Lempel-Ziv Compression (\$6.4)
So far: Symbol codes achieve $H(X) \leqslant L(X, C)<H(X)+1$, but always $\geqslant 1 \frac{\text { bit }}{\text { symbol. }}$ By looking at lage blocks, con achieve $H(P)$ for $11 D$ sources. a both in the lars y and in the lasses Scenario
Today:] Lossless compression of "stream" of symbols that con emit $<1 \frac{\text { bit }}{\text { symbol }}$ is asymptaically ophinal for lID sauces $(R \rightarrow H(X))$, and even is adaptive !

Variations are used in GIF, ZIP, PNG,...
Lempel-Zir coding ago (sometimes combined with Huffman)
input: stream that ends with special symbol \perp

* phrases o [" " $]$ empty string
* While more to compress:
- read symbds until we obtain "phrase" " \&phrases $\Rightarrow \pi=\square, \bar{\xi} \sqrt{x}$ where $\tau \in$ phrases, $x \in \infty$ distinct "phrases"
- append π to phrases
$-k \leftarrow$ index of τ in phrases
-curite (k, x) in bits
use $[\log (j)]$ bits in j th $\operatorname{sep}(j=1,2 \ldots)$ can skip if $x=1$ (last sep)

Example: Let's compress $A|B| B A|B A A| B A \triangle B|A B| A \perp$:

Step	0	1	2	3	4	5	6	7
phrases	4	A	B	$B A$	$B A A$	$B A A B$	$A B$	$A 1$
$(K(X)$	-	$(0, A)$	$(0, B)$	$(2, A)$	$(3, A)$	$(4, B)$	$(1, B)$	$(1,1)$
Compression	$-1,0$	0,1	10,0	11,0	100,1	001,1	$001,-$	
Habits fork	0	1	2	2	3	3	3	

$\Longrightarrow \circ \circ 14$ bits Compressed into 20 bits... but the principle is sound $\underbrace{\infty}$

Q: Intuition how it works? Clear how to decompress?
Analysis? How well does it compress? Consider:
$l=$ \#bits of compression \& $R=\frac{Q}{N}$ compression rate

* Worst Case: For any String $x^{N}=x_{1}\left(\cdots x_{0}\right)$,

$$
R \leqslant \log \# A+O\left(\frac{1}{\log N}\right) \longrightarrow \log \# A
$$

Thus: LE does no worse than not compressing at all! (for large N)

* Average rate: Let $X^{N}=X_{1}, \cdots X_{N} \stackrel{110}{\sim} p$.

$$
E[R] \leqslant H(P)+O\left(\frac{1}{\log N}\right) \longrightarrow H(P)
$$

Thus: For an IID source, LZ achieves enkopy H(P)! (for (large N) This optimality holds even mare generally for an "ergodic" source.

How to prove this?
Warmup: Fix source string x^{N} and assume LE compresses it into C phrases:

$$
\begin{align*}
& \Rightarrow\left[l=\sum_{j=1}^{c}(\lceil\log (j)\rceil+\lceil\log \#(\alpha)])\right. \tag{A}\\
& \leqslant \underset{\sim}{\text { dominant } \log (c)}+c(1+\lceil\log \# A 7)
\end{align*}
$$

Thus: Need to understand how number of phiares O grows with N.

* Warst-case analysis? \rightarrow Challenge exercise tomorrow.

Ex Class.

* We focus on average rate. Key idea: Relate c to $\log \frac{1}{P\left(x^{N}\right)} \nabla$

For simplicity: Assume all $P(x) \leq \frac{1}{2}$ \& but arbitrary \#CA
(1) Classify phrases according to their probability:

$$
\Pi_{k}=\left\{\pi_{i} \mid 2^{-k-1}<P\left(\pi_{i}\right) \leqslant 2^{-k}\right\}
$$

* for any phrase: $\operatorname{P}(\pi)=\operatorname{Pr}\left(x^{N}\right.$ has prefix $\left.\pi\right)$
x any string y^{n} has at most one prefix in any fixed Π_{k}

$$
\begin{aligned}
& {\left[\begin{array}{l}
\text { if } \left.y^{n}=\pi_{i} \mid \ldots\right]=\pi_{j} \mid \ldots
\end{array} \text { then } \pi_{i}=\pi_{j} \mid \ldots\right.} \\
& \\
& \Rightarrow P\left(\pi_{i}\right) \leqslant P\left(\pi_{j}\right) \frac{1}{2} \text { (or vice vera) } \\
& \Rightarrow 1 \geqslant \operatorname{Pr}\left(X^{N} \text { has prefix in } \Pi_{k}\right)=\sum_{\pi \in \Pi_{k}} \operatorname{Pr}\left(X^{N} \text { has prefix } \pi\right) \\
& \Rightarrow \# \Pi_{k} \leqslant 2^{k+1}
\end{aligned}
$$

(2) How large con $P\left(x^{N}\right)$ be if we know it has 0 phrases?

$$
\begin{aligned}
P\left(x^{N}\right) & =\prod_{i} P\left(\pi_{i}\right)=\prod_{k} \prod_{\pi \in \Pi_{k}} P(\pi) \quad \text { maximal if } \Pi_{0}, \Pi_{1} \ldots \text { as } \\
& \leqslant\left(2^{-0}\right)^{2^{o+1}}\left(2^{-1}\right)^{2^{(t)}} \cdots\left(2^{-(L-1)}\right)^{2^{L}}\left(2^{-L}\right)^{C-\sum_{k=1}^{L} 2^{k}}
\end{aligned}
$$

where L is maximal with $\sum_{k=1}^{L} 2^{k}=2^{L+1}-2 \leqslant C$
$\Rightarrow L \approx \log (c)$ Mae precisely: $\log (c)-2<L \leqslant \log (c+2)-1 \leqslant \log (c)$.

$$
\begin{aligned}
\Longrightarrow \log \frac{1}{P\left(x^{N}\right)} & \geqslant \sum_{\begin{array}{c}
\sum_{k=1}^{\text {deck }} \begin{array}{l}
\text { by } \\
\text { induction }
\end{array} \\
\gtrless
\end{array}(\underline{L-2) 2^{L+1}+4}+\underbrace{L(k=1) 2^{k}}+L\left(c-\sum_{-2^{L+1}+2}^{\left.\sum_{k=1}^{L} 2^{k}\right)}\right.}=-4 \cdot 2+4+L(c+2)
\end{aligned}
$$

$$
\geqslant c \cdot \log c \text { comintern } 60
$$

(3) Take expectation value and use $E\left[\log \frac{1}{p\left(X^{N}\right)}\right]=N \cdot M(P)$:

$$
\begin{equation*}
N \cdot H(P) \geq E[C \cdot \log c]-6 E[C] \tag{B}
\end{equation*}
$$

Suppose ce could only look at the "dominant" terms in (A) (B). Then:

$$
E[R]=\frac{E[l]}{N} \stackrel{A}{\lesssim} \frac{E[c \cdot \log C]}{N} \stackrel{(B)}{\lesssim} H(P)
$$

and we would be doe!
(4) In reality, things ae a bit roe complicated:

$$
\begin{align*}
E[R] & =\frac{1}{N} E[l] \stackrel{(A)}{\leqslant} \frac{1}{N} E[C \cdot \log C]+\frac{1}{N}([\log H \Delta I+1) E[C] \\
& \leqslant H(P)+\underbrace{O\left(\frac{1}{N}\right) \cdot E[C]}_{\text {want that } \rightarrow 0} \tag{B}
\end{align*}
$$

How to deal with E[C]?
$E[c] \log E[C] \leqslant E[c \cdot \log c]^{(D)} \leqslant(H(P)+6) \mathrm{N}$ since certain ty $c \leq N$
4 Jensen: $f(x)=x \cdot \log x$ is convex
.. So E[C] has to grow slower than linear! In fact:

$$
E[c]=O\left(\frac{N}{\log N}\right) \text { and so we arrive at }
$$

$\Longrightarrow E[R] \leqslant H(P)+O\left(\frac{1}{\log N}\right)$
Noon

Why is this true? Assume that $f(N) \cdot \log f(N) \leqslant \gamma \cdot N$ for large N. we daim that $f(N)<(\gamma+1) \frac{N}{\log N}$. Indeed, other wise we have $f(N) \geq(\gamma+1) \frac{N}{\log N}$ for a subsequence of $N \rightarrow \infty$. Then:

$$
\begin{aligned}
& f(N) \cdot \log f(N) \geqslant(\gamma+1) \frac{N}{\log N} \log \left((\gamma+1) \frac{N}{\log N}\right) \\
\geqslant & (\gamma+1) N(1-\frac{\underbrace{\log \log N}_{0}}{\log _{0}})
\end{aligned}
$$

