The boisy Coding Theorem (§9-10)

$$P(\hat{s}|s) = Pr(\hat{S}=\hat{s}(S=s) = \sum_{\substack{\gamma \in S, HL\\ o(\gamma)=\hat{s}}} Q(\gamma_1|x_1(s)) \cdots Q(\gamma_n|x_n(s))$$

* rale: $R := \frac{k}{N}$ bits per channel use * average prob. of (block) error for uniform Stell,..., M3: $PB = Pr(\hat{S} \neq S) = \frac{1}{M} \sum_{s=1}^{M} \sum_{s \neq s} P(s|s)$ similarly for general P(s) * Maximal probability of (dock) error: $PBn = \max_{s} Pr(\hat{S} \neq S \mid S = s) = \max_{s \neq s} P(s|s)$ $S = \max_{s \neq s} P(s|s)$

Haw at here helded?
* Clearly: PLT > PB
* Caressely: Define (U, K-1)-rade by remarks the
$$\frac{H}{2} = 2^{K-1}$$
 codewads
with lagest $R(G+S|S=S)$. "Sepugation"
 $\implies P_{ST}^{Constant} \leq 2 PB$ by $R^{ees} = R - \frac{1}{N}$
Pf: Obscurse, arginal rade had > $\frac{1}{2}$ radewads with $R(S+S|S+S) > 2PB$
 $= PB = \frac{1}{N} \sum_{S} R(G+S|S=S) > \frac{1}{2} \cdot 2PB = PB$
Sharroon's noisy radius theorem. Let $O(q|k)$ charred and $O<6 < 1$.)
 $@$ If $R: $\exists N_0 \forall U \ge N_0$: $\exists (E_1N)$ -rade bedeades with $\frac{K}{N} \ge 2P$
 $in tokal \sim 2^{NHCO}$ missions radewads $X^{IN}(S) \stackrel{ND}{\sim} P(K)$
 $\#$ typical charred antputs = ?
 $in tokal \sim 2^{NHCO}$ missions.
 $let O(q|k)$ charred so clear!
 $let O(q|k) = 2^{NHCO}$ missions
 $let O(q|k) = 2^{NHCO}$ with title carded
 $let O(q|k) = 2^{NHCO}$ so clear!
 $let O(q|k) = 2^{NHCO}$ missions clear!
 $let S make His precise ...$
 $jonits trades Set for P(Sq)$:
 $j_{N,R}(P) = {(x^{D}, \gamma^{D}) \le H_{C}(R_{C}); \gamma^{D} \in TupE(R_{C})}$
 $es [his $R^{C}(R_{C}) = I(S^{D}, \gamma^{D}) = TupE(R_{C})$$$

$$\frac{Poperkes}{\Theta} = \sum_{i=1}^{N} \frac{(High + c)}{\Theta} \leq P(g_{i}^{N}) \leq 2^{-N(H(g_{i}^{N}) - c)}$$

$$(b_{i} definition) = 2^{-N(H(g_{i}^{N}+c))} \leq P(g_{i}^{N}, y_{i}) \leq 2^{-N(H(g_{i}^{N}) - c)}$$

$$(b_{i} definition) = 2^{-N(H(g_{i}^{N}+c))} \leq P(g_{i}^{N}, y_{i}) \leq 2^{-N(H(g_{i}^{N}) - c)}$$

$$(b_{i} definition) = 2^{-N(H(g_{i}^{N}) + c)} \leq P(g_{i}^{N}, y_{i}) \leq 2^{-N(H(g_{i}^{N}) - c)}$$

$$(b_{i} definition) = 2^{-N(H(g_{i}^{N}) + c)} \leq 2^{-N(H(g_{i}^{N}) - c)} \leq 2^{-N(H(g_{i}^{N}) - c)}$$

$$(c_{i} definition) = 2^{-N(H(g_{i}^{N}) + c)} \leq 2^{-N(H(g_{i}^{N}) - c)} = 2^{-N(H(g_{i}^{N}) + c)} = 2^{-N(g_{i}^{N}) + c)} = 2^{-N(g_{i}^{N}) + c} = 2^{-N(H(g_{i}^{N}) - c)} = 2^{-N(H(g_{i}^{N}) - c$$

On Thursday we will use this to prove the noisy coding theorem!