Decoding Reed-Solomon Codes Cot BCH type)
Recall: large a polects against "burst eros"
Alphabet: $\quad \omega=\mathbb{F}_{q}$ for 9 prime
Parameters: $K<N<q$ and generator $\alpha \in \mathbb{F}_{q}$
$*$ can correct up to $T:=N-k$ erasures \& up to $\frac{T}{2}$ eras at intrown locations

* generator polynomial: $G=\left(x^{*}-\alpha\right) \cdots\left(x-\alpha^{*}\right)$

Encoder: Input: $s^{k} \in A^{k}$

$$
\begin{aligned}
& \text { * } P \leftarrow s_{1}+s_{2} X+\ldots+s_{k} X^{k-1} \text {, remainder of poly diusion (degree }\langle T) \\
& \text { * } R \leftharpoondown P \cdot x^{\top} \bmod Q \\
& x M \leftarrow P \cdot X^{\top}-R \\
& \times x_{B} \text { coefficients of M } \\
& \text { dee } N-1 \\
& \text { ide. } M=x_{1}+x_{2} x+\ldots+x_{N} x^{N-1}
\end{aligned}
$$

By construction:
$x^{N}=\left[x_{11},-\mid x_{T}, S_{11 \ldots,} s_{k}\right]$
M and $P \cdot X^{\top}$ differ in degree $\langle T$ only P
$x M$ is multiple of $G \Rightarrow M(\alpha)=\ldots=M(a T)=0$
ex: $K=1, N=3, q=5$ and $\alpha=2$
$\operatorname{Lo} T=2 \quad \& \quad G=(x-2)(x+1)=x^{2}-x-2 \quad \leftrightarrow \quad-2 \equiv 3(\bmod 5)$ de
Lo $s \in \mathbb{F}_{s}$ is encoded info $x^{N}(s)=[-2 s,-s, s]$
How to decode?
Imagine we receive $y^{N} \in A^{N}$. Interpret as coeffs of polynomial:

$$
R=M+E
$$

\# eras
with error polynomial $E=\sum_{k=1}^{C} e_{k} X^{i \omega}$ locations $\in\left\{\begin{array}{l}\text { in } \\ p\end{array}, \ldots, 1\right\}$

Two settings:

* Erasures: er unknown, C and ir known
* General errors: everything unknown

What do we know? *implies:

This solves the problem for erasure errors: Can correct $G \leqslant$ T erasures
ex: $\left.\quad x^{N}=[-2),-s, \$\right]$
assume $T=2$ erasure errors:

$$
\begin{aligned}
\sim & y^{N}=[0,-s, 0] \sim R=-s X \quad E=e_{1} X^{0}+e_{2} X^{2}=e_{1}+e_{2} X^{2} \\
& E(2)=e_{1}+e_{2} 4 \doteq R(2)=-2 s \quad \Rightarrow e_{1}=2 s_{1} \quad e_{2}=-s_{1} E=2 s-s x^{2} \\
& E(4)=e_{1}+e_{2} \stackrel{\leftrightarrows}{=} R(4)=s \\
\Rightarrow & M=R-E=-2 s-s X+s X^{2} \hat{=}[-2 s,-s, s]
\end{aligned}
$$

Cut es. $x^{N}=\left[-X_{1}, 0, x\right] \Rightarrow$ impossible to correct 4)

Decoder for erasures: Input: $y^{N} \in A^{N}$, error locations $i_{1, \ldots, C_{C}}^{C}$
$\times R \hookleftarrow y_{1}+y_{2} z+\ldots+y_{N} z^{n-1}$

$$
\begin{aligned}
& e_{1}-e_{2}=-2 s \\
& e_{1}+e_{2}=s \\
& 2 e_{1}=-s \quad e_{1}=-3 s=2 s
\end{aligned}
$$

x Solve (1) for $e_{11 . .} e_{C}$
$x \in \theta e_{1} x^{i}+\ldots+e_{C} x^{i} c$
$* M \leftarrow R-E$
$* \hat{S}^{k}$ - leading k coifs of $t 7$ (ie. $\hat{s}_{1}=m_{N-k+1} \ldots \hat{S}_{k}=m_{N}$)

What if locations unknown? Consider locator polynomial:

$$
L:=\prod_{k=1}^{C}\left(1-x \alpha^{i k}\right)=1+4 x+\ldots+L_{C} x^{C}
$$

Roots are $\alpha^{-i k}$ for $k=1, \ldots, G$. How to determine L ?

$$
\begin{aligned}
O & =\sum_{k} e_{k} \alpha^{i_{k}(j+C i)} L\left(\alpha^{-(k}\right) \\
& =E\left(\alpha^{j+C_{i}}\right)+L_{i} E\left(\alpha^{j+C_{-}-1}\right)+\ldots+L_{c} \cdot E\left(\alpha^{j}\right)
\end{aligned}
$$

But: $E(\alpha)=R(\alpha), \ldots, E\left(\alpha^{\top}\right)=R\left(\alpha^{\top}\right)$:
(2) $\left[\begin{array}{ccc}R\left(\alpha^{C}\right) & \cdots & R(\alpha) \\ \vdots & & \vdots \\ R\left(\alpha^{2 C-1}\right) & \cdots & R\left(\alpha^{C}\right)\end{array}\right]\left[\begin{array}{c}L_{1} \\ \vdots \\ L_{C}\end{array}\right]=\left[\begin{array}{l}-R\left(\alpha^{C+1}\right) \\ -R\left(\alpha^{2 G}\right)\end{array}\right]$ linear system $\begin{array}{r}\text { for } 4 \cdots L_{c} \\ -1\end{array}$
\ldots as long as $2 C \leqslant T$ i.e. $G \leqslant \frac{T}{2}$ errors. ©
Still don't know C - so just try from $C=\left\lfloor\frac{T}{2}\right\rfloor_{1, \ldots, 1}$ until (2) iriqe solution. Once we know L : search roots $\alpha^{-i k} \sim$ in $\sim e_{k} \sim E$.
ex: $S=1$ is encoded in $x^{N}=[-2,-1,1]$
Assume we receive $y^{N}=[-2,-1,0] \sim R=-2-x$

$$
\begin{aligned}
& R(\alpha)=1 \neq 0 \\
& R\left(\alpha^{2}\right)=-1 \neq 0
\end{aligned}
$$

Lo errors) happened.
Try $C_{l}=0$
(2): $R^{\prime}(\alpha) \cdot L_{1}=-R\left(\alpha^{2}\right)$
$\Rightarrow L_{1}=1$, i.e. $L=1+X$
$\rightarrow L$ has root $\rho_{1}=4=\alpha^{2}=\alpha^{-2}$ \rightarrow location $i_{1}=2 \rightarrow E=e x^{2}$

$$
\begin{aligned}
& \text { (1): } E(\alpha)=1 \Rightarrow e=-1, E=-x^{2} \\
& E\left(\alpha^{2}\right)=-1 \\
& \Rightarrow M=R-E=-2-x+x^{2} \hat{=}[-2,-1,1]
\end{aligned}
$$

Decodes: Input: $Y^{N} \in A^{N}$

$$
\begin{aligned}
& x R \leftarrow y_{1}+y_{2} z+\ldots+y_{N} z^{N-1} \\
& \times \text { If } R(\alpha)=\cdots=R\left(\alpha^{\top}\right)=0: M \circ R
\end{aligned}
$$

elf se:
For $C=\left[\frac{T}{2}\right\rfloor_{1,-1} l$:
If Def $=0$ in (2): Continue
Solve (2) for $L_{1, \ldots} L_{G}$

$$
L_{0} 1+L_{1} Z+\ldots+L_{c} z^{C}
$$

Sill.. Scion roots of L
For $k=1, \ldots, C_{1}$:
ic \leftarrow number in $\left\{0_{1, \ldots}, N-1\right\}$ s. th.

$$
\rho_{k}=\alpha^{-i k}
$$

Solve (1) for $e_{1,-1} e_{c}$

$$
=\alpha^{q-1-i n}
$$

$$
\begin{aligned}
& \text { - search/ } \\
& \text { look up }
\end{aligned}
$$

$$
\begin{aligned}
& E \Leftarrow \sum_{k=1}^{C} e_{k} z^{i n} \\
& \pi \Leftarrow R-E
\end{aligned}
$$

Break

$$
\left.* \hat{S}^{K} \text { o leading } k \text { coeffs of } 77 \text { (ie. } \hat{S}_{1}=m_{N-k+1}, \ldots, S_{k}=m_{N}\right)
$$

Message Passing AlgorithMs $(\$ 16)$ Cf. dynamic programing
Motivation: Heative algor to Compute (approximate/ maximize P(Sly $)$)!
 if 1 $^{\text {ot }}$: send (1) to back
if last: send (1) to front
if receive message m : send $m \in l$ to other neighbor
eure node ross this alp if recered messages from all neighbas: output $\sum+1$

Separobilty_poppesty: total $=$ Heft + Hight +1
This extends easily to trees ($=$ graphs who cycles):

Paths in a gid: Consider paths from A to B with each step \rightarrow or t

Objectives:
(1) Count \# paths from $A \rightarrow B$!
(2) Count Hath $A \longrightarrow P \longrightarrow B$!
(3) Sample path $A \rightarrow B$ crifomily at random!
(1) Separation Properties:

$$
\begin{aligned}
& \#\{A \rightarrow P\}=\#\{A \rightarrow X\}+\#\{A \rightarrow Y\} \\
& \#\{P \rightarrow B\}=\#\{Z \rightarrow B\}+\#\{\omega \rightarrow B\}
\end{aligned}
$$

Two options:
Forward also:- Wade A sends 1. All other nodes P:
wait until message from all upstream receked
send \sum downstream

$$
\#\{A \rightarrow P\}
$$

Backward also: Mode B sends 1. All ot ier nodes P:
wait until message from all dounstrean received
send \sum upstream

$$
e_{\#\{A \rightarrow P\}}
$$

(2) Separation property: $\#\{A \rightarrow P \rightarrow B\}=\#\{A \rightarrow P\} \cdot \#\{P \rightarrow B\}$ Lo con compute

$$
\operatorname{Pr}(\text { Path through } P)=\frac{\#\{A \rightarrow P \longrightarrow B\}}{\#\{A \rightarrow B\}}
$$

after forward AND backward pass.
(3) Run backward pass. Then, sample node by node: $P_{G} \equiv A$ $P\left(P_{l+\pi l}\left(P_{l}\right)=\frac{\#\left\{P_{l+1} \rightarrow B\right\}}{\#\left\{P_{l} \rightarrow B\right\}}\right.$ wee P_{l+1} dounstiean neighbor of P_{l}

