You do not have to hand in these exercises, they are for your practice only.

1. Finite fields \mathbb{F}_{q} : The set $\mathbb{F}_{q}=\{0,1, \ldots, q-1\}$, where q is a prime number, has natural addition and multiplication operations, by performing these modulo q .
\mathbb{F}_{2} is just a bit with addition modulo $2(\mathrm{XOR})$ and the usual multiplication:
$1 \oplus 1=0,1 \times 1=1$ etc. In mathematics, \mathbb{F}_{q} is called a finite 'field' with q elements.
In \mathbb{F}_{q}, any nonzero number has a multiplicative inverse, i.e., if $x \neq 0$ is in \mathbb{F}_{q} then there exists a unique element y in \mathbb{F}_{q} such that $x y=y x=1$ (all arithmetic is done modulo q). We usually write x^{-1} for this element y and call it the inverse of x. For example, $2^{-1}=2$ in \mathbb{F}_{3}, since $2 \times 2=4(\bmod 3)=1$.
(a) Write down all nonzero elements of \mathbb{F}_{5} and \mathbb{F}_{7}, and find their inverses.

In class, we said that an element $\alpha \in \mathbb{F}_{\mathrm{q}}$ is called a generator (or 'primitive element') if $\left\{\alpha, \alpha^{2}, \ldots, \alpha^{q-1}\right\}$ runs over all nonzero numbers in \mathbb{F}_{q}. Generators exist for any prime q.
(b) Find all generators of \mathbb{F}_{5} and \mathbb{F}_{7}.

Remark: The restriction to prime numbers is important. Otherwise, inverses and generators do not necessarily exist.
2. Multiplying polynomials: One can also consider polynomials with coefficients in a finite field \mathbb{F}_{q}, which we will write as

$$
P=p_{0}+p_{1} Z+\cdots+p_{d} Z^{d}
$$

with $p_{i} \in \mathbb{F}_{q}, d \in \mathbb{N}$ and Z a formal variable. The number d is called the degree of the polynomial (assuming that $p_{d} \neq 0$). The algebraic structure of \mathbb{F}_{q} allows us to define addition and multiplication of polynomials over \mathbb{F}_{q} as well.
(a) Compute the product of the following polynomials with coefficients in $\mathbb{F}_{5}: \mathrm{P}=$ $Z^{2}+2 Z+3$ and $Q=Z^{3}+Z^{2}+1$
(b) Compute the product of the following polynomials with coefficients in $\mathbb{F}_{7}: P=Z^{3}+Z+4$ and $Q=2 Z^{2}+5 Z+1$.

Just like for polynomials with coefficients in \mathbb{C} we can study roots of polynomials. If $\alpha \in \mathbb{F}_{q}$ and P is a polynomials with coefficients in \mathbb{F}_{q}, we say that α is a root of $P=$ $p_{0}+p_{1} Z+\cdots+p_{d} Z^{d}$ if

$$
P(\alpha)=p_{0}+p_{1} \alpha+\cdots+p_{d} \alpha^{d}=0
$$

(c) Find the roots $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{F}_{5}$ of the polynomial $P=Z^{3}+Z^{2}+Z+1$ with coefficients in \mathbb{F}_{5}. Verify that you can write P in the form $P=\left(Z-\alpha_{1}\right)\left(Z-\alpha_{2}\right)\left(Z-\alpha_{3}\right)$. Remark: Not all polynomials over \mathbb{F}_{q} have roots in \mathbb{F}_{q}. Can you find an example?
3. Dividing polynomials: Just like we can divide integers by each other when we are happy with leaving a remainder, we can divide any two polynomials with remainder. That is, given two polynomials A and B, where $B \neq 0$, there are unique polynomials Q and R such that

$$
A=Q B+R,
$$

and the degree of R is less than the degree of B. We will call Q the quotient and R the remainder, and write $R=A \bmod B$. You can compute Q and R in completely the same way how you do 'long division' between integers to figure out their quotient and remainder:

```
Q <- 0
R <- A
while R and degree(R) >= degree(B):
    d <- degree(R) - degree(B)
    L <- leading_coeff(R) leading_coeff(B)^{-1} * Z^d
    Q <- Q + L
    R<- R - L B
```

Here, the leading coefficient of a polynomial $P=p_{0}+p_{1} Z+\cdots+p_{d} Z^{d}$ of degree d is p_{d}. That is, we start with A and repeatedly subtract a suitable multiple of B such that the degree decreases. This algorithm works not only for polynomials whose coefficients are real numbers, but also when the coefficients are in \mathbb{F}_{q}.
(a) Compute the quotient Q and remainder R for the following polynomials with coefficients in $\mathbb{F}_{3}: A=Z^{3}+1$ and $B=2 Z$. Verify that your procedure gave the correct answer by computing $\mathrm{QB}+\mathrm{R}$.
(b) Compute the quotient Q and remainder R for the following polynomials with coefficients in $\mathbb{F}_{5}: A=Z^{3}+2 Z$ and $B=Z+4$. Verify that your procedure gave the correct answer by computing $\mathrm{QB}+\mathrm{R}$.
(c) Consider two polynomials A and B with coefficients in a finite field \mathbb{F}_{q}, and let $R=A \bmod B$. Suppose that $\alpha \in \mathbb{F}_{q}$ is a root of B, meaning that $B(\alpha)=0$. Show that α is also a root of $C=A-R$.

