.

Given an (n, R, δ) -code as defined in class (which achieves lossy compression into bitstrings of length $\lfloor nR \rfloor$ with probability of failure $\leq \delta$), can you construct a lossless compression protocol with average rate close to R (for large n and small δ)?

- 4. Lexicographic order: The lexicographic order (denoted \leq_{lex}) on bitstrings of fixed length n is defined as follows: Given bitstrings x and y, we have that $x \leq_{\text{lex}} y$ if either x = y or $x_i < y_i$ for the smallest i such that $x_i \neq y_i$. For example, $001 \leq_{\text{lex}} 010$. The lexicographic order defines a total order on $\{0, 1\}^n$, hence also on the set of bitstrings of length n with k ones, which we denote by B(n, k).
 - (a) Write down B(5,2) in lexicographically increasing order.
 - (b) How can you recursively compute the *m*-th element of B(n, k)?
 - (c) How can you recursively compute the index of a given element in B(n, k)?

Hint: $|B(n,k)| = \binom{n}{k}$. Moreover, $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ for all $1 \le k \le n-1$.