Quantum Information Theory, Spring 2019

Exercise Set 11
 in-class practice problems

1. Majorization examples:

(a) Let $p=(0.1,0.7,0.2)$ and $q=(0.3,0.2,0.5)$. Determine whether $p \prec q$ or $q \prec p$.
(b) Find a sequence of Robin Hood transfers that converts one distribution into the other.
(c) Express this sequence as a single stochastic matrix and verify that this matrix is in fact doubly stochastic.
(d) Express this matrix as a convex combination of permutations.
(e) Find a pair of probability distributions p and q such that neither $p \prec q$ nor $q \prec p$.
2. Alternative definitions of majorization: Let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a vector and let r denote reverse sorting and s denote sorting:

$$
\begin{aligned}
& r_{1}(u) \geq r_{2}(u) \geq \cdots \geq r_{n}(u), \\
& s_{1}(u) \leq s_{2}(u) \leq \cdots \leq s_{n}(u),
\end{aligned}
$$

such that $\left\{r_{i}(u): i=1, \ldots, n\right\}=\left\{s_{i}(u): i=1, \ldots, n\right\}=\left\{u_{i}: i=1, \ldots, n\right\}$ as multisets. Let v and u be two probability distributions over $\Sigma=\{1, \ldots, n\}$, i.e., $v_{i} \geq 0, u_{i} \geq 0$, and $\sum_{i=1}^{n} v_{i}=\sum_{i=1}^{n} u_{i}=1$. Show that the following conditions are equivalent:
(a) $\sum_{i=1}^{m} r_{i}(u) \geq \sum_{i=1}^{m} r_{i}(v)$, for all $m \in\{1, \ldots, n-1\}$.
(b) $\sum_{i=1}^{m} s_{i}(u) \leq \sum_{i=1}^{m} s_{i}(v)$, for all $m \in\{1, \ldots, n-1\}$.
(c) $\forall t \in \mathbb{R}: \sum_{i=1}^{n} \max \left(u_{i}-t, 0\right) \geq \sum_{i=1}^{n} \max \left(v_{i}-t, 0\right)$.

3. Vectorization and partial trace:

(a) Show that, for all $L, R \in \mathrm{~L}(\mathcal{Y}, \mathcal{X})$,

$$
\operatorname{Tr}\left[\operatorname{vec}(L) \operatorname{vec}(R)^{*}\right]=L R^{*} .
$$

(b) Let $\Xi \in \operatorname{SepC}(\mathcal{X}: \mathcal{Y})$ be given by

$$
\Xi(M)=\sum_{a \in \Sigma}\left(A_{a} \otimes B_{a}\right) M\left(A_{a} \otimes B_{a}\right)^{*},
$$

for all $M \in \mathrm{~L}(\mathcal{X} \otimes \mathcal{Y})$. Show that, for all $X \in \mathrm{~L}(\mathcal{Y}, \mathcal{X})$,

$$
\operatorname{Tr}\left[\Xi\left(\operatorname{vec}(X) \operatorname{vec}(X)^{*}\right)\right]=\sum_{a \in \Sigma} A_{a} X B_{a}^{\boldsymbol{\top}} \bar{B}_{a} X^{*} A_{a}^{*}
$$

