Lossy Compression \& The Source Coding Theorem (\$4)
In lossy compression, we fix the number of bits but allow small error probability:

Want:

$$
\operatorname{Pr}(\hat{x} \neq x) \leq \delta
$$

How to achieve?

* Take set $S \subseteq A$ with $\operatorname{Pr}(x \notin S) \leqslant \delta$.
* Then le con compress into $l=\lceil\log \# S\rceil$ bits with error probability $\leqslant \delta$. How?
Simply define C by sending all $x \in S$ to distinct bitstrings. (For $x \notin S$, pitch arbitrary, or fall.)

Define δ-essential bit concent by
ex:

$$
H_{\delta}\left(X^{\prime}\right)=H_{\delta}(P)=\min \{\log \# S \mid \operatorname{Pr}(X \neq S) \leqslant \delta\}
$$

$\Rightarrow \quad\left\lceil H_{S}(X)\right\rceil$ is minimal \# bits required to compress x with eros $\leq \delta$
if nad integer, need to round up!
$H_{\delta}(X)$ is in geneal quite messy ... $\frac{\text { see }}{\text { he }}$
Amazingly, it simplifies dramatically if ce compress blocks of symbols ∇

Shannon's Source Coding Theorem: Let $x_{1}, x_{2}, x_{31} \ldots \stackrel{110}{\sim} p$ and $0<\delta<1$:

$$
\lim _{N \rightarrow \infty} \frac{H_{\delta}\left(X_{1 \ldots,} X_{N}\right)}{N}=H(P) \quad \begin{aligned}
& 110 \text { (memoryless) } \\
& \text { information source }
\end{aligned}
$$

optimal Compression rate for optimal asymptotic block sic N and error poo $\leqslant \delta$ compression rate a independent of δ ! (ie. $\left.\forall \delta e(a 1), \varepsilon>0 \quad \exists N_{0} \forall N z N_{0}:\left|\frac{H_{5}\left(X_{N}-X_{N}\right)}{N}-H(p)\right| \leqslant \varepsilon\right)$

* If $R>H(P): \exists N_{0} \forall N \geqslant N_{0}$:

CAN compeers at rate $R(=$ into $l \leq R N$ bits)

* If $R<H(P): \exists N_{0} \forall N \geq N_{0}$:

CANNOT compress at rale R

Proof of the Source Coding Theorem
NOTATION: $x^{N}=x_{1} \cdots x_{N}=\left(x_{1}, \cdots, x_{N}\right)$ for stings of length N.

Typical set:

$$
\begin{aligned}
T_{N, \varepsilon}(P) & =\left\{x^{N} \in A_{x}^{N}:\left|\frac{1}{N} \log \frac{1}{P\left(x^{N}\right)}-H(P)\right| \leq \varepsilon\right\} \\
& \Leftrightarrow\left\{x^{N} \in A_{x}^{N}:\left|\frac{1}{N} \sum_{k=1}^{N} \log \frac{1}{P(x u)}-H(P)\right| \leq \varepsilon\right\}
\end{aligned}
$$

Properties:
(0) $2^{-N(H(P)+\varepsilon)} \leqslant P\left(x^{N}\right) \leqslant 2^{-N(H C P)-\varepsilon)}$
(by definition)
(1) \# $T_{N, \varepsilon} \leqslant 2^{N(H(P)+\varepsilon)}$

Pf: $\quad 1 \geqslant \operatorname{Pr}\left(X^{N} \in T_{N, \varepsilon}\right)=\sum_{x^{N} \in T_{N, \varepsilon}} P\left(x^{N}\right) \geqslant \# T_{N, \varepsilon} \cdot 2^{-N(H(P)+\varepsilon)}$.
(2) $\operatorname{Pr}\left(X N \notin T_{N, \varepsilon}\right) \leqslant \frac{\sigma^{2}}{N \varepsilon^{2}} \longrightarrow 0$, where $\sigma^{2} \equiv \operatorname{Var}\left(\log \frac{1}{P\left(X_{k}\right)}\right)$.

Pf: Let $L_{k}=\log \frac{1}{P\left(x_{k}\right)}$ and $p:=E\left[L_{k}\right]=H\left(x_{k}\right)=H(P)$. Then :

$$
L H S=\operatorname{Pr}\left(\left|\frac{1}{N} \sum_{k=1}^{N} L_{k}-\mu\right|>\varepsilon\right) \leqslant \frac{\operatorname{Var}\left(L_{u}\right)}{N \varepsilon^{2}} .
$$

"Asymptotic Equipartition Property" (AEP)
"For large N... ...typical probabilities ae $2^{-N(H C P) \pm \varepsilon) \text { " }}$
Proof of the theorem: Let $\delta \in(0,1)$ and $\varepsilon>0$ be arbitrary.
(A) $\operatorname{Pr}\left(X^{N} \in T_{N, \varepsilon}\right) \stackrel{2}{\geqslant} \geqslant 1-\frac{\sigma^{2}}{N \varepsilon^{2}} \geqslant 1-\delta$ if N large enough

$$
\Rightarrow \frac{H_{\delta}\left(X^{N}\right)}{N} \leqslant \frac{\log \# T_{N, \varepsilon}}{N} \leqslant H(P)+\varepsilon \text { for large } N \text {. }
$$

(13) Want to prove that $\frac{H_{\delta}\left(X^{N}\right)}{N} \geqslant H(P)-\varepsilon$ for N large.

If not: \exists sets S_{N} for $N \rightarrow \infty$ s.th.

$$
\begin{aligned}
& \operatorname{Pr}\left(X^{N} \in S_{N}\right) \geq 1-\delta \text { and } \# S_{N}<2^{N(H(P)-\varepsilon)} \text {. } \\
& \Longrightarrow 1-\delta \leqslant \operatorname{Pr}\left(X^{N} \in S_{N}\right)=\operatorname{Pr}\left(X^{N} \in S_{N} \cap T_{N 1} \varepsilon_{12}\right)+\operatorname{Pr}\left(X^{N} \in S_{N} \backslash T_{N} \varepsilon_{12}\right) \\
& \underset{\substack{(6)} H_{N} \cdot 2^{-N\left(H(P)-\frac{\varepsilon}{2}\right)}}{\operatorname{Pr}\left(X^{N} \in S_{N} \cap T_{\left.N, \varepsilon_{12}\right)}\right.}+\underbrace{\operatorname{Pr}\left(X^{N} \notin T_{N 1} \varepsilon_{12}\right)}_{\longrightarrow 0 \text { by (2) }} \longrightarrow 0 \text { 名 } \\
& \leq 2^{-N \varepsilon_{2}} \longrightarrow 0
\end{aligned}
$$

Remark: $T_{M E}$ is usually NOT the smallest set $S_{N} \omega\left|\operatorname{Pr}\left(X^{N} \in S_{N}\right) \geqslant\right|-\delta \ldots$... but Small enough and easy to handle as $N \rightarrow \infty$! -o EX CLASS

How to use this in practice?
SCENARCO: want to compress IID (memoryless) data sauce P (we know P, but NOT which string will be exited)

FIX: * block sire N

* parameter $\varepsilon>0$
* a crag to order the typical set TN, ε

COMPRESSOR: Input: A sting $x^{N}=x_{1} \cdots x_{N}$

index	element
0	-
1	-
\vdots	-
\#TuE $^{\text {Th }}$	\ldots

$$
x\left(F x^{N} \notin T_{N, \varepsilon}^{(P)}:\right. \text { FAIL }
$$

$*$ Determine index p of x^{N} in $T_{N, \varepsilon}$.

* Return p in binary.
input A binary string s * Interpret s as integer p
* Return p-th element of $T_{\text {Ni s }}$.

This is a cosy compression protocol: HEP

* Error probability: $\operatorname{Pr}\left(X^{N} \notin T_{N, \varepsilon}\right) \leqslant \frac{\sigma^{2}}{N \varepsilon^{2}} \longrightarrow 0$ as $N \rightarrow \infty$
* Rate $R=\frac{\text { \#bits required to reperent } p}{N}$

$$
\leqslant \frac{\log \#^{T} N \varepsilon+1}{N} \leqslant H^{\text {ALP }} \rightarrow 0
$$

Variations
(A) How to make if LOSSLESS?

When $x^{N} \notin T_{N, \varepsilon}$, send uncompressed using N. $\Gamma \log H\left(A_{X}\right\rceil$ bits.

"las" bit

$$
\begin{aligned}
\Rightarrow \text { average rale } \bar{R} \leqslant \frac{1}{N} & +\underbrace{\operatorname{Pr}\left(X^{N} \in T_{N, \varepsilon}\right)}_{r}\left(H(P)+\varepsilon+\frac{1}{N}\right) \\
& +\underbrace{\operatorname{Pr}\left(X^{N} \notin T_{N, ~}\right)}_{\text {foo above }} \cdot\left[\log H A_{x}\right] \\
\approx H(P) & +\varepsilon \text { for large } N
\end{aligned}
$$

(B) How to also make it UNIVERSAL? (IID, but we do NOT know P)

For simplicity: assume $A=\{0,1\}$ ie. data source of bits.

FIX: * bloch size N

* a way to order the sets $B(N, k):=\left\{x^{N}\right.$ with k ones and $N-k$ zeros $\}$

COMPRESSOR: Input: A bitstring $x^{N}=x_{1} \cdots x_{N}$

* Compute $k:=$ \#ones in x^{N}
x Determine index p of x^{N} in $B(N, k)$ hey idea:
* Return k and p in binary.

$$
\approx \underbrace{\log (N)+1} \underbrace{\sqrt{2} R_{k}}_{\log \# B(N, M)+1}
$$

$B(3,2)$

index	sting
0	011
1	101
2	110

DECOMPRESSOR clear!?

Average rate \bar{R} ? Assume that $X_{1, \ldots,} X_{N} \stackrel{\| D}{\sim} \mathbb{P}$. Then:

$$
\times N \in T_{N, \varepsilon} \underset{\text { since }}{\text { decerats on } P_{1} \text { but orig wed in colegsis! }} B\left(n_{1} k\right) \in T_{N, \Sigma} \Longrightarrow \# B\left(\cap(k) \leq \# T_{N, \Sigma}\right.
$$

typicality only depends on \#t leos and ones in x^{N} !

Thus we can argue as above:

$$
\bar{R}=\frac{\text { Hits required to represent } k+\text { \#bits required to represent } p}{N}
$$

$\approx H(P)+\varepsilon$ for large N !

HW: Program this protocol \& compress the donkey!

Discussion: Many disadvantages!

* Hace to lode at entire x^{N} to compress. Can we compress by looking at a few symbols at a time?
* Assume IID distribution... What if P changes? Or if we have local correlations?

$$
Q \xrightarrow[\text { rare }]{\stackrel{\text { regent }}{\longrightarrow}} R
$$

Lo Thursday ©

