Quantum Information Theory, Spring 2019

Exercise Set 12

in-class practice problems

1. Maximally entangled states: A pure state $|\psi\rangle_{XY} \in \mathcal{S}(\mathcal{X} \otimes \mathcal{Y})$ is maximally entangled if

$$\operatorname{Tr}_{\mathbf{Y}}[|\psi\rangle\langle\psi|] = \frac{I_{\mathbf{X}}}{\dim(\mathcal{X})}$$
 and $\operatorname{Tr}_{\mathbf{X}}[|\psi\rangle\langle\psi|] = \frac{I_{\mathbf{Y}}}{\dim(\mathcal{Y})}.$

- (a) Show that it must be the case that $\dim(\mathcal{X}) = \dim(\mathcal{Y})$.
- (b) Let $|\psi\rangle_{XY}, |\psi'\rangle_{XY} \in \mathcal{S}(\mathcal{X} \otimes \mathcal{Y})$ be two maximally entangled states. Show that there exist local unitaries $U_X \in U(\mathcal{X})$ and $V_Y \in U(\mathcal{Y})$ such that $(U_X \otimes V_Y)|\psi\rangle_{XY} = |\psi'\rangle_{XY}$.
- (c) Let $|\psi\rangle_{XY} \in \mathcal{S}(\mathcal{X} \otimes \mathcal{Y})$ and $|\phi\rangle_{ZW} \in \mathcal{S}(\mathcal{Z} \otimes \mathcal{W})$ be maximally entangled. Show that $|\psi\rangle_{XY} \otimes |\phi\rangle_{ZW}$ is also maximally entangled with respect to the partition $\mathcal{X} \otimes \mathcal{Z} : \mathcal{Y} \otimes \mathcal{W}$.
- (d) Let $|\psi\rangle_{XY} \in \mathcal{S}(\mathcal{X} \otimes \mathcal{Y})$ be a maximally entangled state with $\dim(\mathcal{X}) = \dim(\mathcal{Y}) = d$, and let

$$\tau = \frac{|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle}{\sqrt{2}}$$

be the canonical two-qubit maximally entangled state. Show that an exact copy of $|\psi\rangle_{XY}$ can be obtained from $\tau^{\otimes n}$ by LOCC, for some large enough n. What is the smallest value of n for which this holds?

2. Fidelity and composition of channels: Let $\tau_1 \in D(\mathcal{X}), \sigma \in D(\mathcal{Y}), \tau_2 \in D(\mathcal{Z})$ be quantum states and let $\Phi \in C(\mathcal{X}, \mathcal{Y})$ and $\Psi \in C(\mathcal{Y}, \mathcal{Z})$ be quantum channels. Assuming that

$$F(\Phi(\tau_1), \sigma) > 1 - \varepsilon,$$
 $F(\Psi(\sigma), \tau_2) > 1 - \varepsilon,$ (1)

for some $\varepsilon > 0$, show that

$$F((\Psi \circ \Phi)(\tau_1), \tau_2) > 1 - 4\varepsilon, \tag{2}$$

where $\Psi \circ \Phi$ denotes the composition of the two channels.

Hint: Recall that you showed in Problem Set 6 that fidelity is monotonic under any quantum channel. Also, you can use the following inequality (which you will show in the homework): $F(\rho_1, \sigma)^2 + F(\rho_2, \sigma)^2 \leq 1 + F(\rho_1, \rho_2)$, for any states $\rho_1, \rho_2, \sigma \in D(\mathcal{X})$.

3. From any state to any other: Let $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ and $\sigma \in D(\mathcal{Z} \otimes \mathcal{W})$ be two arbitrary pure states. How many copies of the state σ can be distilled per copy of ρ ?