Quantum Information Theory, Spring 2019

Exercise Set 3

- 1. Positive, but not completely: Show that the transpose superoperator $\Phi(X) = X^{\mathsf{T}}$ is positive but not completely positive.
- 2. Quantum channels: Recall that $P \in Pos(\mathcal{X})$ if and only if $P = XX^*$, for some $X \in L(\mathcal{X})$. Show that the following maps Φ are quantum channels by directly verifying that they are trace-preserving and completely positive.
 - (a) (Basis change): Let $U \in U(\mathcal{X})$ and define $\Phi(X) = UXU^*, \forall X \in L(\mathcal{X})$.
 - (b) (Adding a state): Let $\sigma \in D(\mathcal{X})$ and define $\Phi(X) = \sigma \otimes X, \forall X \in L(\mathcal{X})$.
- 3. Across the channel: Using the definitions of the natural representation $K(\Phi)$ and the Choi-Jamiołkowski representation $J(\Phi)$, verify the channel input-output relations.
 - (a) (Natural representation): Verify that $K(\Phi) \operatorname{vec}(|a\rangle \langle b|) = \operatorname{vec}(\Phi(|a\rangle \langle b|))$.
 - (b) (Choi-Jamiołkowski representation): Verify that $\Phi(X) = \text{Tr}_{\mathsf{X}}[J(\Phi) \cdot (I_{\mathsf{Y}} \otimes X^{\mathsf{T}})].$

4. Superoperator relations:

(a) (Kraus and Stinespring): Verify that the Kraus and Stinespring representations given in the class indeed correspond to the same superoperator:

$$\Phi(X) = \sum_{a \in \Gamma} A_a X B_a^*, \qquad \Phi(X) = \operatorname{Tr}_{\mathsf{Z}}(A X B^*),$$

where $A = \sum_{a \in \Gamma} A_a \otimes |a\rangle$ and $B = \sum_{b \in \Gamma} B_b \otimes |b\rangle$.

(b) (Kraus and natural): Verify that the above Kraus representation is also equivalent to the natural representation

$$K(\Phi) = \sum_{a \in \Gamma} A_a \otimes \bar{B}_a$$

that treats operators as vectors: $K(\Phi) \cdot \text{vec}(X) = \text{vec}(\Phi(X))$. Hint: vectorize the Kraus representation.

- 5. Unitary evolution: Consider a quantum channel $\Phi(X) = UXU^*$ that corresponds to unitary evolution by some $U \in U(\mathcal{X})$. Find its
 - (a) natural representation $K(\Phi)$,
 - (b) Choi representation $J(\Phi)$,
 - (c) Kraus representation $\{A_a : a \in \Gamma\}$ and $\{B_a : a \in \Gamma\}$, for some set Γ ,
 - (d) Stinespring representation $A, B \in L(\mathcal{X}, \mathcal{X} \otimes \mathcal{Z})$, for some space $\mathcal{Z} = \mathbb{C}^{\Gamma}$.

What is the Choi representation $J(\Phi)$ of the identity channel $\Phi(X) = X$?

6. Eaten up by trace: Let $\mathcal{X} = \mathbb{C}^{\Sigma}$. Assume that $M \in L(\mathcal{X})$ is such that Tr(MX) = Tr(X), for all $X \in L(\mathcal{X})$. Show that this implies $M = I_X$.