Introduction to Information Theory, Fall 2019

Practice problem set \#6

You do not have to hand in these exercises, they are for your practice only.

1. Markov chains and data processing Suppose we are given three (correlated) random variable X, Y and Z. Then we can always write

$$
\mathrm{P}(x, y, z)=\mathrm{P}(x) \mathrm{P}(y \mid x) \mathrm{P}(z \mid x, y) .
$$

If we can actually write

$$
\mathrm{P}(x, y, z)=\mathrm{P}(x) \mathrm{P}(y \mid x) \mathrm{P}(z \mid y)
$$

then we say that $X \rightarrow Y \rightarrow Z$ forms a Markov chain, which means essentially that Y depends on X, and Z depends on Y but not on X.
(a) Show that $X \rightarrow Y \rightarrow Z$ is a Markov chain if and only if $P(x, z \mid y)=P(x \mid y) P(z \mid y)$. Argue that if $X \rightarrow Y \rightarrow Z$ is a Markov chain, then $Z \rightarrow Y \rightarrow X$ is also a Markov chain.
(b) Show that

$$
H(Z \mid X, Y) \leqslant H(Z \mid Y)
$$

with equality if and only if $X \rightarrow Y \rightarrow Z$ is a Markov chain.
(c) Prove the Data Processing Inequality: if $\mathrm{X} \rightarrow \mathrm{Y} \rightarrow \mathrm{Z}$ is a Markov chain then

$$
I(X: Y) \geqslant I(X: Z)
$$

Explain what this tells you about data processing.

