The Noisy Coding Theorem ($\$ 9-10$)
Recall: Capacity of chanel $Q_{2}(x)$:

$$
\begin{aligned}
& C_{1}^{\prime}(Q)=\max _{P(x)} I(X: Y) \backsim \text { computed for } P(x, y)=P(x) Q C y(x) \\
& C_{1}=1-H\left(\left\{f_{1}(-f\}\right) \text { for binary symmetric chanel } 1 \underset{1-f}{1-f} 0\right.
\end{aligned}
$$

The noisy coding theorem stales: The capacity is the "optimal" rate at which we con commenicale reliably" using Q. Lei's state this more preasely:

(N,k)-block code: $x^{N}:\{1,2, \ldots, M\} \rightarrow A_{x}^{N}$ where $M=2^{K}$
Decode: $\sigma: \cos _{Y}^{N} \longrightarrow\left\{\frac{1}{q}, 1, \ldots, 1 \pi\right\}$
convenient to indicde failure (but ca do just
\rightarrow distribution of decoded message wen sending S :

$$
\begin{array}{ll}
\operatorname{Pr}(\hat{S} \mid s)=\operatorname{Pr}(\hat{S}=\hat{s} \mid S=s)= & \left.\sum_{\substack{y^{n} s+\text { th } \\
o\left(y^{n}\right)} \hat{S} \quad} Q\left(y_{1}\left|x_{1}\right| s\right)\right) \cdots Q\left(y_{n} \mid x_{n}(s)\right) \\
\text { components of } x^{N}(s)
\end{array}
$$

* rale: $R:=\frac{K}{N}$ bit perchemel use
* average prob. of (block) error for uniform $\mathbb{S}^{\prime} \in\{l \ldots, M\}$:

$$
P_{B}=\operatorname{Pr}(\hat{S}+S)=\frac{1}{M} \sum_{S=1}^{M} \sum_{\hat{S}+s} P(\hat{S}(s) \quad \text { similaly for geneal } P(S)
$$

* maximal probability of (Hock) err:

$$
P_{B M}=\max _{S} \operatorname{Pr}\left(\hat{S} \neq S^{\prime}(S=S)=\max _{S} \sum_{S \neq S} P(\hat{S} \mid S)\right.
$$

How are these related?

* Clearly: $\quad P_{B \pi} \geqslant P_{B}$
* Conversely: Define $(N, K-1)$-code by temoung the $\frac{M}{2}=2^{k-1}$ codewords with lagest $\operatorname{Pr}(\hat{S}+S \mid S=S)$. "expurgation"

$$
\Rightarrow \quad P B M \leqslant 2 P D \quad \& \quad R^{\text {new }}=R-\frac{1}{N}
$$

Pf: Otherwise, original code had $>\frac{\pi}{2}$ codewords with $\operatorname{Pr}(\hat{S} \neq S(S=S)>2$ pB

$$
\Longrightarrow P_{B}=\frac{1}{\pi} \sum_{S} \operatorname{Pr}\left(\hat{S} \neq S\left(S^{\prime}=S\right)>\frac{1}{2} \cdot 2 P_{B}=P_{B}\right.
$$

enough to show for for P_{B} instead of $P_{B M}$
Shannon's noisy Coding theorem: Let $Q(y(x)$ channel and $0<\delta<1$. D
(A) If $R<C(Q): \exists N_{0} \forall N \geq N_{0}: \exists(K, N)$-code \& decode with $\frac{K}{N} \geq R$
(B)? Thursday! and $P_{\pi \pi} \leqslant \delta$

Intuition: Choose random codewords $X^{N N}(s) \stackrel{\text { ID }}{\sim} P(x)$

L_{0} can dose $\sim 2^{N H(Y)} / 2^{N H(Y \mid X)}=2^{N I(X: Y)}$ with little overlap Lo do this for $P(x)$ that achieves capacity Af noisy typewinte?
Let's make this precise ...
Jointly typical set for $P(x, y)$:

$$
J_{N, \varepsilon}(P)=\left\{\begin{array}{r}
\left.\left(x^{N}, y^{N}\right) \text { s.th. } x^{N} \in T_{N, \varepsilon}\left(P_{x}\right), y^{N} \in T_{N, \varepsilon}(P y)\right\} \\
\text { and }\left(x^{N}, y^{N}\right) \in T_{N, \varepsilon}\left(P_{x y}\right) \\
\text { es }\left|\frac{1}{N} \log \frac{1}{P\left(x_{1}^{N}, y^{N}\right)}-H\left(x_{i} r\right)\right| \leq \varepsilon
\end{array}\right.
$$

Properhes:
(0) For all $\left(x^{N}\left(y^{N}\right) \in J_{N, \varepsilon}: \quad 2^{-N(H(x)+\varepsilon)} \leqslant P\left(x_{y}^{N}\right) \leqslant 2^{-N C H(x)-\varepsilon)}\right.$ (by definition) $\quad 2^{-N(H(X y)+\varepsilon)} \leqslant P\left(x^{N}\left(y^{N}\right) \leqslant 2^{-N(H(X Y)-\varepsilon)}\right.$
(1) \#JN, $\left.\leq 2^{N(H(X Y)+\varepsilon) \quad ~(e v e n ~ h o l d s ~ f o r ~} T_{M \varepsilon}\left(R_{X Y}\right)\right)$
(2) If $\left(X^{N}, Y^{N}\right) \stackrel{11}{\sim} P(x, y)$:

$$
\operatorname{Pr}\left(\left(x^{N}, y^{N}\right) \in J_{N, \varepsilon}\right) \longrightarrow 1 \text { as } N \rightarrow \infty
$$ via $P(x, y)$

Pf: $\operatorname{Pr}\left(\left(X^{N}, Y^{N}\right) \notin J J_{N} \varepsilon\right)=\operatorname{Pr}\left(X^{N} \notin T_{N, \varepsilon}\left(D_{x}\right) O R \ldots O R \ldots\right)$
$\leqslant \operatorname{Pr}\left(X^{N} \notin T_{N, \varepsilon}\left(P_{x}\right)\right)+\ldots+\ldots$ and each term $\longrightarrow 0$.
(3) If $\widetilde{X}^{N} \stackrel{\| D}{\sim} P(x)$ \& $\tilde{Y} N \stackrel{I D}{\sim} P(y)$ independent: $\quad \tilde{x}_{i}$ indef from \tilde{Y}_{i}

$$
\operatorname{Pr}\left(\left(\tilde{X}^{N}, \tilde{Y} N\right) \in J Y, \varepsilon\right) \leqslant 2^{-N(I(X: Y)-3 \varepsilon)}
$$

$$
\text { Pf: } \begin{aligned}
& L H S ~ \sum_{\left(X^{N}, Y^{N}\right) \in J_{N, ~}} P\left(X^{N}\right) P\left(Y^{N}\right) \\
& \leqslant H_{N, \varepsilon}+2^{-N(H(X)-\varepsilon)} 2^{-N(H(Y)-\varepsilon)} \\
& \leqslant 2^{-N(T(X: Y)-3 \varepsilon)}
\end{aligned}
$$

On Thursday we will use this to prove the noisy coding theorem!

