

•		۲.						
Step	0	ι	2	3	પ	2	6	7-
phrases	ક જ	A	ß	ߥ	BAA	BAAD	AB	AL
(KX)]	(<mark>0</mark> ,A)	(O, \mathcal{B})	(2, A)	(3,A)	(4 (B)	(\mathcal{B})	$(l_{1}L)$
mpression bits for k		-,0 0	0 ر ا	<mark>لەرە</mark> 2	ال ر ت 2	100,1 3	001,1 3	001,

=> 😤 14 bits compressed into 20 bits... but the principle is sound 🙄

Q: Intuition has it works? Clear has to decompress?
Analysis! How well does it compress? Conside:

$$l = \# 5 K cot compression & R = \frac{R}{N} compression (a.K)$$

Work! Cose? For any String x^{1/2}x(-x),
R ≤ log # de + O(-(-N)) → (log # de
f does near 3000: F(D) < C-(D) + U)
Thus: L2 does no work that not compressing of all! (for longe W)
Augage rate: let X^{1/2}=X(--X_N)^{4/2} P.

$$E[R] ≤ H(P) + O((-1/2)N) → H(P)$$
Thus: For an IID Source, L2 actives enlogy H(P)! (for longe W)
This optimality holds even more generally for an "egodic" source.
How to power this?

$$V^{1/2} = V(-V) = 0 (-1/2) + 0 (-1/2)$$

Thus: Need to understand how number of phrases
$$\bigcirc$$
 grows with N.
* Worst-case analysis? \longrightarrow Challenge derive tomorrow.
(EX CLASS).
* Use focus on areage rate. key idea: Petale c to log $\frac{1}{P(X^N)}$?
For simplicity: Assume all $P(X) \leq \frac{1}{2}$ \longrightarrow but arbitrary #LA =
(D) Classify phrases according to their probability:
 $\Pi_{k} = \left\{ \pi_{i} \mid 2^{-k-1} < P(\pi_{i}) \leq 2^{-k} \right\}$
* for any phrase: $P(\pi) = Pr(X^{1/N} \text{ has prefix } \pi)$
× any string Y^{n} has at most one prefix in any fixed Π_{k}
 $\left[if Y^{n} = [\pi_{i}] \dots = [\pi_{i}] \dots$ then $\pi_{i} = [\pi_{i}] \dots$ (or vice vosa)
 $\longrightarrow P(\pi_{i}) \leq P(\pi_{i}) \frac{1}{2} = g$
 $\implies 1 \geq Pr(X^{1/N} \text{ has prefix in } \Pi_{k}) = \sum_{i=1}^{N} Pr(X^{1/N} \text{ has prefix } \pi)$
 $= 0 \mid \geq Pr(X^{1/N} \text{ has prefix in } \Pi_{k}) = \sum_{i=1}^{N} Pr(X^{1/N} \text{ has prefix } \pi)$
 $= 0 \mid \geq Pr(X^{1/N} \text{ has prefix in } \Pi_{k}) = \sum_{i=1}^{N} Pr(X^{1/N} \text{ has prefix } \pi)$
 $= 0 \mid \geq Pr(X^{1/N} \text{ has prefix in } \Pi_{k}) = \sum_{i=1}^{N} Pr(X^{1/N} \text{ has prefix } \pi)$
 $= 0 \mid \geq Pr(X^{1/N} \text{ has prefix in } \Pi_{k}) = \sum_{i=1}^{N} Pr(X^{1/N} \text{ has prefix } \pi)$
 $= 0 \mid \geq Pr(X^{1/N} \text{ has prefix in } \Pi_{k}) = \sum_{i=1}^{N} Pr(X^{1/N} \text{ has prefix } \pi)$
 $= 0 \mid \exists \Pi_{k} \leq 2^{k+1} \mid d \in \mathbb{R}$

(2) How large can $P(x^{L})$ be if we know it has \bigcirc phrases? $P(x^{L}) = \prod_{i} P(\pi_{i}) = \prod_{k} \prod_{\pi \in \Pi_{k}} P(\pi) \quad \text{maximal it } \Pi_{0, \Pi_{1, \dots, Q}}$ $= \left(2^{-0}\right)^{2^{O+1}} (2^{-1})^{2^{L+1}} \dots (2^{-(L-1)})^{2^{L}} (2^{-L})^{O-\sum_{k=1}^{L} 2^{Lk}}$ $(2^{-0})^{2^{O+1}} (2^{-1})^{2^{L+1}} \dots (2^{-(L-1)})^{2^{L}} (2^{-L})^{O-\sum_{k=1}^{L} 2^{Lk}}$ $(2^{-L})^{O-\sum_{k=1}^{L} 2^{Lk$

How to oral with ECO?

Since certainly OSN

$$E[c] = O\left(\frac{N}{\log N}\right) \text{ ord so we arrive at}$$

$$\Rightarrow E[c] \leq H(cP) + O\left(\frac{1}{\log N}\right)$$

[Ling is this true?] Assume that $f(N) \cdot \log f(N) \leq \gamma \cdot N$ for large N. We daim that $f(N) < (y+1) \frac{N}{\log N}$. Indeed, otherwise we have $f(N) \ge (g+1) \frac{N}{\log N}$ for a subsequence of $N - \infty$. Then: ≥ 1 $f(\mathcal{W}) \cdot \log f(\mathcal{W}) \ge (\delta(1) \log \mathcal{W}) \log (\delta(1) \log \mathcal{W})$ $\ge (\delta(1) \log \mathcal{W} - \log \log \mathcal{W})$