Introduction to Information Theory, Fall 2020

Practice problems for exercise class #11

You do **not** have to hand in these exercises, they are for your practice only.

1. Finite fields \mathbb{F}_q : The set $\mathbb{F}_q = \{0, 1, ..., q - 1\}$, where q is a prime number, has natural addition and multiplication operations, by performing these modulo q.

 \mathbb{F}_2 is just a bit with addition modulo 2 (XOR) and the usual multiplication: $1 \oplus 1 = 0, 1 \times 1 = 1$ etc. In mathematics, \mathbb{F}_q is called a finite 'field' with q elements.

In \mathbb{F}_q , any nonzero number has a multiplicative inverse, i.e., if $x \neq 0$ is in \mathbb{F}_q then there exists a unique element y in \mathbb{F}_q such that xy = yx = 1 (all arithmetic is done modulo q). We usually write x^{-1} for this element y and call it the *inverse of* x. For example, $2^{-1} = 2$ in \mathbb{F}_3 , since $2 \times 2 = 4 \pmod{3} = 1$.

(a) Write down all nonzero elements of \mathbb{F}_5 and \mathbb{F}_7 , and find their inverses.

In class, we said that an element $\alpha \in \mathbb{F}_q$ is called a *generator* (or 'primitive element') if $\{\alpha, \alpha^2, ..., \alpha^{q-1}\}$ runs over all nonzero numbers in \mathbb{F}_q . Generators exist for any prime q.

(b) Find all generators of \mathbb{F}_5 and \mathbb{F}_7 .

Remark: The restriction to prime numbers is important. Otherwise, inverses and generators do not necessarily exist.

2. **Multiplying polynomials:** One can also consider polynomials with coefficients in a finite field \mathbb{F}_q , which we will write as

$$\mathbf{P} = \mathbf{p}_0 + \mathbf{p}_1 \mathbf{Z} + \dots + \mathbf{p}_d \mathbf{Z}^d$$

with $p_i \in \mathbb{F}_q$, $d \in \mathbb{N}$ and Z a formal variable. The number d is called the degree of the polynomial (assuming that $p_d \neq 0$). The algebraic structure of \mathbb{F}_q allows us to define addition and multiplication of polynomials over \mathbb{F}_q as well.

- (a) Compute the product of the following polynomials with coefficients in \mathbb{F}_5 : P = $Z^2 + 2Z + 3$ and Q = $Z^3 + Z^2 + 1$.
- (b) Compute the product of the following polynomials with coefficients in \mathbb{F}_7 : P = Z³+Z+4 and Q = 2Z² + 5Z + 1.

Just like for polynomials with coefficients in \mathbb{C} we can study roots of polynomials. If $\alpha \in \mathbb{F}_q$ and P is a polynomials with coefficients in \mathbb{F}_q , we say that α is a root of $P = p_0 + p_1 Z + \cdots + p_d Z^d$ if

$$P(\alpha) = p_0 + p_1 \alpha + \cdots + p_d \alpha^d = 0.$$

(c) Find the roots $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{F}_5$ of the polynomial $P = Z^3 + Z^2 + Z + 1$ with coefficients in \mathbb{F}_5 . Verify that you can write P in the form $P = (Z - \alpha_1)(Z - \alpha_2)(Z - \alpha_3)$. *Remark: Not all polynomials over* \mathbb{F}_q *have roots in* \mathbb{F}_q . *Can you find an example?*

3. **Dividing polynomials:** Just like we can divide integers by each other when we are happy with leaving a remainder, we can divide any two polynomials with remainder. That is, given two polynomials A and B, where $B \neq 0$, there are unique polynomials Q and R such that

$$A = QB + R,$$

and the degree of R is less than the degree of B. We will call Q the *quotient* and R the *remainder*, and write $R = A \mod B$. You can compute Q and R in completely the same way how you do 'long division' between integers to figure out their quotient and remainder:

```
Q <- 0
R <- A
while R and degree(R) >= degree(B):
    d <- degree(R) - degree(B)
    L <- leading_coeff(R) leading_coeff(B)^{-1} * Z^d
    Q <- Q + L
    R <- R - L B</pre>
```

Here, the leading coefficient of a polynomial $P = p_0 + p_1 Z + \cdots + p_d Z^d$ of degree d is p_d . That is, we start with A and repeatedly subtract a suitable multiple of B such that the degree decreases. This algorithm works not only for polynomials whose coefficients are real numbers, but also when the coefficients are in \mathbb{F}_q .

- (a) Compute the quotient Q and remainder R for the following polynomials with coefficients in \mathbb{F}_3 : A = Z³ + 1 and B = 2Z. Verify that your procedure gave the correct answer by computing QB + R.
- (b) Compute the quotient Q and remainder R for the following polynomials with coefficients in \mathbb{F}_5 : A = Z³ + 2Z and B = Z + 4. Verify that your procedure gave the correct answer by computing QB + R.
- (c) Consider two polynomials A and B with coefficients in a finite field \mathbb{F}_q , and let $R = A \mod B$. Suppose that $\alpha \in \mathbb{F}_q$ is a root of B, meaning that $B(\alpha) = 0$. Show that α is also a root of C = A R.