Introduction to Information Theory, Fall 2020

Practice problems for exercise class #5

’You do not have to hand in these exercises, they are for your practice only. ‘

1. Entropy, essential bit content: Let X be a random variable with probability distribution
P with five possible outcomes A, B, C, D and E and probabilities P(A) = 1/2, P(B) = 1/s,
P(C) =1/4,P(D) =1/16,P(E) = 1/16.

(a) What is the entropy H(X)?
(b) Sketch Hg(X) as a function of 3.

Now let X; for i = 1,2 be IID random variables, taking values on an alphabet {a, b, c, d} with
probabilities P(a) = 1/2, P(b) = 1/4, P(c) = 1/s, P(d) = 1/s. That means in particular that we
have the following table of probabilities and outcomes

x2 P(x?)
aa 1/4
ab, ba 1/8

bb,ac,ca,ad,da | 1/16
bc, cb, bd, db 1/32
cc,cd,dc, dd 1/64

(c) Compute H(X?).
(d) Let e = 0.6. Compute the typical set T .
(e) Give a set S which is such that #S < #T, . and and P(X2eS)>P(X2e Toe).

. Symbol source codes versus Shannon source codes: The source coding theorem proved
in Lecture 4 can be informally summarized by saying that when we use an optimal prefix
code for a block of symbols then we can compress at rate arbitrarily close to H(P). Similarly,
Shannon'’s source coding theorem discussed in Lecture 5 informally states that when we
use a block coding we can compress at rate arbitrarily close to H(P) for any fixed error
probability. How are the two results related? How do they differ?

. Reprise I: Properties of typical sets These properties have also been discussed in the lecture,
but it can be very helpful to think about them yourself again! Let X1, ..., Xy be IID random
variables with a probability distribution P on a set of outcomes A, and let XN = (X1,...,XN),
which has AN as set of outcomes. Recall the definition of a typical set from the lecture:

1 1
_ N N, . <
TN,e {x eA™ | N log PO H(P)| < s}

Prove the following properties:
(a) The probability of xN € Ty is bounded by
2 NHP)+e) < p(xN) < 2~ N(H(P)—¢)
(b) The number of elements in T, is bounded by
#TN . < 2N (H(P)-FE)-

Hint: Use (a)!

(c) The probability of not being in the typical set goes to zero as N goes to infinity, that is

o2

N
< — N
PriX™ & Tn,e) < Ne2 Nosoo 0
where 0% = Var(log ﬁ) for any k (recall that the Xy are all identically distributed).
(d) Bonus property: For any & > 0 and sufficiently large N, the number of elements in Ty .
is bounded from below by

#Tn e > (1 —8)2NH(P)—e),
Hint: Use 1(a) and 1(c)!

4. Reprise II: Shannon’s source coding theorem Recall from the lecture that Shannon’s
source coding theorem states that for 0 < < 1T and X1, X3, ... IID random variables with
distribution P,

. Hs(X™)
lim ——— =H(P).
Ngnoo N ()
In this exercise you will be guided through the proof of this theorem. It has already been
discussed in the lecture, but again, it will be much easier to understand if you try to work
your way through the proof yourself!

(a) First use 1(c) to show that for all ¢ > 0 and for sufficiently large N,

H N
s(X7) < H(P) +e. 1)
N
We now want to show that for all ¢ > 0 and for sufficiently large N
Hg (XN
s> e . @

We will do so in multiple steps:

(b) Explain that to prove Eq. (2), you can just as well show that for any fixed ¢ > 0 there is
no infinite sequence N1 < N < ... such that

Hs (XN1)

NP < H(P) —e. 3)

We will now show this claim by “proof by contradiction’”. This means that we will
show that if we had such a sequence this would imply a contradiction (thus, no such
sequence can possible exist in the first place!).

(c) Suppose that there exist an infinite sequence N7 < N, < ... such that Eq. (3) holds.
Show that in this case there are sets Sy, C ANt such that

P(XNigSn,) =18 and #Sy, < 2MNi(H(P)=e),
(d) Show that
Pr(XMNt € S, N Ty, s) +Pr(XMNe ¢ Ty, s) > 1-0.
On the other hand, show by combining 1(c), 1(a) and the properties of Sy, that

Pr(XMNt € Sy, N Ty, c) +Pr(XNt ¢ Ty, £) —— 0.
12 12 i—00

2

(e) Observe that the bounds in Egs. (1) and (2) together prove Shannon’s theorem, i.e.,

lim HégN) — H(P).

N—o00

Hint: If necessary, look up the definition of the limit of a real-valued sequence in the lecture
notes (or on Wikipedia).

5. Enumeration of binary sequences: In the Thursday lecture we will discuss a universal
compression scheme. For this week’s homework you will have to implement this scheme,
and to help you we will work out an algorithm for the compressor and the decoder in
this exercise. Let AN be the set of all bitstrings of zeros and ones of length N and let
B(N,k) C AN be set of all strings x™ of length N with k ones. We will then order these
sets in an appropriate way, and given x¥ we compress by sending over k, the number of
ones in xV, and its index in B(N, k). For the decoder, we just read out the appropriate
element from B(N, k). In this exercise we will derive a recursive algorithm for enumerating
strings in B(N, k) (notice that these sets will be exponentially large in N so we should not
just enumerate over them!). We will use the lexicographic order (denoted <), formally
defined as follows: Given bitstrings x and y, we have that x <jex y if either x =y or x; < y;
for the smallest i such that x; # yi. For example, 001 <jex 010 <je 110.

(a) To get some intuition, write down B(4, 2) in lexicographically increasing order.
(b) Argue that

{0...0} ifk=0,
B(N,k)=<¢{1...1} ifk=N,
{x|x € BIN—T1,k)}u{ix|x € B(IN—1,k— 1)} otherwise.

(c) We want to find an algorithm that assigns to a bitstring in B(N, k) its index in the
lexicographical order on B(N, k). Argue that Algorithm 1 gives the right result (notice
that we start counting at 0, and we use the convention that (E) =0ifk > N).

(d) For the decoding, we need an algorithm that finds the bitstring from k and its index in
B(N, k). Argue that Algorithm 2 gives the right answer.

Algorithm 1 Calculate index of a bitstring x

procedure INDEX(x)
N < LENGTH(X)
k <~ NUMBER_OF_ONES(X)
if N =0 then
return 0
end if
if x[0] = 0 then
return iNDex(x/[1...])
else
return (le !)+mpEx(x[1...])
end if
end procedure

Algorithm 2 Calculate string from length N, number of ones k, and index m

procedure sTrRING(N, k, m)
if N = 0 then
return Empty string
end if
ifm< (N_') then
return ApPEND(0, STRING(N — 1, k, m))
else
return apPEND(1, sTRING(N — T,k — T,m — (" 1))
end if
end procedure

