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Michael Walter, University of Amsterdam due February 20, 2018

Problem 1 (The ebit is entangled, 3 points).
Let ∣Ψ⟩ = ∑i,jMi,j ∣i⟩⊗∣j⟩ ∈ Cd⊗Cd be an arbitrary quantum state, expanded in the computational
basis. Let M denote the d × d-matrix with entries Mi,j .

(a) Show that ∣Ψ⟩ = ∣φ⟩⊗ ∣ψ⟩ for some ∣φ⟩, ∣ψ⟩ ∈ Cd if and only if the rank of M is one.

(b) Conclude that the ebit state ∣Φ+⟩ ∶= (∣00⟩ + ∣11⟩) /
√

2 is entangled, as we claimed in class.

Problem 2 (Order of measurements, 4 points).
In this problem, you will see how the order of measurements can matter in quantum mechanics.
Let ∣ψ⟩ be an arbitrary state of a qubit.

(a) Imagine that we first measure the Pauli matrix X, with outcome x, and then the Pauli
matrix Z, with outcome z. Derive a formula for the joint probability, denoted p(x→ z), of
the two measurement outcomes.

(b) Derive a similar formula for the joint probability p(x← z) corresponding to first measuring Z
and then X.

(c) Find a state ∣ψ⟩ such that p(x→ z) ≠ p(x← z).

Problem 3 (Entanglement swapping, 4 points).
In class, we briefly discussed what happens when we teleport half of an entangled state. In this
exercise, you will study this situation more carefully.

(a) Let ∣ψ⟩ME be an arbitrary quantum state and consider the state ∣ψ⟩ME ⊗ ∣Φ
+⟩AB. Suppose

that the M and A subsystems are in Alice’ laboratory and the B subsystem is in Bob’s
laboratory, so that they can apply the teleportation protocol as in class. (Neither Alice
nor Bob have access to the E subsystem.) Show that after completion of the teleportation
protocol, the state of the B and E subsystems is ∣ψ⟩BE .

(b) Now assume that we have three nodes – Alice, Bob, and Charlie – such that Alice and
Bob as well as Bob and Charlie start out by sharing an ebit each, i.e., the initial state is
∣Φ+⟩AB1

⊗ ∣Φ+⟩B2C
. Using teleportation as in (a), how can they establish an ebit between

Alice and Charlie?

(c) Sketch how to extend the scheme in (b) to a linear chain of N nodes, assuming that initially
only neighboring nodes share ebits.

Problem 4 (Distinguishing quantum states, 6 points).
The trace distance between two quantum states ∣φ⟩ and ∣ψ⟩ is defined by

T (φ,ψ) = max
0≤Q≤I

⟨φ∣Q∣φ⟩ − ⟨ψ∣Q∣ψ⟩ . (1.1)

Here, 0 ≤ Q ≤ I means that both Q and I −Q are positive semidefinite operators.
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(a) Imagine a quantum source that emits ∣φ⟩ or ∣ψ⟩ with probability 1/2 each. Show that the
optimal probability of identifying the true state by a POVM measurement is given by

1

2
+

1

2
T (φ,ψ).

Without using this formula: Why can this probability never be smaller than 1/2?

(b) Conclude that only orthogonal states (i.e., ⟨φ∣ψ⟩ = 0) can be distinguished perfectly.

(c) Show that the trace distance is a metric. That is, verify that T (φ,ψ) = 0 if and only if ∣φ⟩ =
eiθ ∣ψ⟩, that T (φ,ψ) = T (ψ,φ), and prove the triangle inequality T (φ,ψ) ≤ T (φ,χ)+T (χ,ψ).

You will now derive an explicit formula for the trace distance. For this, consider the spectral
decomposition ∆ = ∑i λi ∣ei⟩ ⟨ei∣ of the Hermitian operator ∆ = ∣φ⟩ ⟨φ∣ − ∣ψ⟩ ⟨ψ∣.

(d) Show that the operator Q = ∑λi>0 ∣ei⟩ ⟨ei∣ achieves the maximum in (1.1), and deduce the
following formulas for the trace distance:

T (φ,ψ) = ∑
λi>0

λi =
1

2
∑
i

∣λi∣.

(e) Conclude that the optimal probability of distinguishing the two states in (a) remains
unchanged if we restrict to projective measurements.

In class, we will also use the fidelity ∣⟨φ∣ψ⟩∣ to compare quantum states.

(f) Show that trace distance and fidelity are related by the following formula:

T (φ,ψ) =
√

1 − ∣⟨φ∣ψ⟩∣2.

Hint: Argue that it suffices to verify this formula for two pure states of a qubit, with one of
them equal to ∣0⟩. Then use the formula from part (d).

This exercise shows that states with fidelity close to one are almost indistinguishable by any
measurement.

Problem 5 (POVMs can outperform proj. measurements, 4 points; Nielsen & Chuang §2.2.6).
Imagine a qubit source that emits either of the two states ∣0⟩ and ∣+⟩ = (∣0⟩ + ∣1⟩)/

√
2 with equal

probability 1/2. Your task is to design a measurement that optimally distinguishes these two
cases. Unfortunately, the states ∣0⟩ and ∣+⟩ are not orthogonal, so you know that this cannot be
done perfectly (e.g., from the previous problem).

Suppose now that your measurement is allowed to report one of three possible outcomes: that
the true state is ∣0⟩, that the true state is ∣+⟩, or that the measurement outcome is inconclusive.
However, it is not allowed to ever give a wrong answer ! We define the success probability of such
a measurement scheme as the probability that you identify the true state.

(a) Show that for projective measurements the success probability is at most 1/4.

(b) Find a POVM measurement that achieves a success probability strictly larger than 1/4.
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