Quantum Information Theory, Spring 2019

Exercise Set 4

in-class practice problems

Throughout, X, Y, Z denote quantum systems with complex Euclidean spaces $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$.

- 1. Positive semidefinite operators: Let $X \in L(\mathcal{X})$ where $\mathcal{X} = \mathbb{C}^{\Sigma}$. The following are all equivalent to X being positive semidefinite:
 - $P = Y^*Y$, for some $Y \in L(\mathcal{X}, \mathcal{Y})$.
 - $\langle \psi | P | \psi \rangle \ge 0$, for all $| \psi \rangle \in \mathcal{X}$.
 - $P = U \operatorname{diag}(\lambda_1, \ldots, \lambda_n) U^*$, for some $U \in U(\mathcal{X})$ and some $\lambda_i \ge 0$.
 - There exists a set of vectors $\{|v_a\rangle \in \mathcal{X} : a \in \Sigma\}$ such that, for all $a, b \in \Sigma$, $P_{a,b} = \langle v_a | v_b \rangle$.
 - $\operatorname{Tr}(PQ) \ge 0$, for all $Q \in \operatorname{Pos}(\mathcal{X})$.

Can you see why these characterizations are equivalent? Use these different characterizations to show that

- (a) Any positive semidefinite operator is Hermitian.
- (b) Any convex combination of positive semidefinite operators is positive semidefinite.
- (c) If a positive semidefinite operator is invertible, its inverse is again positive semidefinite.
- (d) If $P \in \text{Pos}(\mathcal{X})$ and $A \in L(\mathcal{X})$, then A^*PA is positive semidefinite.
- (e) If P is positive semidefinite, then so is \sqrt{P} .
- 2. The completely dephasing channel: Let $\Delta \in T(\mathcal{X})$ be the completely dephasing map on $\mathcal{X} = \mathbb{C}^{\Sigma}$.
 - (a) Compute the output state when Δ is applied to one register of a maximally entangled state $|\Psi\rangle = \frac{1}{\sqrt{|\sigma|}} \sum_{a \in \Sigma} |a\rangle \otimes |a\rangle.$
 - (b) Show that Δ is a quantum channel.
- 3. Partial measurement: Assume you have a two-qubit system in the following state:

$$|\psi\rangle = \frac{1}{\sqrt{30}} (|00\rangle + 2i|01\rangle - 3|10\rangle - 4i|11\rangle).$$

- (a) Assume you measure the second qubit in the standard basis. Compute the probabilities p(0) and p(1) of the two measurement outcomes.
- (b) If this measurement produced outcome 1, what is the state of the first qubit?

4. Channels:

- (a) Let $\Phi \in T(\mathcal{X}, \mathcal{Y})$ and $\Psi \in T(\mathcal{Y}, \mathcal{Z})$. Show that if Φ and Ψ are quantum channels, then their composition $\Psi \circ \Phi$ is again a quantum channel.
- (b) Recall that we can define an inner product on $L(\mathcal{X})$ by $\langle A, B \rangle = \text{Tr}(A^*B)$. Define the adjoint of a superoperator $\Phi \in T(\mathcal{X}, \mathcal{Y})$ as a superoperator $\Phi^* \in T(\mathcal{Y}, \mathcal{X})$ such that $\langle \Phi^*(A), B \rangle = \langle A, \Phi(B) \rangle$, for all $A \in L(\mathcal{Y})$ and $B \in L(\mathcal{X})$. Show that Φ is a quantum channel if and only if Φ^* is unital (that is, $\Phi^*(I_Y) = I_X$) and completely positive.

- 5. Linear probability assignments are measurements: Let Σ be an alphabet, and let p: Herm $(\mathcal{X}) \to \mathbb{R}^{\Sigma}$ be a linear function. Show that the following statements are equivalent:
 - (a) $p(\rho)$ is a probability distribution on Σ for every $\rho \in D(\mathcal{X})$.
 - (b) There exists a measurement $\mu: \Sigma \to \text{Pos}(\mathcal{X})$ such that

$$(p(H))(a) = \operatorname{Tr}(\mu(a)H)$$

for all $H \in \text{Herm}(\mathcal{X})$ and $a \in \Sigma$.