Message Passing for Decoding and Inference (§21/25/26)

(1) Decoding Riddom:

$$S \longrightarrow X^{N} \longrightarrow Y^{N} \xrightarrow{235} 5$$

Guen channel Q, encoder, and output Y^{N} ; how to decode?
* Clevo algebra, like for Read-Solomon: bot always possible!
* Itaximum likelihood codecodd decoder: Assume P(S) uniform.
Guen Y^{N} , Rod S that maximizes P(S) Y^{N}).
Equ: Itaximize $P(X^{N}|Y^{N})$ are $C = \xi X^{N}$ codecod ξ We assume no two s
have some codecod with
 $P(X^{N}|Y^{N}) \bigoplus P(Y^{N}|X^{N}) = \frac{1}{P(Y^{N}|X^{N})} \cdot I[X^{N} \in C]$
Thus: Guen Y^{N} , Rod X^{N} that maximizes
 $G(X^{N}) = G(Y_{1}|X_{1}) \cdots G(Y_{N}|X_{N}) \cdot I[X^{N} \in C]$
eg. tepelihon code R_{3} : $G = \{0\infty)$, III ξ modeon det
 $G(x_{1}, x_{2}, x_{3}) = G(Y_{1}|x_{1}) \cdot G(Y_{N}|X_{2}) \cdot G_{X_{1}|X_{2}} \cdot S_{X_{2}|X_{3}}$
* Ilifuice decoder: traximize $P(x_{1}|Y^{N})$ for each $i = 1_{1-1}$ N. Equivalently:
Given Y^{N} , Rod x_{1} that maximizes
 $G(x_{1}) := \sum_{N \in I} G(x_{1}^{N})$

How to awaid having to compute all numbers G(xt) ??? Provential in N

(2) Inferre in Bayesian networks:
Assume we have a model

$$P(e_ib_i, r_i a_i p)$$

 $= P(e) P(b) P(r|e) P(a|eb) P(p|a)$
all functions are known (=model)
 $Inferre Pablems:$
 $? = Pr(B=1|A=i) = \frac{P(B=1, A=i)}{\sum_{b} P(CB=b_i, A=i)}$
Le encugh to ample $P(B=b_iA=i) = \sum_{c} P(e_ib_i, r_i, i, p)$
 $Inderhold G B e_irip product of load factors
How to avoid having to first compute $P(e_ib_i, r_i, i, p)$ for all $e_ib_irip^3$
(3) Statistical Physics: Using model on lattice$

energy cost J if hot same fearingnet if J>0

Γι.

Partition function at temperature T: $Z = \sum_{e} e^{-E[2xiS]/T} = \sum_{e} \prod_{e} e^{-E[2xiS]/T}$

$$\frac{\text{Sum} - \text{product algorithm}}{\text{Imput}} (\text{"belief propagation"}) :$$

$$\frac{\text{Input}}{\text{Imput}} : \text{ Tactor gaph & factors $f_i(s & \text{integer T})$

$$() \text{ For all edges (x) - fm} \text{ and all } x_i \in A_i :$$

$$q_{i \rightarrow m}(x_i) \leftarrow 1$$

$$(2) \text{ For T steps:}$$

$$\text{For all edges (x) - fm} \text{ and all } x_i \in A_i :$$

$$\frac{\text{Imput}}{\text{Imput}} = \frac{1}{(x_i)} \int_{x_i \in I_{i}} \int_{y_i \in I_$$$$

* Portition function: $Z = \sum_{x,v} G(x^v) = \zeta - 0$ physics $[Z = \sum_{x;} G_i(x_i)]$ * Maximum: max $G(x^v) = \zeta - 0$ The decoding x^v [Replace Z by max $\sim 0^{4}$ max-product "also $\sim 0^{-\log_2 4}$ "mm-sum" also]

Outlook

What did we wat cover? * Channels with memory * Multi-user information theory * Tore connections to inference, machine learning, etc.] * Quantum information theory -> Modertlath course with than's ceals & Quantum computing -> Course by than's (DSC) + Ranald de Walt (MSC) * Connections to Gyptography -> Course by Chris Schaffrer

How to prepare for the exam?

* Leaning objectives @ homepage * Leature notes, homework, practice problems, last year's exam * Don't forget to prepare your chect sheet * Structure: mix of problems of type (0+(2) from HW

THANKS + SEE you AGAIN SOON ?