Introduction to Information Theory, Fall 2020

Practice problems for exercise class \#1

You do not have to hand in these exercises, they are for your practice only.
0. Exercises from MacKay: 1.3, 1.5, 1.6, 1.7, 1.10

1. Optimality of repetition code decoder: We wish to communicate a bit $\in\{0,1\}$ over a binary symmetric channel with noise level $\mathrm{f}<0.5$. To allow for error detection and correction, we use the repetition code R_{3}. That is, we send the bit over the channel three times: $x_{1} x_{2} x_{3}=$ sss. Suppose that s is uniformly random and that the receiver receives the signal $y_{1} y_{2} y_{3} \in\{0,1\}^{3}$. Show that the optimal way for the receiver to decode the message is by 'majority vote': if there are more 0 s then 1 s among $y_{1} y_{2} y_{3}$ then she interprets the message as 0 , otherwise as 1 . That is, the messages $000,001,010,100$ are decoded as 0 , and the other messages as a 1 .
