Proof of the Noisy Coding Theorem $(S(0)$
Recall from Tuesday:

(N,K)-block code: $x^{N:}\left\{1,2, \ldots, 2^{K}\right\} \longrightarrow x^{N}$
Decoder: $\sigma: \operatorname{day}_{Y} \longrightarrow\left\{1,1, \ldots, 2^{k}\right\}$
Figures of merit:

* rate: $R:=\frac{K}{N}$ bits perchamel use
* average prob. of (block) error for uniform $S^{\prime \prime} \in\left\{l \ldots, 2^{k}\right\}$:

$$
P_{B}=\operatorname{Pr}(\hat{S}+S)=\frac{1}{2^{k}} \sum_{S=1}^{2^{k}} \sum_{\hat{S}+s} P(\hat{S}(s) \quad \text { similaly for geneal } P(S)
$$

* maximal probability of (block) error

$$
P_{B M}=\max _{S} \operatorname{Pr}\left(\hat{S} \neq S(S=s)=\max _{S} \sum_{\hat{S} \neq S} P\left(\hat{S}(S) \geqslant P_{B}\right.\right.
$$

enough to prove for P_{B}

Shannon's noisy Coding theorem: Let $Q(y(x)$ chanel.
(A) Achievability:

If $\widetilde{R}<C_{1}^{\prime}(Q): \forall \delta>0: \exists N_{0} \forall N \geq N_{0}: \exists \operatorname{code}$ with $\frac{K}{N} \geq \widetilde{R} \& P B \pi \leqslant \delta$
(B) Converse:

If $\widetilde{R}>C(Q): \exists \delta>0 \quad \exists N_{0} \forall N \geqslant N_{0}: \exists \operatorname{code}$ with $\frac{k}{N} \geqslant \widetilde{R} \& P_{B} \leq \delta$
"weak converse" (also true $\forall \delta$ but will not prove this

Proof of Achieuability ((A)
Main tod: Joint (y typical set for $P(x, y)$:

$$
J_{N, \varepsilon}(P)=\left\{\begin{array}{c}
\left(x^{N}, y^{N}\right) \text { s. th. } x^{N} \in T_{N, \varepsilon}\left(P_{x}\right), y^{N} \in T_{N, \varepsilon}\left(P_{y}\right) \\
\text { and }\left(x^{N}, y^{N}\right) \in T_{N, \varepsilon}\left(P_{x y}\right)
\end{array}\right\}
$$

Propeches:
(0) For all $\left(x^{N}, y^{N}\right) \in J_{N, \varepsilon}: 2^{-N(H(x)+\varepsilon)} \leqslant P\left(x^{N}\right) \leqslant 2^{-N C H(x)-\varepsilon)}$ etc
(1) \#J $J_{N, \varepsilon} \leqslant 2^{N(H(x y)+\varepsilon)}$
(2) If $\left(X^{N}, Y^{N}\right) \stackrel{M D}{\sim} P(x, y): \quad\left(X_{i}, Y_{i}\right) \sim P$

$$
\operatorname{Pr}\left(\left(x^{N}, y^{N}\right) \in J_{N, \varepsilon}\right) \longrightarrow 1 \text { as } N \rightarrow \infty
$$

(3) If $\tilde{X}^{N} \stackrel{H D}{\sim} P(x) \& \tilde{Y}^{N} \stackrel{M D}{\sim} P(y)$ independent: $-\tilde{X}_{i}, \tilde{Y}_{i}$ independent

$$
\operatorname{Pr}\left(\left(\tilde{X}^{N}, \tilde{Y} N\right) \in J_{N}, \varepsilon\right) \leqslant 2^{-N(I(X: Y)-3 \varepsilon)}
$$

independence
 $\left(x^{N}, y^{N}\right) \in$ Juice

$$
\leqslant 2^{-N(I(x: \Upsilon)-3 \varepsilon)}
$$

w.c.t. $P(x, y)=P(x) Q(y \mid x)$

Enough to prove: For all $P(x), \widetilde{R}<I\left(\frac{\downarrow}{X_{i} Y}\right), \delta>0$: sequence of ($N, k)$-block codes Core for each N) with $\frac{K}{N} \geqslant \widetilde{R}$ s.th, $P B \xrightarrow{N \rightarrow \infty} 0$ $k=k(N)$
key idea: Choose code at random! rale much $(\rightarrow$ (art time)

Random code: Let $K=\lceil N \tilde{R}\rceil$ and choose 2^{K} codewords at random:

$$
\begin{array}{rccccc}
X^{N}(1) & =X_{1}(1) & X_{2}(1) & \cdots & X_{N}(1) & 110 \\
\vdots & & & \vdots & \sim & \begin{array}{c}
\text { codeword by } \\
\text { codeword, leks } \\
\text { by lett }
\end{array} \\
X^{N}\left(2^{k}\right) & =X_{1}\left(2^{k}\right) & X_{2}\left(2^{k}\right) \cdots & X_{N}\left(2^{k}\right) & &
\end{array}
$$

Lo (N, k)-code with $\frac{k}{N} \geq \tilde{R}$
Typical set decoder:

$$
o\left(y^{N}\right)=\left\{\begin{array}{l}
\hat{S} \text { it exocify one } \hat{S} \text { s.th. }\left(X^{N}(\hat{S}), y^{N}\right) \in J N, \varepsilon \\
1 \text { otherwise }
\end{array}\right.
$$

How well does this work? Enough to show that average over random sore message + chanel outpht
Indeed, if tree on acreage for radom codes then codes $\omega_{0} /$ this property!
When is $\hat{S} \neq s$? Recall: $s \longrightarrow X^{N}(S) \longrightarrow Y^{N} \longrightarrow \hat{S}=\sigma\left(Y^{N}\right)$.
Two options for errors:

$$
x\left(x^{N}(s), Y^{N}\right) \notin J_{N \varepsilon}: \quad \operatorname{Pr}(\cdots) \rightarrow 0 \text { by } 2
$$

$*\left(X^{N}\left(s^{\prime}\right), Y^{N}\right) \in J N \varepsilon$ for some $s^{\prime} \neq s$:

$$
K=T N \tilde{R} T \leqslant N\left(\tilde{R}+\frac{1}{N}\right)
$$

$$
\operatorname{Pr}(\ldots) \leqslant \#\left\{s^{\prime} \neq s\right\} \cdot 2^{-N(I(X: Y)-3 \varepsilon)} \leqslant 2^{N\left(\widetilde{R}+\frac{1}{N}-I(X: Y)+3 \varepsilon\right)}
$$

$\longrightarrow 0$ if we choose ε s.th. $\tilde{R}<I(X: Y)-3 \varepsilon$
$\Longrightarrow \operatorname{Pr}(\hat{S} \neq s \mid S=s) \longrightarrow 0$ for each s_{1} so also $E[P B] \rightarrow 0$

