Reed-Solomon Codes
egg. PDF 417 bar code

$$
q=929, \alpha=3, T=4
$$

Alphabet: $c=\mathbb{F}_{q}$ for 9 prime o pane power ok too
$Q_{\{0, \ldots, q-1\} \text { with }+ \text { and - modulo o }}$
(finite field with q elements)

* Strange? No! eg. With $q=257$ con encode I boyle per symbol
* Large a polects naturally against "bust errs"

Parameters: $K<N<q$ and $\alpha \in \mathbb{F}_{q}$

* overhead: $T:=N-K$
* Con correct up to T erasures ($=$ known error locations) or up to $\frac{T}{2}$ eros af unknown locations

$x \alpha$ should be $a^{" \text { generator": }} \mathbb{F}_{q}=\left\{0, \alpha, \alpha^{2}, \ldots, \alpha^{q-1}=1\right\}$ any noreo element is porer of a always exists! eeg. $\mathbb{F}_{3}=\left\{0,2,2^{2}=1\right\}, \mathbb{F}_{5}=\left\{0,2,2^{2}=4,2^{3}=3,2^{4}=1\right\}$
Lo generator polynomial: $G=(Z-\alpha) \cdots\left(Z-\alpha^{\top}\right)$
Encoder: Input: $s^{k} \in d^{k}$

$$
\begin{array}{ll}
* P \leftarrow s_{1}+s_{2} Z+\ldots+s_{k} Z^{k-1} & \text { remainder of poly diuson (see ex. class) } \\
\times R \leftarrow P \cdot Z^{T} \text { mod } \mathbb{I} & \text { desee }<T(=\text { degree of G) } \\
\times M \leftarrow P \cdot Z^{T}-R & \text { dene } N-1 \text { \& leading coifs } S_{k 1} \ldots, \delta_{1} \\
\times x_{G}-\text { coefficients of } M & \text { ie. } M=x_{1}+x_{2} Z+\ldots+\alpha_{N} Z^{N-1}
\end{array}
$$

By construction:

$$
* x^{N}=\left[x_{11}, x_{T}, \widetilde{s_{11},-, s_{k}}\right] \quad M \text { and P. } z^{\top} \text { differ in degree } \angle T \text { arr! }
$$

* M is multiple of G we subtracted the remainder!
\Rightarrow "parity checks" $M(\alpha)=\ldots=\Pi(\alpha T)=0$
ex: $k=1, N=3, q=5$ and $\alpha=2$
$\square T=2$ \& $G=(z-2)(z-4)=z^{2}-z-2(\bmod 5!)$
To encode $s \in \mathbb{F}_{5}$:
* $P=S$
$* R \backsim s \cdot Z^{2} \bmod G=s \cdot z^{2}-s \cdot 6=s \cdot z+2 s$
$* M \propto s \cdot z^{2}-R=s \cdot z^{2}-s \cdot z-2 s$
$* X^{N}=[-2 s,-s, s] \sim$ linear code $\begin{gathered}\nabla \\ \text { as claimed above }\end{gathered}$

How to decode? Imagine we receive $Y^{N} \in A^{N}$.
interpret as coeffs of polynomial:

$$
R=M+E
$$

with error polynomial $E=\sum_{k=1}^{Q^{6}} e_{k} Z^{i n}$ locations $\in\left\{\begin{array}{l}0, \ldots, N-1\} \\ p\end{array}\right\}$ gro...

Two settings:

* Erasures: elk unlenown, C and ir known
* General errors: everything intend en

What do we know? (*) implies:

This solves the problem for erasure errors: Can correct $G \leqslant$ T erasures
ex: $x^{N}=[-2)(1-5,8]$
imagine $T=2$ erasure error, egg. $Y^{N}=[0,-5,0]$.
known locations

$$
\begin{align*}
& R=-s z \quad E=e_{1} z^{0}+e_{2} Z^{2}=e_{1}+e_{2} z^{2} \\
& E(2)=e_{1}+e_{2} 4 \stackrel{\ddots}{!} R(2)=-2 s \Rightarrow e_{1}=2 s, e_{2}=-s, \quad E=2 s-s z^{2} \\
& E(4)=e_{1}+e_{2} \stackrel{!}{=} R(4)=s \tag{0}\\
\Rightarrow & M=R-E=-2 s-s z+s z^{2} \hat{=}\left[-2 s,-s_{1} s\right]
\end{align*}
$$

Decoder for erasures: Input: $y^{N} \in A^{N}$, error locations $C_{1, \ldots, C C}^{C l}$

$$
\times R \hookleftarrow y_{1}+y_{2} z+\ldots+y_{N} z^{N-1}
$$

* Solve (1) for $e_{11-1} e_{C}$
$* E \leqslant e_{1} z^{i}+\ldots+e_{c} z^{i} c$
* M\& R-E
$* \hat{S}^{K}$ - leading k coifs of $t r$ (ie. $\left.\hat{S}_{1}=m_{N-k+1, \ldots, S_{k}}=m_{N}\right)$

What if locations unknown? Consider locator polynomial:

$$
B:=\prod_{k=1}^{C}\left(1-z \alpha^{i k}\right)=1+4 z+\ldots+L_{c} z C
$$

Roots are $\alpha^{-i k}$ for $k=1, \ldots, G$. How to determine L ?

$$
\begin{aligned}
O & =\sum_{k} e_{k} \alpha^{i_{k}(j+c)} \underbrace{L\left(\alpha^{-i k}\right)}_{=0} \\
& =E\left(\alpha^{j+c_{i}}\right)+L_{i} E\left(\alpha^{j+C-1}\right)+\ldots+L_{c} E\left(\alpha^{j}\right) \quad \text { for } j=1,2_{1} \ldots
\end{aligned}
$$

But: $E(\alpha)=R(\alpha), \ldots, E\left(\alpha^{\top}\right)=R\left(\alpha^{\top}\right)$:
(2) $\left[\begin{array}{ccc}R\left(\alpha^{C}\right) & \cdots & R(\alpha) \\ \vdots & & \vdots \\ R\left(\alpha^{2 C-1}\right) & \cdots & R\left(\alpha^{C}\right)\end{array}\right]\left[\begin{array}{c}L_{1} \\ \vdots \\ L_{C}\end{array}\right]=\left[\begin{array}{l}-R\left(\alpha^{C+1}\right) \\ -R\left(\alpha^{2 G}\right)\end{array}\right]$ linear system $\begin{array}{r}\text { for } L-1 L C\end{array}$
\ldots as long as $2 G \leqslant T$, ie. $G \leqslant \frac{T}{2}$ errors. ©
Still don't know C - so just try from $C=\left\lfloor\frac{T}{2}\right\rfloor_{1 \ldots, 1}$ until (2) unique solution. once we know L : search roots $\alpha^{-i k} \sim$ in $\sim e_{c} \sim E$.
ex: $S=1$ is encoded in $x^{N}=[-2,-1,1]$
Assure we reave $y^{N}=[-2,-1,0] \sim R=-2-z$

$$
\left.\begin{array}{l}
R(\alpha)=1 \neq 0 \\
R\left(\alpha^{2}\right)=-1 \neq 0
\end{array}\right\} \Rightarrow \text { errs) happened. }
$$

Try $C_{1}=0$

* Determine L:

$$
\begin{aligned}
& \text { (2): } R^{\prime}(\alpha) \cdot L_{1}=-R\left(\alpha^{-1}\right) \\
& \Rightarrow L_{1}=1 \text {, ide. } L=1+z
\end{aligned}
$$

* Determine error locations:
L has root $S_{1}=-1=4=\alpha^{2}=\alpha^{-2}$
Lo location $i_{i}=2 \rightarrow E=e z^{2}$
* Determine E and correct:

$$
\begin{aligned}
(1): E(\alpha) & =1 \Rightarrow e=-1, E=-z^{2} \\
E\left(\alpha^{2}\right) & =-1 \\
\Rightarrow M=R-E & =-2-z+z^{2} \hat{=}[-2,-1,1] \quad 0
\end{aligned}
$$

Decoder for general errors:- Input: $Y^{N} \in A^{N}$

$$
\begin{aligned}
& x R \leftarrow y_{1}+y_{2} z+\ldots+y_{N} z^{N-1} \\
& \times \text { If } R(\alpha)=\ldots=R\left(\alpha^{\top}\right)=0 i \\
& M_{0}=R
\end{aligned}
$$

else:
For $C=\left[\frac{T}{2}\right\rfloor_{1,-1} l_{\text {: }}$
If Deft $=0$ in (2): Continue
Solve (2) for $4, \ldots, L_{C}$

$$
L_{0} 1+L_{1} z+\ldots+L_{c} z^{C}
$$

$S 11 ., S c_{1}$ o roots of L
For $k=1, \ldots, C_{1}$:
$\dot{C}_{c} \leftharpoondown$ number in $\left\{0_{1, \ldots}, N-1\right\}$ s.th.
Solve (1) for ely er ec

$$
\begin{aligned}
& E \propto \sum_{k=1}^{\dot{i}} e_{k} z^{i(h} \\
& \pi \propto R-E \\
& \text { Break } \\
& * \hat{S}^{k}=\text { leading } k \text { coeffs of } 17\left(i . e . \hat{S}_{1}=m_{N-k+1} \ldots, S_{k}=m_{N}\right)
\end{aligned}
$$

Appendix: Why does (1) have a cnigue solution if $C \leqslant T$?
we use linear algebra, which works the same over \mathbb{F} g as over \mathbb{R} or \mathbb{C}.
Consider the following $T \times T$-matrix, where $\beta_{11} \beta_{T}$ are arbitrary:

$$
B=\left[\begin{array}{ccc}
\beta_{1} & \cdots & \beta_{T} \\
\vdots & & \\
\beta_{1}^{T} & & \beta_{T}^{T}
\end{array}\right]
$$

* $\operatorname{det}(B)$ is polynomial of degree $1+2 t \ldots+T=\frac{T(T+1)}{2}$ in $\beta_{1, \ldots, \beta T}$

$$
\begin{aligned}
& * \operatorname{det}(B)=0 \text { if } S_{i}=0 \Rightarrow S_{i} \mid \operatorname{def} B \\
& * \operatorname{det}(B)=0 \text { if } S_{i}=S_{j} \Rightarrow D_{i}-S_{j} \mid \operatorname{def} B
\end{aligned}
$$

$\Rightarrow \operatorname{det}(B)$ proportional $\beta_{1} \cdots \rho_{T} \prod_{i c_{j}}\left(S_{i}-O_{j}\right) \quad$ (same degee!)
RESULT: If Sli-iST distinct and nonzero then B is invertible
in particular: all colums linearly independent!

Now note that our linear system (1) is of the following form:

$$
\left[\begin{array}{ccc}
\alpha^{i \prime} & \cdots & \alpha^{i c} \\
\vdots & & \vdots \\
\left(\alpha^{i 1}\right)^{\top} & \cdots & \left(\alpha^{i c}\right)^{\top}
\end{array}\right]\left[\begin{array}{c}
e_{0} \\
\vdots \\
e_{c}
\end{array}\right] \stackrel{\vdots}{=}\left[\begin{array}{l}
R(\alpha) \\
R\left(\alpha^{\top}\right)
\end{array}\right] \quad\left(Q_{1} \leq T\right)
$$

linearly independent column, since
$\beta_{k}=\alpha^{i k}$ clistinct and nonzero!
indeed: Since α is "generator",

$$
\mathbb{F q}_{q}=\{0, \underbrace{\alpha, \ldots, \alpha^{9-1}=1}_{\text {all distinct }}\}
$$

ad $O \leqslant i_{1} \neq \ldots \neq i C_{1} \leqslant N-1<q-1$

THUUS: linear system has unique Solution
(solution exists by assumption)

