Compression and Symbol Codes (\$5)
Want to compress data source modeled by RV X with known distribution P: by using symbol codes, which compress one symbol at a time

NOTATION: $S^{+}=\bigcup_{N=1} S^{N}=$ nonempty strings owe S
$l(\omega)=$ length of string $\omega \in S t$
left's define things property...
Symbol code: $G: A \longrightarrow\{0,1\}^{t}$ for alphabet $A C C(x)=$ hoo le compress x * average length when encoding $X \sim P$:

$$
L\left(C_{1} P\right)=L\left(C_{1} x\right)=E[\ell(C(x))]=\sum_{x \in \infty} P(x) l(C(x))
$$

What we brant to minimize

* extended code:

$$
C_{1}^{t}: A^{+} \longrightarrow\{0,1\}^{t}, \quad C_{1}^{+}\left(x_{1} \cdots x_{N}\right):=C\left(x_{1}\right) \cdots C\left(x_{1}\right) \text { hoo we }
$$

Two important classes of codes: C is called ...

* uniquely decodade (LOo) if

$$
\left.\omega \neq \omega^{\prime} \Rightarrow C_{1}^{+}(\omega) \neq C^{+}\left(\omega^{\prime}\right) \quad \forall \omega, \omega^{\prime} \in \Delta_{+}^{+}\right\} \begin{aligned}
& \text { con unambiguously } \\
& \text { decode strings? }
\end{aligned}
$$

* prefix (free) code if no codeword $C_{4}(x)$ isprefix of any other

FACT:
Any prefix code is $U D$!
 $\&_{1} \ldots$

Prefix codes $=$ binary trees:
eg.
$*$ leafs labeled by $x \in A$

* path to leaf =codeword $C(x)$

What constraints are these on the length of codewords?
Kraft-McMillan inequality: If G is UD then
$\sum_{x \in C d} 2^{-l(C(x))} \leqslant 1$ ophinal codes should saturant this ("complete" code)
Pf: Let $S:=\sum_{x} 2^{-l(G(x))}$ and $\ell_{\text {max }}:=\max _{x} l(C(x))$. Then:

Kraft's converse: Let $\ell_{x} \geqslant 1$ for $x \in \mathcal{A}$ be integers s. th. $\sum_{x} 2^{-l_{x}} \leqslant 1$.
Then \exists prefix code G_{1} with $\ell\left(C_{1}(x)\right)=l_{x}$ for all $x \in \mathcal{A}$
Pf: Construct as follows:
algorithm, but not very efficient
Thus, prefix codes are as good as an 4D code! Il
(1) Ode the number:

$$
l_{x_{1}} \leqslant e_{x_{2}} \leqslant \ldots \quad \text { where } \quad \phi=\left\{x_{11} x_{21}, \cdots\right\}
$$

(2) For $k=1,2, \ldots$ choose $G\left(x_{k}\right) \in\{0,1\}^{x_{k}}$ s.th. NONE of the $C\left(x_{1}\right)_{1 . \ldots} C\left(x_{k-1}\right)$ is prefix. This is passible, since
\# \{bitstrings of leigh $l_{x_{k}}$ that have one of these as prefix\}

$$
\begin{aligned}
& \leq \sum_{i=1}^{k-1} \underbrace{2^{l_{x_{k}}-l_{x_{i}}}}_{\text {\#bitstrings of least } l_{x u}}=2^{l_{x_{k}}} \sum_{i=1}^{k-1} 2^{-l_{x_{i}}} \leqslant 2^{l_{x k}} \sum_{x} 2^{-l_{x}} \\
& \text { with prefix } C\left(x_{i}\right) \\
& \leq 2^{\text {lu }} \text { \# bitstrings } \\
& \text { of legs } \ell_{x / k}
\end{aligned}
$$

But what does this mean for the average length? Need one more tool...
Gibbs inequality let P, Q prob. distributions. Then:

$$
\sum_{x} P(x) \log \frac{1}{Q(x)} \geqslant H(P)_{1} "^{u}{ }^{u} \text { ff } P=Q
$$

Pf: $L H S-R H S=\sum_{x} P(x) \log \frac{P(x)}{Q(x)}=-\sum_{x} P G A \log \frac{Q(x)}{P(x)}$ \& use Jensen.
Lowe bound: $L(C, P) \geq H(P)$ for every UD code. information content!
Equality holds iff $l(C(x))=\log \frac{1}{P(x)}(\forall x)$.
Pf: Define

$$
\begin{aligned}
& Q(x)=\frac{2^{-l(G(x))}}{S} \text {, where } S=\sum_{x} 2^{-l(C(x))} \underset{\substack{\text { Micalt. } \\
\text { chillon }}}{\substack{\text { L. }}} \\
& \stackrel{\text { Gobs }}{\Rightarrow} H(P) \leqslant \sum_{x} P(x) \underbrace{\log \frac{1}{Q(x)}}=L(C, P)+\log S \Leftrightarrow L(G, P) \\
& =\text { ifs } P=Q_{2}=l(C(x))+\log S \\
& =\text { inf } S=1
\end{aligned}
$$

Existence of good codes. prefix codes with $L(G, X)<H(X)+1$ assuming X is Pf: Deme $l_{x}=\left\lceil\log \frac{1}{P(x)}\right\rceil \geqslant 1$ s round up equally condition from above

$$
\begin{aligned}
& * \sum_{x} 2^{-l_{x}} \leqslant \sum_{x} P(x)=1 \Longrightarrow \begin{array}{c}
\text { by Kraft's converse, thee exists a } \\
\text { prefix code } C_{1} \text { with } l\left(C_{1}^{\prime}(x)\right)=l_{x}
\end{array} \\
& * L\left(X_{1} C_{1}\right)=\sum_{x} P(x) l_{x}<\sum_{x} P(x)\left(\log \frac{1}{P(x)}+1\right)=H(x)+1
\end{aligned}
$$

NB: This code is in general Not optimal. Egg.:

$$
\begin{array}{rll|ll}
& H(x) \\
= & x & P(x) & l(x) & C(x) \\
= & \log _{2}(3) & A & 1 / 3 & 2 \\
00 \\
= & 1.585 \ldots & B & 1 / 3 & 2 \\
0 & 01 \\
& C & 4 / 3 & 2 & 10
\end{array} \quad L\left(C_{1}, x\right)=2
$$

but we can clearly do better:

$$
\Rightarrow L=1.666 \ldots
$$

To find an optimal prefix (and therefor UD) code, can use the following also:

Huffman's coding algorithm:
Input: probability dist. Po CA
output: binary tree corresponding to prefix code G with minimal $L(G, P)$
algoi. (1) Start with "forest" of \#ch isolated leaves
(2) While more than one tree: mage two trees with Smallest probabilities

Example:

Summary:
Source Coding Theorem for Prefix Codes: Let C, be the optimal UD / prefix code for $X \sim P$ Cess. (Huffman's). Then: $H(X) \leqslant L\left(C_{11} X\right)<H(X)+1$

Problem: Completely useless when X is e.g a bit I
ok if $H(X)$ loge $(\rightarrow c t$ large) eg. alphaber of teller

ie. build code on cAN for joint distribution of $X_{11-1} X_{N}$ $X^{N}=\left(x_{1}, \ldots, x_{N}\right)$

Result: If $X_{1, \ldots,} X_{N} \stackrel{\text { lID }}{\sim} P$ then the optimal prefix code satisfies

$$
H(P) \leqslant \frac{L\left(C_{1} x_{1} \cdots x_{N}\right)}{N} \leqslant H(P)+\frac{1}{N}
$$

$\Longrightarrow H(D)$ is optimal asymptotic average rale of compression of 110 source
Pf: $H\left(X_{1} \cdots X_{N}\right)=N \cdot H(P)$ by the ex. class.
The IID assumption is not realistic, but a good starting point!

Two bits of terminology to remember:

* "Compression" = "source coding"
* (average) rale of Compression $=\frac{(\text { average }) \text { \#bits used to Compress message of length } N}{N}$

NOTATION: R for rate, \bar{R} for average rale

