Zeyuan Allen-Zhu
Ankit Garg
Yuanzhi Li
Rafael Oliveira
Avi Wigderson

Geodesically Convex Optimization \& Applications to Operator Scaling and Invariant Theory

Contents

- 2nd order methods for Matrix Scaling
- Geodesic Convexity
- Operator Scaling - Setup \& Algorithm
- Application: Orbit Closure Intersection

Recap - Non-Negative Matrices \& Scaling

$X \in M_{n}\left(\mathbb{R}_{\geq 0}\right)$ is doubly stochastic (DS) if row/column sums of \boldsymbol{X} are equal to 1 . Y is scaling of X if \exists positive $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n}$ s.t. $y_{i j}=\alpha_{i} x_{i j} \beta_{j}$.
\boldsymbol{X} has DS scaling if \exists scaling \mathbf{Y} of \boldsymbol{X} s.t. all row/column sums of \boldsymbol{Y} equal 1.

$$
d s(A)=\sum_{i}\left(r_{i}-1\right)^{2}+\sum_{j}\left(c_{j}-1\right)^{2}
$$

\boldsymbol{A} has approx. DS scaling if $\forall \boldsymbol{\epsilon}>\mathbf{0}$ there is scaling $\boldsymbol{B}_{\boldsymbol{\epsilon}}$ of \boldsymbol{A} s.t. ds $\left(\mathbf{B}_{\epsilon}\right)<\boldsymbol{\epsilon}$.

1. When does \boldsymbol{X} have approx. DS scaling?
2. Can we find it efficiently?

Has convex formulation!

A Convex Formulation

$\mathbf{A} \in \boldsymbol{M}_{\boldsymbol{n}}\left(\mathbb{R}_{\geq 0}\right)$ input matrix.

$$
f(x)=\sum_{1 \leq i \leq n} \log \left(\sum_{j} A_{i j} e^{x_{j}}\right)-\sum_{j} x_{j}
$$

Side Note: $\boldsymbol{f}(\boldsymbol{x})$ is logarithm of [GY'98] capacity for matrix scaling
\boldsymbol{A} has DS scaling iff

$$
\inf \{f(x): x>0\}>-\infty
$$

How can we solve (really fast) optimization problem above?

- $\nabla^{2} f(x)$ not bounded spectral norm - bad for $1^{\text {st }}$ order methods
- $\boldsymbol{f}(\boldsymbol{x})$ not self-concordant - cannot apply std $2^{\text {nd }}$ order methods
- But $\boldsymbol{f}(\boldsymbol{x})$ "self-robust" - still hope for some $2^{\text {nd }}$ order methods

Self Concordance $\boldsymbol{\&}$ Self Robustness

Self concordance: $\boldsymbol{f}: \mathbb{R} \rightarrow \mathbb{R}$ is self concordant if

$$
\left|f^{\prime \prime \prime}(x)\right| \leq 2\left(f^{\prime \prime}(x)\right)^{3 / 2}
$$

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ self concordant if self concordant along each line.
"well-approximated" by quadratic function around every pt.
Unfortunately, log of capacity NOT self-concordant.
Self robustness [CMTV'18, ALOW'18]: $\boldsymbol{f}: \mathbb{R} \rightarrow \mathbb{R}$ is self robust if

$$
\left|f^{\prime \prime \prime}(x)\right| \leq 2 \cdot f^{\prime \prime}(x)
$$

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ self robust if self robust along each line.
"well approximated" by quadratic on small nbhd around each pt.
Log of capacity is self-robust!
Question: Can we efficiently optimize self-robust functions?
Answer: Yes! Perform "box-constrained Newton Method"
Essentially: optimize "quadratic approx" of fncn on small nbhd

Properties of Self Robustness

Self robustness [CMTV'18, ALOW'18]: $\boldsymbol{f}: \mathbb{R} \rightarrow \mathbb{R}$ is self robust if

$$
\left|f^{\prime \prime \prime}(x)\right| \leq 2 \cdot f^{\prime \prime}(x)
$$

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ self robust if self robust along each line.
"well approximated" by quadratic on small nbhd around each pt.
More formally: $\boldsymbol{f}: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}$ self robust, $\boldsymbol{x}, \boldsymbol{\delta} \in \mathbb{R}^{\boldsymbol{n}}$ s.t. $\|\boldsymbol{\delta}\|_{\infty} \leq \mathbf{1}$

$$
\begin{aligned}
& f(x+\delta) \leq f(x)+\langle\nabla \mathrm{f}(\mathrm{x}), \delta\rangle+\delta^{T} \nabla^{2} \mathrm{f}(\mathrm{x}) \delta \\
& f(x)+\langle\nabla \mathrm{f}(\mathrm{x}), \delta\rangle+\frac{1}{\mathbf{6}} \delta^{T} \nabla^{2} \mathrm{f}(\mathrm{x}) \delta \leq f(x+\delta)
\end{aligned}
$$

Idea: iteratively solve minimization problem

$$
\min _{\|\delta\|_{\infty} \leq 1}\left\langle\nabla f\left(x_{t}\right), \delta\right\rangle+\delta^{T} \nabla^{2} f\left(x_{t}\right) \delta
$$

Then update $x_{t+\mathbf{1}} \leftarrow \boldsymbol{x}_{\boldsymbol{t}}+\boldsymbol{\delta}$.

$$
f\left(x_{t+1}\right)-f\left(x^{*}\right) \leq\left(1-1 /\left\|x_{t}-x^{*}\right\|_{\infty}\right)\left(f\left(x_{t}\right)-f\left(x^{*}\right)\right)
$$

(Kind of) Faster Algorithm \& Analysis

Algorithm [ALOW'17, CMTV'17]

- Start with $x_{0}=1, \ell=O(R \cdot \log (1 / \epsilon))$.
- For $\boldsymbol{t}=\mathbf{0}$ to $\ell-\mathbf{1}$

$$
>f^{(t)}(y)=f\left(x_{t}+y\right)
$$

$>\boldsymbol{q}_{\boldsymbol{t}}$ quadratic-approximation to $\boldsymbol{f}^{(\boldsymbol{t})}$.
$>\boldsymbol{y}_{\boldsymbol{t}}=\operatorname{argmin}_{\|y\|_{\infty} \leq 1} \boldsymbol{q}_{\boldsymbol{t}}(\boldsymbol{y})$.
$>x_{t+1}=x_{t}+y_{t}$.

- Return \boldsymbol{x}_{ℓ}.

Analysis:

1. There is approx. minimizer $\boldsymbol{x}^{*} \in \boldsymbol{B}_{\infty}(\mathbf{0}, \boldsymbol{R})$ (add regularizer)
2. Each step gets us $\times(\mathbf{1}-\mathbf{1} / \boldsymbol{R})$ closer to OPT
3. After $R \log (\mathbf{1} / \boldsymbol{\epsilon})$ iterations $f(\boldsymbol{x})-\boldsymbol{f}\left(\boldsymbol{x}^{*}\right) \leq \boldsymbol{\epsilon}$
4. This \boldsymbol{x} gives us $\boldsymbol{\epsilon}$-approximate scaling

Getting scaling from minimizer

$\mathrm{A} \in \boldsymbol{M}_{\boldsymbol{n}}\left(\mathbb{R}_{\geq 0}\right)$ input matrix.

$$
f(x)=\sum_{1 \leq i \leq n} \log \left(\sum_{j} A_{i j} e^{x_{j}}\right)-\sum_{j} x_{j}
$$

Let

$$
\left(A_{x}\right)_{i k}=\frac{A_{i k} e^{x_{k}}}{\sum_{j} A_{i j} e^{x_{j}}}
$$

Claim: $\|\nabla f(z)\|_{2}^{2}=d s\left(A_{z}\right)$
If z s.t. $f(z) \leq \inf f_{x>0} f(x)+\epsilon$ and $\|\nabla f(z)\|_{2}^{2} \leq \epsilon$ thus

$$
d s\left(A_{z}\right) \leq \epsilon
$$

Thus $\boldsymbol{\epsilon}$-close to DS.

Quantum Operators - Definition

A completely positive operator is any map $\mathbf{T}: \mathbf{M}_{\boldsymbol{n}}(\mathbb{C}) \rightarrow \boldsymbol{M}_{\boldsymbol{n}}(\mathbb{C})$ given by $\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{m}}\right)$ s.t.

$$
T(X)=\sum_{1 \leq i \leq m} A_{i} X A_{i}^{\dagger}
$$

Such maps take psd matrices to psd matrices.
Dual of $\mathbf{T}(\mathbf{X})$ is map $\mathbf{T}^{*}: \mathbf{M}_{\boldsymbol{n}}(\mathbb{C}) \rightarrow \boldsymbol{M}_{\boldsymbol{n}}(\mathbb{C})$ given by:

$$
T^{*}(X)=\sum_{1 \leq i \leq m} A_{i}^{\dagger} X A_{i}
$$

- Analog of scaling?
- Doubly stochastic?

Operator Scaling

A quantum operator $\mathbf{T}: \mathbf{M}_{\boldsymbol{n}}(\mathbb{C}) \rightarrow \boldsymbol{M}_{\boldsymbol{n}}(\mathbb{C})$ is doubly
stochastic (DS) if $\boldsymbol{T}(I)=\boldsymbol{T}^{*}(I)=\boldsymbol{I}$.
Scaling of $\boldsymbol{T}(\boldsymbol{X})$ consists of $\boldsymbol{L}, \boldsymbol{R} \in \boldsymbol{G} \boldsymbol{L}_{\boldsymbol{n}}(\mathbb{C})$ s.t.

$$
\left(A_{1}, \ldots, A_{m}\right) \rightarrow\left(L A_{1} R, \ldots, L A_{m} R\right)
$$

Distance to doubly-stochastic:

$$
d s(T) \stackrel{\text { def }}{=}\|T(I)-I\|_{F}^{2}+\left\|T^{*}(I)-I\right\|_{F}^{2}
$$

$\boldsymbol{T}(\boldsymbol{X})$ has approx. DS scaling if $\forall \boldsymbol{\epsilon}>\mathbf{0}, \exists$ scaling $\boldsymbol{L}_{\boldsymbol{\epsilon}}, \boldsymbol{R}_{\boldsymbol{\epsilon}}$ s.t. operator $\boldsymbol{T}_{\epsilon}(X)$ given by $\left(\mathrm{L}_{\boldsymbol{\epsilon}} A_{1} R_{\epsilon}, \ldots, L_{\epsilon} A_{m} R_{\epsilon}\right)$ has $d \boldsymbol{s}\left(\boldsymbol{T}_{\epsilon}\right) \leq \boldsymbol{\epsilon}$.

1. When does $\left(\boldsymbol{A}_{\mathbf{1}}, \ldots, \boldsymbol{A}_{\boldsymbol{m}}\right)$ have approx. DS scaling?
2. Can we find it efficiently?

NO convex formulation!

Previous work

Problem: operator $\mathbf{T}=\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{m}}\right), \boldsymbol{\epsilon}>\mathbf{0}$, can \boldsymbol{T} be $\boldsymbol{\epsilon}$-scaled to double stochastic? If yes, find scaling.

Algorithm G [Gurvits' 04, GGOW'15]:
Repeat $\boldsymbol{k}=\boldsymbol{p o l y}(\boldsymbol{n}, \mathbf{1} / \boldsymbol{\epsilon})$ times:

1. Left normalize $\boldsymbol{T}(\boldsymbol{X})$, i.e., $\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{m}}\right) \leftarrow\left(\boldsymbol{L} \boldsymbol{A}_{1}, \ldots, \boldsymbol{L} \boldsymbol{A}_{m}\right)$ s.t. $\boldsymbol{T}(I)=I$.
2. Right normalize $\mathbf{T}(\mathbf{X})$, i.e., $\left(A_{1}, \ldots, A_{m}\right) \leftarrow\left(A_{1} R, \ldots, A_{m} R\right)$ s.t. $T^{*}(I)=I$.

If at any point $\mathbf{d s}(\mathbf{T}) \leq \epsilon$, output the current scaling.
Else output no scaling.
Potential Function (Capacity) [Gur’04]:

$$
\operatorname{cap}(T)=\inf \left\{\frac{\operatorname{det}(T(X))}{\operatorname{det}(X)}: X>0\right\} .
$$

For $\epsilon<1 / n^{2}$, can scale \boldsymbol{T} to $\boldsymbol{\epsilon}$-close to DS iff $\boldsymbol{\operatorname { c a p }}(\boldsymbol{T})>\mathbf{0}$.

Previous work - Analysis

Algorithm G:
Repeat \boldsymbol{k} times:

1. Left normalize: $\left(\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{m}}\right) \leftarrow\left(\boldsymbol{R} \boldsymbol{A}_{1}, \ldots, \boldsymbol{R} \boldsymbol{A}_{\boldsymbol{m}}\right)$ s.t. $\boldsymbol{T}(\boldsymbol{I})=\boldsymbol{I}$.
2. Right normalize: $\left(A_{1}, \ldots, A_{m}\right) \leftarrow\left(A_{1} C, \ldots, A_{m} C\right)$ s.t. $\boldsymbol{T}^{*}(I)=I$.

If at any point $\boldsymbol{T}(\boldsymbol{X})$ is close to DS , output current scaling.
Else output no scaling.

Potential Function (Capacity) [Gur'04]:

$$
\operatorname{cap}(T)=\inf \left\{\frac{\operatorname{det}(T(X))}{\operatorname{det}(X)}: X>0\right\}
$$

Analysis [Gur'04, GGOW'15]:

1. $\operatorname{cap}(T)>0 \Rightarrow \operatorname{cap}(T)>e^{-\operatorname{poly}(n)}$ (GGOW'15)
2. $\boldsymbol{d s}(\boldsymbol{T}) \Rightarrow \operatorname{cap}(T)$ grows by $(\mathbf{1}+\mathbf{1} / \boldsymbol{n})$ after normalization
3. $\operatorname{cap}(T) \leq 1$ for normalized operators.

Previous work - Algorithm G

Potential Function (Capacity) [Gur'04]:

$$
\operatorname{cap}(T)=\inf \left\{\frac{\operatorname{det}(T(X))}{\operatorname{det}(X)}: X>0\right\}
$$

For $\epsilon<1 / n^{2}$, can scale \boldsymbol{T} to $\boldsymbol{\epsilon}$-close to DS iff $\boldsymbol{c a p}(\boldsymbol{T})>\boldsymbol{0}$.
How can we decide if $\operatorname{cap}(T)>0$? Can we approx. capacity?
[GGOW'15]: natural scaling algorithm decides whether $\boldsymbol{\operatorname { c a p }}(\boldsymbol{T})>\mathbf{0}$ in deterministic poly(n) time. Moreover, it finds $\exp (\boldsymbol{\epsilon})$-approx. to capacity in time $\operatorname{poly}(\boldsymbol{n}, \mathbf{1} / \boldsymbol{\epsilon})$.

Can we get convergence in $\log \left(\frac{1}{\epsilon}\right)$?
Need a different algorithm!
Capacity: optimization problem over Positive Definite matrices Is capacity a special function in this manifold?

Geodesic Convexity

Generalizes Euclidean convexity to Riemannian manifolds.

- $\mathbb{R}^{\boldsymbol{n}}$ becomes a smooth manifold (locally looks like $\mathbb{R}^{\boldsymbol{n}}$)
- Straight lines become geodesics ("shortest paths")

Example (our setup): complex positive definite matrices \boldsymbol{S}_{+}with geodesic from \boldsymbol{A} to \boldsymbol{B} given by:

$$
\gamma_{A, B}:[0,1] \rightarrow S_{+} \quad \gamma_{A, B}(t)=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}
$$

Convexity:

- $\mathbf{K} \subseteq \boldsymbol{S}_{+}$g-convex if $\forall \boldsymbol{A}, \boldsymbol{B} \in \boldsymbol{K}$ geodesic from \boldsymbol{A} to \boldsymbol{B} in \boldsymbol{K}
- Function $\boldsymbol{f}: \boldsymbol{K} \rightarrow \mathbb{R}$ is g-convex if univariate function $\boldsymbol{f}\left(\boldsymbol{\gamma}_{\boldsymbol{A}, \boldsymbol{B}}(\boldsymbol{t})\right)$ is convex in \boldsymbol{t} for any $\boldsymbol{A}, \boldsymbol{B} \in \boldsymbol{K}$

Geodesically Convex Functions

Geodesically convex functions over \mathcal{S}_{+}:

- $\log (\operatorname{det}(T(X))$
- $\log (\operatorname{det}(X))$ (geodesically linear)

Thus log of capacity $\xlongequal{\text { def }} \log (\operatorname{det}(T(X)))-\log (\operatorname{det}(X))$ g-convex!
For $\log (\mathbf{1} / \boldsymbol{\epsilon})$ convergence, need new opt. tools for g-convex fncs.

Known approaches for g-convex functions:

- [Folklore] g-self-concordant functions converge in time $\operatorname{poly}(n \cdot \log (1 / \epsilon))$.

No analog of ellipsoid or interior point method known for this setting.

Self Concordance \& Self Robustness

Self concordance: $\boldsymbol{f}: \mathbb{R} \rightarrow \mathbb{R}$ is self concordant if

$$
\left|f^{\prime \prime \prime}(x)\right| \leq 2\left(f^{\prime \prime}(x)\right)^{3 / 2}
$$

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ self concordant if self concordant along each line.
$h: \boldsymbol{S}_{+} \rightarrow \mathbb{R}$ g-self concordant if self concordant along each geodesic.
Unfortunately, log of capacity NOT self-concordant.
Self robustness: $f: \mathbb{R} \rightarrow \mathbb{R}$ is self robust if

$$
\left|f^{\prime \prime \prime}(x)\right| \leq 2 \cdot f^{\prime \prime}(x)
$$

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ self robust if self robust along each line.
$h: \boldsymbol{S}_{+} \rightarrow \mathbb{R}$ g-self robust if self robust along each geodesic.
Log of capacity is self-robust!
Question: Can we efficiently optimize g-self robust functions?

This work - g-convex opt for self-robust fcns

Problem: given $\boldsymbol{f}: \mathcal{S}_{+} \rightarrow \mathbb{R}$ g-self robust, $\boldsymbol{\epsilon}>\mathbf{0}$, and bound on initial distance \boldsymbol{R} to OPT (diameter) find $\boldsymbol{X}_{\boldsymbol{\epsilon}} \in \boldsymbol{S}_{+}$such that

$$
f\left(X_{\epsilon}\right) \leq \inf _{Y \in \mathcal{S}_{+}} f(Y)+\epsilon
$$

Theorem [AGLOW'18]:

There exists a deterministic $\boldsymbol{p o l y}(\boldsymbol{n}, \boldsymbol{R}, \boldsymbol{\operatorname { l o g }}(\mathbf{1} / \boldsymbol{\epsilon})$), algorithm for the problem above.

- Second order method, generalizing recent work of
[ALOW'17, CMTV'17] for matrix scaling to g-convex setting (Box constrained Newton method)
- Generalizes to other manifolds and metrics

Remark:

- For operator scaling, $\boldsymbol{X}_{\boldsymbol{\epsilon}}$ also gives us scaling $\boldsymbol{\epsilon}$-close to DS

This paper - g-convex opt for self-robust fens

Problem: given $\boldsymbol{f}: \mathcal{S}_{+} \rightarrow \mathbb{R}$ g-self robust, $\boldsymbol{\epsilon}>\mathbf{0}$, and bound on initial distance \boldsymbol{R} to OPT (diameter) find $\boldsymbol{X}_{\boldsymbol{\epsilon}} \in \boldsymbol{S}_{+}$such that

$$
f\left(X_{\epsilon}\right) \leq \inf _{Y \in \mathcal{S}_{+}} f(Y)+\epsilon
$$

Algorithm

- Start with $X_{0}=I, \ell=O(R \cdot \log (1 / \epsilon))$.
- For $\boldsymbol{t}=\mathbf{0}$ to $\ell-\mathbf{1}$

$$
\begin{aligned}
& >f^{(t)}(D)=f\left(X_{t}^{1 / 2} \exp (D) X_{t}^{1 / 2}\right) . \\
& \quad>Q_{t} \text { quadratic-approximation to } f^{(t)} . \\
& >D_{t}=\operatorname{argmin}_{\|D\|_{F} \leq 1} Q_{t}(D) . \quad \text { (Euclidean convex opt.) } \\
& >X_{t+1}=X_{t}^{1 / 2} \exp \left(D_{t}\right) X_{t}^{1 / 2} .
\end{aligned}
$$

- Return \boldsymbol{X}_{ℓ}.
- Why would we need this instead of regular scaling?
- What is the bound for \boldsymbol{R} in operator scaling?
- [AGLOW'18] polynomial bound for \boldsymbol{R}

Invariant Theory - our setting

Invariant Theory:

$\boldsymbol{G}=\mathbb{S L}_{\boldsymbol{n}}(\mathbb{C})^{\mathbf{2}}$, vector space $\mathbf{V}=\mathbf{M}_{\boldsymbol{n}}(\mathbb{C})^{\mathbf{m}}$ action by L-R mult:

$$
\left(A_{1}, \ldots, A_{m}\right) \rightarrow\left(L A_{1} R, \ldots, L A_{m} R\right)
$$

Orbit Closure: given $v=\left(A_{1}, \ldots, A_{m}\right) \in V$, orbit closure is

$$
\overline{\mathcal{O}_{v}}=\overline{\left\{\left(L A_{1} R, \ldots, L A_{m} R\right) \mid(L, R) \in G\right\}}
$$

Orbit Closure Intersection Problem: given two quantum operators $u=\left(A_{1}, \ldots, A_{m}\right), v=\left(\boldsymbol{B}_{1}, \ldots, \boldsymbol{B}_{\boldsymbol{m}}\right)$, is $\overline{\mathcal{O}_{u}} \cap \overline{\mathcal{O}_{v}} \neq \emptyset$?

If $\boldsymbol{v}=\mathbf{0}$ problem becomes the null-cone problem.
[GGOW'16]: connections to non-commutative PIT, non-commutative algebra, combinatorics, functional analysis...

How can we solve the orbit intersection problem for L-R action?

Randomized Algorithm

[Mum'65]: alg. structure of orbit closures

- $\overline{\mathcal{O}_{\left(A_{1}, \ldots, A_{m}\right)}} \cap \overline{\mathcal{O}_{\left(B_{1}, \ldots, B_{m}\right)}}=\emptyset$ iff invariant polynomial s.t.

$$
\boldsymbol{p}\left(\left(A_{1}, \ldots, A_{m}\right)\right) \neq \boldsymbol{p}\left(\left(B_{1}, \ldots, B_{m}\right)\right)
$$

Randomized algorithm:
Given $\left(A_{1}, \ldots, A_{m}\right)$ and $\left(B_{1}, \ldots, B_{m}\right)$, does $\overline{\mathcal{O}_{\left(A_{1}, \ldots, A_{m}\right)}} \cap \overline{\mathcal{O}_{\left(B_{1}, \ldots, B_{m}\right)}} \neq \emptyset$?

1. [IQS'17, DM'17]: Invariants of degree $\boldsymbol{n}^{\mathbf{6}}$ suffice
2. Take random invariant polynomial and evaluate it on $\left(A_{1}, \ldots, A_{m}\right)$ and $\left(B_{1}, \ldots, B_{m}\right)$

KN'79 - Duality Theory

[KN'79]:

- Elts of min norm in $\overline{\mathcal{O}_{\left(A_{1}, \ldots, A_{m}\right)}}$, are DS operators
- ϵ-close to DS implies ϵ-close to min. norm
- $\left(B_{1}, \ldots, B_{m}\right)$ and $\left(C_{1}, \ldots, C_{m}\right)$ elts of min norm in $\overline{\mathcal{O}_{\left(A_{1}, \ldots, A_{m}\right)}}$ then there exist $\mathrm{U}, \mathrm{V} \in \boldsymbol{S} \boldsymbol{U}(\boldsymbol{n})$ s.t. $C_{i}=U B_{i} V$
[AGLOW'18]: solving orbit closure intersection problem. Given $\left(A_{1}, \ldots, A_{m}\right)$ and $\left(B_{1}, \ldots, B_{m}\right)$, does $\overline{\mathcal{O}_{\left(A_{1}, \ldots, A_{m}\right)}} \cap \overline{\mathcal{O}_{\left(B_{1}, \ldots, B_{m}\right)}} \neq \varnothing$

1. Our g-convex opt finds ϵ-approx to element of min norm (DS)
2. With elements of min norm, test if they are $S U(n)$-equivalent

- we give efficient algorithm for testing equivalence

Remarks

Why do we need $\log (1 / \epsilon)$ convergence?

- Orbit closures can be exponentially close and not intersect
- Need to have $\boldsymbol{\epsilon}=\mathbf{e x p}(-\boldsymbol{p o l y}(\boldsymbol{n}))$ approximation
- Not the case for null-cone problem
- $\boldsymbol{S U}(\boldsymbol{n})$-equivalence algorithm also approximate (and lossy) Independently, [DM'18] solved orbit closure intersection for LR-action in algebraic way.
- Solution also works for fields of positive characteristic
- Our solution works only over \mathbb{C}

Prior to [AGLOW'18, DM'18] only randomized polynomial time algorithm known for orbit closure intersection (PIT instance).

Open questions

- Efficient algorithms for more classes of g-convex functions?
- Efficient algorithms for null-cone and orbit closure intersection for more general actions?
- Recent developments for tensor scaling, though still poly(1/ ϵ)
 have bad bounds on \boldsymbol{R}
- More applications of g-convexity?
- Recent work [VY'18] on Brascamp-Lieb showing it is g-convex

Thank you!

