Zeyuan Allen-Zhu Ankit Garg Yuanzhi Li Rafael Oliveira Avi Wigderson

Geodesically Convex Optimization & Applications to Operator Scaling and Invariant Theory

Contents

- 2nd order methods for Matrix Scaling
- Geodesic Convexity
- Operator Scaling Setup & Algorithm
- Application: Orbit Closure Intersection

Recap - Non-Negative Matrices & Scaling

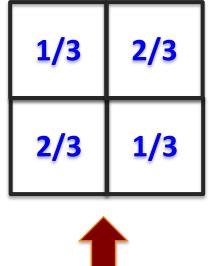
- $X \in M_n(\mathbb{R}_{\geq 0})$ is **doubly stochastic (DS)** if row/column sums of X are equal to 1.
- Y is **scaling** of X if \exists positive $\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n$ s.t. $y_{ij} = \alpha_i x_{ij} \beta_j$.
- X has DS scaling if \exists scaling Y of X s.t. all row/column sums of Y equal 1.

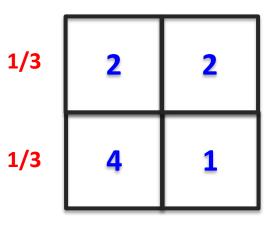
$$ds(A) = \sum_{i} (r_{i} - 1)^{2} + \sum_{j} (c_{j} - 1)^{2}$$

A has approx. DS scaling if $\forall \epsilon > 0$ there is scaling B_{ϵ} of A s.t. $ds(B_{\epsilon}) < \epsilon$.

- 1. When does *X* have approx. DS scaling?
- 2. Can we find it efficiently?

Has **convex** formulation!





 $\mathbf{A} \in M_n(\mathbb{R}_{\geq 0})$ input matrix.

$$f(x) = \sum_{1 \le i \le n} log\left(\sum_{j} A_{ij} e^{x_j}\right) - \sum_{j} x_j$$

Side Note: f(x) is logarithm of [GY'98] capacity for matrix scaling

A has DS scaling iff

$$inf\{f(x): x > 0\} > -\infty$$

How can we solve (really fast) optimization problem above?

- $\nabla^2 f(x)$ not bounded spectral norm bad for 1st order methods
- f(x) not self-concordant cannot apply std 2nd order methods
- But f(x) "self-robust" still hope for some 2nd order methods

Self Concordance & Self Robustness

Self concordance: $f : \mathbb{R} \to \mathbb{R}$ is self concordant if $|f'''(x)| \le 2(f''(x))^{3/2}$

 $f : \mathbb{R}^n \to \mathbb{R}$ self concordant if self concordant along each line. "well-approximated" by quadratic function around every pt.

Unfortunately, log of capacity **NOT** self-concordant.

Self robustness [CMTV'18, ALOW'18]: $f : \mathbb{R} \to \mathbb{R}$ is self robust if $|f'''(x)| \le 2 \cdot f''(x)$

 $f: \mathbb{R}^n \to \mathbb{R}$ self robust if self robust along each line.

"well approximated" by quadratic on <u>small nbhd</u> around each pt.

Log of capacity is self-robust!

Question: Can we efficiently optimize self-robust functions?

Answer: Yes! Perform "box-constrained Newton Method"

Essentially: optimize "quadratic approx" of fncn on small nbhd

Self robustness [CMTV'18, ALOW'18]: $f : \mathbb{R} \to \mathbb{R}$ is self robust if $|f'''(x)| \le 2 \cdot f''(x)$

 $f : \mathbb{R}^n \to \mathbb{R}$ self robust if self robust along each line. "well approximated" by quadratic on small nbhd around each pt.

More formally: $f : \mathbb{R}^n \to \mathbb{R}$ self robust, $x, \delta \in \mathbb{R}^n$ s.t. $||\delta||_{\infty} \leq 1$

$$f(x + \delta) \leq f(x) + \langle \nabla f(x), \delta \rangle + \delta^T \nabla^2 f(x) \delta$$

$$f(x) + \langle \nabla f(x), \delta \rangle + \frac{1}{6} \delta^T \nabla^2 f(x) \delta \leq f(x + \delta)$$

Idea: iteratively solve minimization problem $\min_{||\delta||_{\infty} \leq 1} \langle \nabla f(x_t), \delta \rangle + \delta^T \nabla^2 f(x_t) \delta$

Then update $x_{t+1} \leftarrow x_t + \delta$.

$$f(x_{t+1}) - f(x^*) \le (1 - 1/||x_t - x^*||_{\infty})(f(x_t) - f(x^*))$$

(Kind of) Faster Algorithm & Analysis

Algorithm [ALOW'17, CMTV'17]

• Start with $x_0 = 1$, $\ell = O(R \cdot log(1/\epsilon))$.

• For
$$t = 0$$
 to $\ell - 1$
 $> f^{(t)}(y) = f(x_t + y).$
 $> q_t$ quadratic-approximation to $f^{(t)}$.
 $> y_t = \operatorname{argmin}_{||y||_{\infty} \le 1} q_t(y).$
 $> x_{t+1} = x_t + y_t.$
• Return x_{ℓ} .

Analysis:

- 1. There is approx. minimizer $x^* \in B_{\infty}(0, R)$ (add regularizer)
- 2. Each step gets us $\times (1 1/R)$ closer to OPT
- 3. After $Rlog(1/\epsilon)$ iterations $f(x) f(x^*) \le \epsilon$
- 4. This x gives us ϵ -approximate scaling

 $\mathbf{A} \in M_n(\mathbb{R}_{\geq 0})$ input matrix.

$$f(x) = \sum_{1 \le i \le n} log\left(\sum_{j} A_{ij} e^{x_j}\right) - \sum_{j} x_j$$

Let

$$(A_x)_{ik} = \frac{A_{ik}e^{x_k}}{\sum_j A_{ij}e^{x_j}}$$

Claim: $||\nabla f(z)||_2^2 = ds(A_z)$

If z s.t. $f(z) \leq inf_{x>0}f(x) + \epsilon$ and $||\nabla f(z)||_2^2 \leq \epsilon$ thus $ds(A_z) \leq \epsilon$

Thus ϵ -close to DS.

A completely positive operator is any map $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ given by (A_1, \dots, A_m) s.t.

$$T(X) = \sum_{1 \le i \le m} A_i X A_i^{\dagger}$$

Such maps take psd matrices to psd matrices.

Dual of $\mathbf{T}(\mathbf{X})$ is map $\mathbf{T}^*: \mathbf{M}_n(\mathbb{C}) \to \mathbf{M}_n(\mathbb{C})$ given by:

$$T^*(X) = \sum_{1 \le i \le m} A_i^{\dagger} X A_i$$

- Analog of scaling?
- Doubly stochastic?

Operator Scaling

A quantum operator $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is **doubly** stochastic (DS) if $T(I) = T^*(I) = I$.

Scaling of T(X) consists of $L, R \in GL_n(\mathbb{C})$ s.t.

$$(A_1, \ldots, A_m) \rightarrow (LA_1R, \ldots, LA_mR)$$

Distance to doubly-stochastic:

$$ds(T) \stackrel{\text{\tiny def}}{=} \|T(I) - I\|_F^2 + \|T^*(I) - I\|_F^2$$

T(X) has approx. DS scaling if $\forall \epsilon > 0$, \exists scaling L_{ϵ} , R_{ϵ} s.t. operator $T_{\epsilon}(X)$ given by $(L_{\epsilon}A_{1}R_{\epsilon}, ..., L_{\epsilon}A_{m}R_{\epsilon})$ has $ds(T_{\epsilon}) \leq \epsilon$.

- 1. When does $(A_1, ..., A_m)$ have approx. DS scaling?
- 2. Can we find it efficiently?

NO convex formulation!

Previous work

Problem: operator $\mathbf{T} = (A_1, \dots, A_m)$, $\epsilon > 0$, can T be ϵ -scaled to double stochastic? If yes, find scaling.

Algorithm G [Gurvits' 04, GGOW'15]:

Repeat $k = poly(n, 1/\epsilon)$ times:

- 1. Left normalize T(X), i.e., $(A_1, \dots, A_m) \leftarrow (LA_1, \dots, LA_m)$ s.t. T(I) = I.
- 2. Right normalize $\mathbf{T}(\mathbf{X})$, i.e., $(A_1, \dots, A_m) \leftarrow (A_1R, \dots, A_mR)$ s.t. $T^*(I) = I$.

If at any point $ds(T) \le \epsilon$, output the current scaling. Else output **no scaling**.

Potential Function (Capacity) [Gur'04]:

$$cap(T) = inf\left\{\frac{det(T(X))}{det(X)}: X > 0\right\}.$$

For $\epsilon < 1/n^2$, can scale **T** to ϵ -close to DS iff cap(T) > 0.

Previous work – Analysis

Algorithm G:

Repeat *k* times:

1. Left normalize: $(A_1, \dots, A_m) \leftarrow (RA_1, \dots, RA_m)$ s.t. T(I) = I.

2. Right normalize: $(A_1, ..., A_m) \leftarrow (A_1C, ..., A_mC)$ s.t. $T^*(I) = I$. If at any point T(X) is close to DS, output current scaling. Else output **no scaling**.

Potential Function (Capacity) [Gur'04]:

$$cap(T) = inf\left\{\frac{det(T(X))}{det(X)}: X > 0\right\}.$$

Analysis [Gur'04, GGOW'15]:

- 1. $cap(T) > 0 \Rightarrow cap(T) > e^{-poly(n)}$ (GGOW'15)
- 2. $ds(T) \Rightarrow cap(T)$ grows by (1 + 1/n) after normalization
- 3. $cap(T) \le 1$ for normalized operators.

Potential Function (Capacity) [Gur'04]: $cap(T) = inf \left\{ \frac{det(T(X))}{det(X)} : X > 0 \right\}.$

For $\epsilon < 1/n^2$, can scale **T** to ϵ -close to DS iff cap(T) > 0.

How can we decide if cap(T) > 0? Can we approx. capacity?

[GGOW'15]: natural scaling algorithm decides whether cap(T) > 0in deterministic poly(n) time. Moreover, it finds $exp(\epsilon)$ -approx. to capacity in time $poly(n, 1/\epsilon)$.

Can we get convergence in $\log\left(\frac{1}{\epsilon}\right)$? Need a different algorithm!

Capacity: optimization problem over *Positive Definite* matrices Is capacity a special function in this manifold? Generalizes Euclidean convexity to Riemannian manifolds.

- \mathbb{R}^n becomes a smooth manifold (locally looks like \mathbb{R}^n)
- Straight lines become geodesics ("shortest paths")

Example (our setup): complex positive definite matrices S_+ with geodesic from A to B given by:

$$\gamma_{A,B}: [0,1] \to \mathcal{S}_+ \qquad \gamma_{A,B}(t) = A^{1/2} (A^{-1/2} B A^{-1/2})^t A^{1/2}$$

Convexity:

- $\mathbf{K} \subseteq S_+$ g-convex if $\forall A, B \in K$ geodesic from A to B in K
- Function $f : K \to \mathbb{R}$ is g-convex if univariate function $f(\gamma_{A,B}(t))$ is convex in t for any $A, B \in K$

Geodesically convex functions over S_+ :

- $\log(\det(T(X)))$
- log(det(X)) (geodesically linear)

Thus log of capacity $\stackrel{\text{def}}{=} \log(\det(T(X))) - \log(\det(X))$ g-convex!

For $log(1/\epsilon)$ convergence, need new opt. tools for g-convex fncs.

Known approaches for g-convex functions:

• **[Folklore]** g-self-concordant functions converge in time $poly(n \cdot log(1/\epsilon))$.

No analog of ellipsoid or interior point method known for this setting.

Self concordance: $f : \mathbb{R} \to \mathbb{R}$ is self concordant if $|f'''(x)| \le 2(f''(x))^{3/2}$

 $f : \mathbb{R}^n \to \mathbb{R}$ self concordant if self concordant along each line.

 $h: \mathcal{S}_+ \to \mathbb{R}$ g-self concordant if self concordant along each geodesic.

Unfortunately, log of capacity **NOT** self-concordant.

Self robustness: $f : \mathbb{R} \to \mathbb{R}$ is self robust if $|f'''(x)| \le 2 \cdot f''(x)$

 $f : \mathbb{R}^n \to \mathbb{R}$ self robust if self robust along each line.

 $h: \mathcal{S}_+ \to \mathbb{R}$ g-self robust if self robust along each geodesic.

Log of capacity is self-robust!

Question: Can we efficiently optimize g-self robust functions?

This work – g-convex opt for self-robust fcns

Problem: given $f : S_+ \to \mathbb{R}$ g-self robust, $\epsilon > 0$, and bound on initial distance R to OPT (diameter) find $X_{\epsilon} \in S_+$ such that

 $f(X_{\epsilon}) \leq \inf_{Y \in \mathcal{S}_{+}} f(Y) + \epsilon$

Theorem [AGLOW'18]:

There exists a deterministic $poly(n, R, log(1/\epsilon))$, algorithm for the problem above.

- Second order method, generalizing recent work of [ALOW'17, CMTV'17] for matrix scaling to g-convex setting (Box constrained Newton method)
- Generalizes to other manifolds and metrics

Remark:

• For operator scaling, X_{ϵ} also gives us scaling ϵ -close to DS

This paper – g-convex opt for self-robust fcns

Problem: given $f : S_+ \to \mathbb{R}$ g-self robust, $\epsilon > 0$, and bound on initial distance R to OPT (diameter) find $X_{\epsilon} \in S_+$ such that

$$f(X_{\epsilon}) \leq \inf_{Y \in S_+} f(Y) + \epsilon$$

Algorithm

• Start with $X_0 = I$, $\ell = O(R \cdot log(1/\epsilon))$.

• For
$$t = 0$$
 to $\ell - 1$
 $\geq f^{(t)}(D) = f(X_t^{1/2} \exp(D)X_t^{1/2}).$
 $\geq Q_t$ quadratic-approximation to $f^{(t)}$.
 $\geq D_t = \operatorname{argmin}_{||D||_F \leq 1} Q_t(D).$ (Euclidean convex opt.)
 $\geq X_{t+1} = X_t^{1/2} \exp(D_t) X_t^{1/2}.$
• Return X_ℓ .

- Why would we need this instead of regular scaling?
- What is the bound for **R** in operator scaling?
 - **[AGLOW'18]** polynomial bound for **R**

Invariant Theory:

 $G = \mathbb{SL}_n(\mathbb{C})^2$, vector space $V = M_n(\mathbb{C})^m$ action by L-R mult: $(A_1, \dots, A_m) \to (LA_1R, \dots, LA_mR)$

Orbit Closure: given $v = (A_1, ..., A_m) \in V$, orbit closure is $\overline{\mathcal{O}_v} = \overline{\{(LA_1R, ..., LA_mR) \mid (L, R) \in G\}}$

Orbit Closure Intersection Problem: given two quantum operators $u = (A_1, ..., A_m), v = (B_1, ..., B_m)$, is $\overline{\mathcal{O}_u} \cap \overline{\mathcal{O}_v} \neq \emptyset$?

If v = 0 problem becomes the *null-cone problem*. [GGOW'16]: connections to non-commutative PIT, non-commutative algebra, combinatorics, functional analysis...

How can we solve the orbit intersection problem for L-R action?

[Mum'65]: alg. structure of orbit closures

•
$$\overline{\mathcal{O}_{(A_1,\dots,A_m)}} \cap \overline{\mathcal{O}_{(B_1,\dots,B_m)}} = \emptyset$$
 iff invariant polynomial s.t.
 $p((A_1,\dots,A_m)) \neq p((B_1,\dots,B_m))$

Randomized algorithm:

Given (A_1, \dots, A_m) and (B_1, \dots, B_m) , does $\overline{\mathcal{O}_{(A_1, \dots, A_m)}} \cap \overline{\mathcal{O}_{(B_1, \dots, B_m)}} \neq \emptyset$?

- 1. [IQS'17, DM'17]: Invariants of degree n^6 suffice
- 2. Take random invariant polynomial and evaluate it on (A_1, \dots, A_m) and (B_1, \dots, B_m)

KN'79 – Duality Theory

[KN'79]:

- Elts of min norm in $\overline{\mathcal{O}_{(A_1,\dots,A_m)}}$, are DS operators
 - ϵ -close to DS implies ϵ -close to min. norm
- $(B_1, ..., B_m)$ and $(C_1, ..., C_m)$ elts of min norm in $\overline{\mathcal{O}_{(A_1, ..., A_m)}}$ then there exist $U, V \in SU(n)$ s.t. $C_i = UB_i V$

[AGLOW'18]: solving orbit closure intersection problem. Given (A_1, \ldots, A_m) and (B_1, \ldots, B_m) , does $\overline{\mathcal{O}_{(A_1, \ldots, A_m)}} \cap \overline{\mathcal{O}_{(B_1, \ldots, B_m)}} \neq \emptyset$

- 1. Our g-convex opt finds ϵ -approx to element of min norm (DS)
- 2. With elements of min norm, test if they are SU(n)-equivalent
 - we give efficient algorithm for testing equivalence

Why do we need $\log(1/\epsilon)$ convergence?

- Orbit closures can be exponentially close and not intersect
 - Need to have $\epsilon = \exp(-poly(n))$ approximation
 - Not the case for null-cone problem
- **SU**(**n**)-equivalence algorithm also approximate (and lossy)

Independently, **[DM'18]** solved orbit closure intersection for LR-action in algebraic way.

- Solution also works for fields of positive characteristic
 - Our solution works only over ${\mathbb C}$

Prior to **[AGLOW'18, DM'18]** only *randomized* polynomial time algorithm known for orbit closure intersection (PIT instance).

Open questions

- Efficient algorithms for more classes of g-convex functions?
- Efficient algorithms for null-cone and orbit closure intersection for more general actions?
 - Recent developments for tensor scaling, though still $poly(1/\epsilon)$
 - Upcoming work gets $poly(nR \cdot log(1/\epsilon))$, but still have bad bounds on R
- More applications of g-convexity?
 - Recent work [VY'18] on Brascamp-Lieb showing it is g-convex

Thank you!

