Introduction to Information Theory, Fall 2019

Practice problem set \#7

You do not have to hand in these exercises, they are for your practice only.

1. Jointly typical sets Consider sequences $\left(X^{N}, \gamma^{N}\right)$ of length N of IID random variables with distribution $\mathrm{P}(x, y)$. The jointly typical set is defined as

$$
\mathrm{J}_{\mathrm{N}, \varepsilon}(\mathrm{P})=\left\{\left(x^{\mathrm{N}}, y^{\mathrm{N}}\right) \text { such that } x^{\mathrm{N}} \in \mathrm{~T}_{\mathrm{N}, \varepsilon}\left(\mathrm{P}_{X}\right), y^{\mathrm{N}} \in \mathrm{~T}_{\mathrm{N}, \varepsilon}\left(\mathrm{P}_{Y}\right),\left(x^{\mathrm{N}}, y^{\mathrm{N}}\right) \in \mathrm{T}_{\mathrm{N}, \varepsilon}\left(\mathrm{P}_{X Y}\right)\right\} .
$$

(a) Show that if \tilde{X}^{N} and \tilde{Y}^{N} are both IID random variables distributed (independently!) according to $\mathrm{P}(\mathrm{x})$ and $\mathrm{P}(\mathrm{y})$ respectively, then

$$
\operatorname{Pr}\left(\left(\tilde{X}^{N}, \tilde{\gamma}^{N}\right) \in J_{N, \varepsilon}(P)\right) \leqslant 2^{-N(I(X: Y)-3 \varepsilon)} .
$$

Hint: Use the properties of jointly typical sets that were proven in the lecture.
(b) Show that, under the same assumptions for all $\delta>0$

$$
\operatorname{Pr}\left(\left(\tilde{X}^{\mathrm{N}}, \tilde{Y}^{\mathrm{N}}\right) \in \mathrm{J}_{\mathrm{N}, \varepsilon}(\mathrm{P})\right) \geqslant(1-\delta) 2^{-\mathrm{N}(\mathrm{I}(\mathrm{X}: \mathrm{Y})+3 \varepsilon)}
$$

for sufficiently large N .
Hint: First show that for sufficiently large N

$$
\left|\mathrm{J}_{\mathrm{N}, \varepsilon}(\mathrm{P})\right| \geqslant(1-\delta) 2^{\mathrm{N}(\mathrm{H}(\mathrm{X}, \mathrm{Y})-\varepsilon)} .
$$

2. Joint typicality for the binary symmetric channel We consider the binary symmetric channel with bit flip probability f and a uniform distribution on the source X, that is

$$
\begin{aligned}
P(X=0) & =P(X=1)=\frac{1}{2} \\
P(Y=1 \mid X=0) & =P(Y=0 \mid X=1)=f .
\end{aligned}
$$

(a) Let $Z=X \oplus Y$, where \oplus denotes addition modulo 2. Argue that Z is independent of X.
(b) Show that $\left(x^{N}, y^{N}\right) \in J_{N, \varepsilon}\left(P_{X Y}\right)$ if and only if $x^{N} \in T_{N, \varepsilon}\left(P_{X}\right)$ and $z^{N} \in T_{N, \varepsilon}\left(P_{Z}\right)$.

