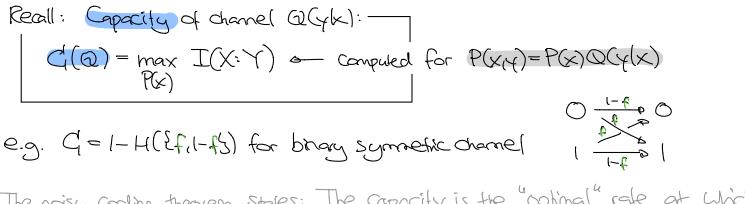
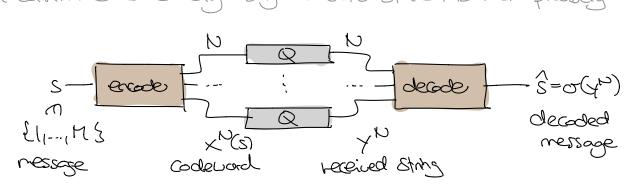
The boisy Coding Theorem (\$9-10)



The noisy cooling theorem states: The capacity is the "optimal" rate at which we can communicate "reliably" using Q. Let's state this more precisely:



$$(N_iK)$$
-block code: x^N : $\{l_1 2, ..., M\}$ $\longrightarrow A_X^N$ where $M=2^K$

-D distribution of decoded message when sending s:

$$P(S|S) = Pr(S=3(S=s) = \sum_{y \in S, HL} Q(y, |x, (s)) \cdots Q(y, |x, (s))$$

 $\gamma^{r}S, HL$
 $Q(y, |x, (s)) \cdots Q(y, |x, (s))$
 $\gamma^{r}S, HL$
 $Q(y, |x, (s)) \cdots Q(y, |x, (s))$

<u>Figures of merit:</u>

* rale:
$$R := \frac{1}{N}$$
 bits per channel use

* average prob. of (block) error for mildom SEtlim. [M]:

$$PB = Pr(\hat{S} + S) = \frac{1}{M} \sum_{s=1}^{M} \sum_{s=1}^{N} P(\hat{s}|s)$$
Similarly for general P(S)
* Maximal probability of (Hock) error:

$$PRM = \max Pr(\hat{S} + S | S = s) = \max \sum P(\hat{s}|s)$$

How at the telded?
* Clearly: PLT > PB
* Carries by Defree (P, K-1)-code by terrary the
$$\frac{H}{2} = 2^{K-1}$$
 codewads
with lagest $R(\frac{2}{5}+\frac{5}{5}|_{S}^{-1} > 3)$. "expression"
=> $\frac{P_{KT}}{P_{KT}} \leq 2 PD$ by $\frac{R^{RO}}{P_{K}} = \frac{R}{2} - \frac{1}{N}$
PI: Otherwse, original code had > $\frac{1}{2}$ codewads with $R(\frac{2}{5}+\frac{5}{5}|_{S}^{-5}) > \frac{1}{2}P_{B}$
=> $P_{B} = \frac{1}{11} \sum_{S} R(\frac{2}{5}+\frac{5}{5}|_{S}^{-5}) > \frac{1}{2} \cdot 2P_{B} = PD$ 2
Sharron's noisy coding theorem. Let $Q(\frac{1}{2})$ charles that for
for p_{S} housed at p_{M}
Sharron's noisy coding theorem. Let $Q(\frac{1}{2})$ charles $1 + \frac{K}{N} \geq \frac{2}{5}$
(D)? Thursday!
(A) If $R < C(R)$: $B > H > H > N > H > N > H > N > H > R(S + \frac{1}{2}) = \frac{1}{2}$
(b) $\frac{1}{7}$ thus day!
(h) $\frac{1}{7}$ to ball $N > 2^{NH(CT)}$ is $\frac{1}{7}$ for $\frac{1}{7}$ by $\frac{1}{7$

$$\frac{Poperkes}{\Theta} = \frac{Poperkes}{\Theta} = \frac{Poperkes}{\Theta} = 2^{-\nu} (H(Sq^{+c}) \leq P(Sq^{+})) \leq 2^{-\nu} (H(Sq^{+-c})) \leq P(Sq^{+})) \leq 2^{-\nu} (H(Sq^{+-c})) \leq P(Sq^{+})) \leq 2^{-\nu} (H(Sq^{+-c})) \leq P(Sq^{+})) \leq 2^{-\nu} (H(Sq^{+})) \leq 2^{$$

On Thursday we will use this to prove the noisy coding theorem!