Message Passing for Decoding and inference ($\$ 21 / 25 / 26$)
(1) Decoding Problem:

$$
s \longrightarrow x^{N} \longrightarrow y^{N} \xrightarrow{? ? 3}=0 \hat{s}
$$

Given chamel Q, encoder, and output Y' , how to decode?

* Clever algebra, like for Reed-Solomon: Not alluags possible!
* Maximum likelihood codeword decoder: Assume P(s) uniform.

Given y^{N}, find S that maximizes $P\left(S / y^{N}\right)$.
Eqv: Maximize $P\left(x^{N} / y^{N}\right)$ over $C=\left\{x^{N}\right.$ Codeword \} ~ W e ~ a s s u m e ~ n o ~ t w o ~ s ~ have some codeword x' $^{\text {HI! }}$!

Thus: Given y^{\prime}, find x^{N} that maximizes

$$
G\left(x^{N}\right)=Q\left(x_{1} \mid x_{1}\right) \cdots Q\left(y_{N} \mid x_{N}\right) \mathbb{U}\left[x^{N} \in C_{1}\right]
$$

egg. repetition code $R_{3}: C=\{000,111\}$

$$
G\left(x_{1}\left(x_{2}, x_{3}\right)=Q\left(y_{1} \mid x_{1}\right) Q\left(y_{2}\left(x_{2}\right) Q\left(y_{3} \mid x_{3}\right) \delta_{x_{11} x_{2}} \delta_{x_{2}, x_{3}}\right.\right.
$$

* Bituise decoder: Maximize $P\left(x_{i} \mid y^{N}\right)$ for each $i=1, \ldots, N$. Equivalently: Given y^{ν}, find x_{i} that maximizes

$$
G_{i}\left(x_{i}\right):=\sum_{\left\{x_{j} j j \neq i\right.} G\left(x^{N}\right)
$$

How to acid having to compute all numbers $G\left(x^{\mu}\right) ? ?$? exponential
(2) Inference in Bayesian networks:

Assume we have a model

$$
\begin{aligned}
& P(e, b, r, a, p) \\
= & P(e) P(b) P(r \mid e) P(a \mid e b) P(p l a)
\end{aligned}
$$

all functions are known (=model)

Inference Problems:

$$
?=\operatorname{Pr}(B=1 \mid A=1)=\frac{\operatorname{Pr}(B=1, A=1)}{\sum_{b} \operatorname{Pr}(B=b, A=1)}
$$

\rightarrow enough to compute $\underbrace{\operatorname{Pr}(B=b, A=1)}_{\text {marshal of } B}=\sum_{e_{1} r, p} \underbrace{P(e, b, r, 1, p)}_{\text {product of local factors }}$
How to avoid hoeing to frost compute ICe, br, lip) for all e, b, r, p?
(3) Statistical Physics: I sing model on lattice * one particle per site with states $x_{i} \in\{ \pm 1\}$
$*$ total energy $E\left[\left\{x_{i}\right\}\right]=\sum_{i \sim j} \frac{J}{2}\left(1-x_{i} x_{j}\right)$

energy cost I if NOT same ferromagnet if $J>0$
Partition function at temperature T :

$$
z=\sum_{\left\{x_{i}\right\}} e^{-E\left[\left\{x_{i}\right\}\right] / T}=\sum_{\left\{x_{i}\right\}} \underbrace{\prod_{i n j} e^{-J / 2 T \cdot\left(1-x_{i} x_{j}\right)}}_{\text {product of local factors }}
$$

General setcop:-

$$
G\left(x^{N}\right)=\prod_{m}^{\text {factor }} f_{m}\left(\left\{x_{i}\right\}_{i \in I(m)}\right)
$$

were $x_{i} \in\left(d_{i}\right.$
subset of variables

Factor graph:

$$
\sigma\left(x^{N}\right)=f_{1}\left(x_{1}, x_{2}\right) f_{2}\left(x_{1}, x_{3}, x_{4}\right) \cdots
$$

* vertices: x_{i} for each variable, f_{m} for each factor
* edge: *i fm if f_{m} depends on x_{i}

Problem: Compute marginals

- (1) Bituise decoding,

$$
G_{i}\left(x_{i}\right):=\sum_{\left\{x_{j} j_{j} \neq i\right.} G\left(x^{N}\right)=\sum_{\substack{x_{1} \cdots x_{i-1} \\ x_{i+1} \cdots \cdots x_{N}}} G\left(x_{1}, \ldots, x_{N}\right)
$$

egg. for repetition code: If we receive $y^{3}=110$:

$$
G\left(x_{1}, x_{2}, x_{3}\right)=\delta x_{1}, x_{2} \delta x_{2}, x_{3} Q\left(1 \mid x_{1}\right) Q\left(1 \mid x_{2}\right) Q\left(0 \mid x_{3}\right)
$$

* factor graph is tree:
* if rooted at x_{1} gives natural "also" for computing marginal:

$$
\begin{aligned}
& G_{1}\left(x_{1}\right)=Q\left(1 \mid x_{1}\right) \\
& \left.\sum_{x_{2}} \delta x_{1}, x_{2} Q\left(1 \mid x_{2}\right)\right\} \text { finctis of } \begin{array}{l}
\text { on icy }
\end{array} \\
& \left.\sum_{x_{3}} \delta x_{2}, x_{3} Q\left(01 x_{3}\right)\right\} \text { function of } x_{2} \text { only }
\end{aligned}
$$

1 recursion $Q\left(01 x_{3}\right)$

I If interested in G_{2} or G_{3}, need to change root and run again The following "message passing" algorithm Computes all $G_{i}\left(x_{i}\right)$ at the same time:
$x_{i} \stackrel{9_{i \rightarrow m}}{\underset{r_{m \rightarrow i}}{\rightleftarrows}} f_{m}$

Sum -product algorithm ("belief propagation"):
Input: Factor graph \& factors $\left\{f_{i}\right\}$ a integer T
(1) For all edges x_{i} - fm and all $x_{i} \in A_{i}$ i

$$
q_{i} \rightarrow m\left(x_{i}\right) \bullet 1
$$

(2) For T steps:

For all edger x_{i} fin and all $x_{i} \in A_{i}$ i

$$
\left.r_{m \rightarrow i}\left(x_{i}\right) \sum_{i x_{j} \xi_{j \in I(m)}} f_{m}\left(\left\{x_{j}\right\}_{j \in I(n)}\right) \cdot \prod_{j \in I(m), j \neq i} q_{j \rightarrow m}\left(x_{j}\right)\right|_{\substack{ \\\text { that appear in } f_{m}}}
$$

For all edger x_{i}-fm and all $x_{i} \in A_{i}$ i

$$
q_{i \rightarrow m}\left(x_{i}\right)<\prod_{n \in M C i), n \neq m} r_{n \rightarrow i}\left(x_{i}\right)
$$

(3) For all vertices x_{i} and all $x_{i} \in A_{i}$;

$$
G_{i}\left(x_{i}\right) \hookleftarrow \prod_{m \in \Pi(j)} r_{m \rightarrow j}\left(x_{i}\right)
$$

$$
M(i)=\text { factors }
$$

$$
\text { that depend on } x_{i}
$$

NB: Messages are functions/tuples ${ }_{0}^{D}$ (ane real number for each $x_{i} \in$ (ti)

* Sum-product algo works provably for trees
* computes all G_{i} at the same time if $T \geqslant$ diameter of $\delta^{r}=p h$.
* in practice also used for general graphs but only a heuristic: problem is NP-hard

Variations:

* Partition function: $Z=\sum_{x^{N}} G\left(x^{N}\right)=$? (3) pragics $\left[Z=\sum_{x_{i}} G_{i}\left(x_{i}\right)\right]$
* Maximum: $\max _{x^{N}} G\left(x^{N}\right)=$? (1) HL decoding
$\left[\right.$ Replace \sum by max no "max-produd" ago $\stackrel{-\log }{\longrightarrow}$ "min-sum" ago]

Outlook

What did we NOT cover?

* Charnels with memory

Bachelor project?

* Multi-user information theory
\times More connections to inference, machine leaning, etc.
\times Quantum information theory \rightarrow McoterMath course with Maris Ozols \& Quantum Computing \rightarrow causes by Mars (BSC) + Ronald de Wolf (MSC)
* Connections to Cryptography \rightarrow Course by Chris Schaffren

How to prepare for the exam?

* Leaning objectives @ homepage
* Lecture notes, homework, practice problems, last Year's exam
* Don't forget to prepare your cheat sheet
* Structure: mix of problems of type (1) +(2) from HW
THANKS + SEE YOU AGAIN SOON D

