Lempel-Ziv Compression (\$6)
Last time Symbol codes $\left.(G: \omega \rightarrow \text { \{0, } 1\}^{t}\right)$, Kraff's inequality $\left(\sum_{x} 2^{-l_{x}} \leqslant 1\right)$, $H(x) \leqslant L(X, C)<H(X)+1$ for un codes, achievable by $l_{x}=\left\lceil\log ^{x} \frac{1}{P(x)}\right\rceil$ optimal code ia Huffman ago

Today: Compression algos that operate on "stream" of symbols, con emit <1 bit/symbol, ae asymptolically ophinal for llD sauces $(R \rightarrow H(X))$, but ce also adaptive :

Lempel-Ziv's Coding abs (1Z78):
assume: stream ends with special symbol 1

* phrases a $[\phi]$
* While more to compress:
- thad symbds until we obtain "phase" "\&phrases $\Rightarrow \pi=\square, \xi, \sqrt{\xi} \mid$ where $\tau \in$ phrases, $x \in \infty$
- append π to phases
$-k \sigma$ index of τ in phrases
-curite (k, x) in bits
used in 6IF; uru similar to LZ78 which is used in ZIP, PNG,... Ctogevier with Huffman)

$\{$ Splits input into minimal distinct "phrases"
use $[\log (j)]$ bits in j th $\operatorname{sep}(j=12 \ldots) \quad$ con skip if $x=1$ (last step)

Example: Let's compress $A|B| B A B A A B A \triangle B|A B| A \perp$:

Step	0	1	2	3	4	5	6	7
phrases	ϕ	A	B	$B A$	$B A A$	$B A A B$	$A B$	$A 1$
$(K(x)$	-	$(0, A)$	$(0, B)$	$(2, A)$	$(3, A)$	$(4, B)$	$(1, B)$	$(1,1)$
compression	-10	0,1	10,0	11,0	100,1	001,1	$001,-$	
Habits for	0	1	2	2	3	3	3	

$\Longrightarrow O 14$ bits compressed into 20 bits... but the principle is sound ∞

Q: Intuition? Clear how to decompress?
Analysis? Let $R=\frac{l}{n}$ the compression rate, whee $l=$ \#bits of compression. * Average case: For 110 source, where $X^{N}=X_{1} \cdots X_{N} \stackrel{110}{\sim} p$:

$$
E[R] \leqslant H(P)+O\left(\frac{1}{\log N}\right) \longrightarrow H(P)
$$

* Worst Case: For ny String $x^{N}=x_{1} \cdots x_{N}$,

$$
\begin{aligned}
& R \leqslant \log \# A+O\left(\frac{1}{\log N}\right) \longrightarrow \log \# A \\
& f=O(g) \text { means } \exists C>0: f(N) \leq C \operatorname{cg}(N) \forall N
\end{aligned}
$$

Warmup: Fix x^{N} and assume $\angle z$ decomposes it into c phrases:

$$
\begin{aligned}
x^{N} & =x_{1} \cdots x_{N}=\pi_{l} \cdots \pi_{C} \\
\Rightarrow l & =\sum_{j=1}^{c}(\Gamma \log (j)\rceil+\lceil\log \# \log (]) \\
& \leqslant C \cdot \log (C)+C(1+\lceil\log \#(A\rceil) \quad \text { need to understand }
\end{aligned}
$$

To make progress, we need to upper-bound c. For worst-cose analysis, we would to to bound C in terms of $N \rightarrow$ EXCLASS.
we focus on the were case, so want to relate C to $P\left(x^{N}\right) D_{0}^{D}$
For simplicity: Assume all $P(x) \leq \frac{1}{2}$ but arbitrary \#ct $=$
For our fixed String x^{N}, consider:

$$
\Pi_{k}=\left\{\pi_{i} \mid 2^{-k-1}<P\left(\pi_{i}\right) \leqslant 2^{-k}\right\} \approx \text { classify phrases } \text { accordonglo probability }
$$

* for any phase: $P(\pi)=\operatorname{Pr}\left(Y^{N}\right.$ has prefix $\left.\pi\right)$
* any y^{n} has at most one prefix in Π_{k} (if both $\pi_{i} \& \pi_{j}$ are prefix then $\pi_{i}=\pi_{j} * \ldots *$ (or vice versa $\left.) \Longrightarrow P\left(\pi_{i}\right) \leqslant P\left(\pi_{j}\right) \frac{1}{2} \zeta P(\pi) \geqslant \prod_{-k-1}\right)$
$\Longrightarrow 1 \geqslant \operatorname{Pr}\left(\gamma^{N}\right.$ has prefix in $\left.\Pi_{k}\right) \geqslant \sum_{\pi \in \Pi_{k}} P(\pi) \geqslant \# \Pi_{k} \cdot 2^{-k-1}$

Thus: $\# \Pi_{k} \leqslant 2^{k+1}$
How large con $P\left(x^{N}\right)$ be if we know it has 0 phrases?

$$
\begin{aligned}
P\left(x^{N}\right) & \left.=\prod_{k} \prod_{\pi \in \Pi_{k}} P(\pi)\right]^{\text {maximal if } 2^{k+1} \text { phrases in } \pi_{k}(\forall k)} \\
& \left.\leqslant\left(2^{-0}\right)^{2^{0+1}}\left(2^{-1}\right)^{2^{\mid+1}} \cdots\left(2^{-(L-1)}\right)^{2^{L}}\left(2^{-L}\right)^{C-\left(2^{L+1}\right.}-2\right)
\end{aligned}
$$

were L is maximal with $\sum_{k=0}^{L} 2^{k} \Theta 2^{L+1}-2 \leqslant C$. Note:
(1) $c \geq 2^{L+1}-2 \Rightarrow L \leq \log (c+2)-1 \leqslant \log (c)$
(2) $c<2^{L+2}-2<2^{L+2} \Rightarrow L \geqslant \log (c)-2$

Thus:

$$
\begin{aligned}
& \log \frac{1}{P\left(x^{N}\right)} \geq \sum_{k=1}^{L}(k-1) 2^{k}+L\left(c-2^{L+1}+2\right) \\
& \text { cedi be }(L-2) 2^{L+1}+4+L\left(C-2^{L+1}+2\right) \\
& =-42^{L}+4+C L+2 L \\
& \text { (1) }-4 c+i x+c(\log c-2)+2(\log c-2 k) \\
& =c \cdot \log c-6 c
\end{aligned}
$$

Take expectation values and use $H\left(X^{N}\right)=N \cdot H(P)$:

$$
N \cdot H(P) \geq E[C \cdot \log C]-6 E[C]
$$

$$
\begin{aligned}
\Rightarrow E[R]=\frac{1}{N} E[l] E & \frac{1}{N} E[c \cdot \log C]+\frac{1}{N}([\log \#(A]+1) \cdot E[c] \\
& \leqslant H(P)+O(\underbrace{\frac{1}{N} E[c]})
\end{aligned}
$$

How to deal with $E[C]$?
$E[C] \log E[C] \bigotimes_{4}^{\infty} E[C \cdot \log C] \gtrless_{<}^{\otimes}(H(P)+6) N$ since certain icy $C \leqslant N$ Q Jensen: $f(x)=x \cdot \log x$ is convex
... So E[C] has to grow slower than linear! In fact:
$E[c]=O\left(\frac{N}{\log N}\right)$ and so we arrive at

$$
\Longrightarrow E[R] \leqslant H(P)+O\left(\frac{1}{\log N}\right)
$$

Why is this true? Assume that $f(N) \cdot \log f(N) \leqslant \gamma \cdot N$ for large N. we daim that $f(N)<(\gamma+1) \frac{N}{\log N}$. Indeed, other wise we have $f(N) \geq(\gamma+1) \frac{N}{\log N}$ for a Subsequence of $N \rightarrow \infty$. Then:

$$
\begin{aligned}
& f(N) \cdot \log f(N) \geqslant(\gamma+1) \frac{N^{\prime}}{\log N} \log \left(\frac{1}{(\gamma+1)} \frac{N}{\log N}\right) \\
\geqslant & (\gamma+1) N\left(1-\frac{\log \log N}{\log _{0} N}\right)
\end{aligned}
$$

