Exercise Set 10

in-class practice problems

1. Separable maps:

(a) Let $\Xi \in CP(\mathcal{X} \otimes \mathcal{Y}, \mathcal{Z} \otimes \mathcal{W})$. Show that $\Xi \in SepCP(\mathcal{X}, \mathcal{Z} : \mathcal{Y}, \mathcal{W})$ if and only if there exist $A_a \in L(\mathcal{X}, \mathcal{Z})$ and $B_a \in L(\mathcal{Y}, \mathcal{W})$ such that

$$\Xi(X) = \sum_{a \in \Sigma} (A_a \otimes B_a) X (A_a \otimes B_a)^*,$$

for all $X \in L(\mathcal{X} \otimes \mathcal{Y})$.

(b) Let $\Xi_1 \in \text{SepCP}(\mathcal{X}, \mathcal{U} : \mathcal{Y}, \mathcal{V})$ and $\Xi_2 \in \text{SepCP}(\mathcal{U}, \mathcal{Z} : \mathcal{V}, \mathcal{W})$. Show that their composition is also separable:

$$\Xi_2 \circ \Xi_1 \in \operatorname{SepCP}(\mathcal{X}, \mathcal{Z} : \mathcal{Y}, \mathcal{W}).$$

- 2. Examples of separable maps: Show that the following maps jointly implemented by Alice and Bob are separable:
 - (a) Alice and Bob share a random variable with probability distribution $p = (p_{a,b} : a \in \Sigma, b \in \Gamma)$, where Alice has the first register and Bob has the second one. Moreover, Alice has a quantum register A and Bob has a quantum register B. They both observe their halves of the random variable. If Alice's value is $a \in \Sigma$, she applies a channel Φ_a on her register A. Similarly, if Bob's value is $b \in \Gamma$, he applies a channel Ψ_b on his register B.
 - (b) Alice has a register A that she measures in the standard basis. She sends the measurement outcome $a \in \Sigma$ to Bob who applies a channel Ψ_a on his register B.
 - (c) Any LOCC channel.
- 3. Instruments: Recall that an instrument is a collection $\{\Phi_a : a \in \Sigma\} \subset CP(\mathcal{X}, \mathcal{Y})$ such that $\sum_{a \in \Sigma} \Phi_a \in C(\mathcal{X}, \mathcal{Y})$. When applied to state $\rho \in D(\mathcal{X})$, it produces outcome $a \in \Sigma$ with probability $Tr[\Phi_a(\rho)]$ and changes the state to $\rho_a = \Phi_a(\rho)/Tr[\Phi_a(\rho)]$. Show that any instrument can be implemented by a quantum channel followed by an orthonormal measurement.