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Two motivations



Quantum states
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Quantum state=tensor

t 2 Cd ⌦Cd ⌦Cd
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GHZ state = unit tensor
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Local operations

1
0

1
0

1
0

1
0

1
0

1
0+

t = e0 ⌦ e0 ⌦ e0 + e1 ⌦ e1 ⌦ e1

1
0

1
0

1
0

Local 
trans-
formation:
Flip first bit

Local 
trans-
formation:
Flip first
qubit✓

0 1
1 0

◆

t = e1 ⌦ e0 ⌦ e0 + e0 ⌦ e1 ⌦ e1



Local operations=restrictions

t � t0 if (a⌦ b⌦ c) t = t0

for some matrices a, b, c

Linear combination of slices



3 qubits

e0 ⌦ e0 ⌦ e0 + e1 ⌦ e0 ⌦ e1

e0 ⌦ e0 ⌦ e0 + e0 ⌦ e1 ⌦ e1e0 ⌦ e0 ⌦ e0 + e1 ⌦ e1 ⌦ e0

Einstein-Podolsky-Rosen 
(EPR)-state

e0 ⌦ e0 ⌦ e0 + e1 ⌦ e1 ⌦ e1

Greenberger-Horne-Zeilinger
GHZ-state

e0 ⌦ e0 ⌦ e0

unentangled state

e0 ⌦ e0 ⌦ e1 + e0 ⌦ e1 ⌦ e0 + e1 ⌦ e0 ⌦ e0

W-state

⇡



Algebraic Complexity

Mamu(d) : M(d)⇥M(d) ! M(d)

(A,B) 7! A ·B

M(d) = algebra of d⇥ d complex matrices

d3 multiplications

bilinear

d

x =d



Bilinear maps=tensors

Mamu(d) : M(d)⇥M(d)⇥M(d)⇤ ! C

(A,B,C) 7! trA ·B · C

Mamu(d) =
dX

i,j,k=1

eij ⌦ ejk ⌦ eki
eij = ei ⌦ ej

=
dX

i,j,k=1

(ei ⌦ ej)⌦ (ej ⌦ ek)⌦ (ek ⌦ ei)
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Complexity=Tensor rank
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Strassen: # elementary multiplications = tensor rank 

e± := e0 ± e1

e00 ⌦ e00 ⌦ e00 + e11 ⌦ e11 ⌦ e11

e01 ⌦ e10 ⌦ e00 + e10 ⌦ e01 ⌦ e11

e01 ⌦ e11 ⌦ e10 + e10 ⌦ e00 ⌦ e01

e00 ⌦ e01 ⌦ e10 + e11 ⌦ e10 ⌦ e01

Do you like Strassen’s
decomposition?

Then you might want to look at 
some tensor surgery next! 

Ch. & Zuiddam, 
Comp. Compl. 2018
arXiv:1606.04085

=e�1 ⌦ e1+ ⌦ e00 + e1+ ⌦ e00 ⌦ e�1 + e00 ⌦ e�1 ⌦ e1+

� e�0 ⌦ e0+ ⌦ e11 � e0+ ⌦ e11 ⌦ e�0 � e11 ⌦ e�0 ⌦ e0+

+ (e00 + e11)⌦ (e00 + e11)⌦ (e00 + e11)



Resource theory of tensors



Resource theory of tensors

• Restriction

• Unit

• Rank

• Subrank

t � t0 if (a⌦ b⌦ c) t = t0

for some matrices a, b, c

hri =
rX

i=1

ei ⌦ ei ⌦ ei

R(t) = min{r : hri � t}

Q(t) = max{r : t � hri}

valuable resource

free
operations

= min{r : t =
rX

i=1

↵i ⌦ �i ⌦ �i}



Restriction
t � t0 if (a⌦ b⌦ c) t = t0

for some matrices a, b, c

t ⇠= t0 if t � t0 and t0 � t

i↵ (a⌦ b⌦ c) t = t0

for invertible a, b, c

i↵ G.t = G.t0

Deciding restriction Classifying orbits
and their relations

G = GL(d)⇥GL(d)⇥GL(d)



Degeneration

Deciding degeneration

Classifying orbit
closures and 
their relations

(e0 + ✏e1)
⌦3 � e

⌦3
0

= ✏(e0 ⌦ e0 ⌦ e1 + e0 ⌦ e1 ⌦ e0 + e1 ⌦ e0 ⌦ e0) +O(✏2)

tD t0 if t✏ ! t0, t � t✏
✏ 7! 0

GHZ state

W state



Deciding degeneration

• Orbit closures are G-invariant algebraic varieties

• Example: e0 ⌦ e0 ⌦ e0 + e1 ⌦ e1 ⌦ e1

e0 ⌦ e0 ⌦ e1 + e0 ⌦ e1 ⌦ e0 + e1 ⌦ e0 ⌦ e0⇡
f=Cayley hyperdeterminant

t 6 Dt0 i↵ there exists

f(t) = 0, but f(t0) 6= 0

G� covariant polynomial f : f(t) 6= f(t0)



Entanglement polytopes
be happy with partial information
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Entanglement polytopes
Reduced density matrices

Ch-Mitchison, Klyachko, 
Daftuar-Hayden (2004)
based in part on Kirwan

14

Figure S1. Entanglement polytopes for three qubits: (A) GHZ polytope (entire polytope, i.e., upper and lower pyramid), (B) W polytope (upper
pyramid), (C) three polytopes corresponding to EPR pairs shared between any two of the three parties (three solid edges in the interior), (D)
polytope of the unentangled states (interior vertex).

GHZ
=all W

EPR

product

Walter-Doran-Gross-Ch, 
Sawicki-Oszmaniec-Kus (2010) based on Brion

14

Figure S1. Entanglement polytopes for three qubits: (A) GHZ polytope (entire polytope, i.e., upper and lower pyramid), (B) W polytope (upper
pyramid), (C) three polytopes corresponding to EPR pairs shared between any two of the three parties (three solid edges in the interior), (D)
polytope of the unentangled states (interior vertex).

marginal
polytope



Experimental Detection

• if measured value
– not in W-polytope
– Then must be in GHZ-class! 

• easy test for entanglement!

ScienceTHE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

XX XXXX 2013  I  www.nature.com/nature  I  E10

Headline headline
Subline sublkdjfksdfdf
lkdsjfdkjfdf

Cover_Science_210x275.indd   1 24.05.13   16:18

(2, 3). Considerable efforts have been directed
at obtaining a systematic characterization of mul-
tiparticle entanglement; however, our under-
standing remains limited as the complexity of
entanglement scales exponentially with the num-
ber of particles (4).

In this work, we show that, for pure quantum
states, single-particle information alone can serve
as a powerful witness to multiparticle entangle-
ment. In fact, we find that a finite list of linear
inequalities characterizes the eigenvalues of the
single-particle states in any given class of en-
tanglement. Their violation provides a criterion
for witnessing multiparticle entanglement that (i)
only requires access to a linear number of degrees
of freedom, (ii) applies universally to quantum
systems of arbitrary size and statistics, and (iii)
distinguishes among many important classes of
entanglement, including genuine multiparticle en-
tanglement. Geometrically, these inequalities cut
out a hierarchy of polytopes, which captures all
information about the global pure-state entangle-
ment deducible from local information alone. Our
methods are sufficiently robust to be applicable
to situations where the state is affected by low
levels of noise.

Formally, a pure state is said to be entangled if
it cannot bewritten as a product |y(1)〉⊗…⊗|y(N) 〉
(4). Two states can be considered to belong to the
same entanglement class if they can be converted
into each other with a finite probability of success
using local operations and classical communica-
tion (stochastic LOCC, or SLOCC) (5, 6). For
small systems, these entanglement classes are
well understood. In the simplest scenario of three
qubits (two-level systems), there exist two classes
of genuinely entangled states of very different na-
tures: The first contains the famous Greenberger-
Horne-Zeilinger (GHZ) state 1ffiffi

2
p (|↑↑↑ 〉 + |↓↓↓ 〉),

which exhibits a particularly strong form of quan-
tum correlations (7); the second contains the W
state 1ffiffi

3
p (|↑↑↓ 〉 + |↑↓↑ 〉 + |↓↑↑ 〉) (6). Whereas

states in the W class can be approximated to
arbitrary precision by states from the GHZ class,
the converse is not true, implying stronger en-
tanglement of the GHZ class (6). Already for four
particles there exist infinitely many entanglement
classes (8), and the number of parameters re-
quired to determine the class grows exponentially
with the particle number. As a result, only spo-
radic results have been obtained for larger sys-
tems, despite the enormous amount of literature
dedicated to the problem (4).

Our approach tomultiparticle entanglement is
based on establishing a connection to the one-body
quantum marginal problem, or N-representability
problem in quantum chemistry. This fundamental
problem about quantum correlations asks which

single-particle density matrices r(1), ...,r(N) can
appear as the reduced-density matrices of a
globally pure quantum state. Its solution is easily
seen to depend only on the eigenvalues l

→ðkÞ
of

the densities and allows for an elegant mathe-
matical description: The set of possible vectors
l
→ ¼ ðl→ð1Þ

; :::;l
→ðNÞÞ forms a convex polytope

(9–11) whose defining inequalities can be computed
algorithmically (10, 11). For fermions, the most fa-
mous such inequality is the Pauli principle (12, 13).

Here, we make the crucial observation that
these local eigenvalues alone can already give
considerable information about the entanglement
of the global state, provided that it is pure. To
make this precise, we consider the set of all
eigenvalue vectors l

→
of the states in the closure

of a given entanglement class. Surprisingly, this
set also forms a convex polytope (i.e., it is the
convex hull of finitely many such vectors), and
we call it the entanglement polytope of the class.
Entanglement polytopes immediately lead to a
local criterion for witnessing global multipar-
ticle entanglement: If the collection of eigen-
values l

→ ¼ ðl→ð1Þ
; :::;l

→ðNÞÞ of the single-particle,
reduced-density matrices of a pure quantum state
|y〉 does not lie in an entanglement polytope
∆C, then the given state cannot belong to the
corresponding entanglement class C (Fig. 1).
Mathematically,

l
→ ¼ ð l→

ð1Þ
,:::,l

→ðNÞ
Þ ∉ DC ⇒ jy〉 ∉ C ð1Þ

Phrased differently, the criterion allows us to
witness the presence of a highly entangled state
by showing that its local eigenvalues are incom-
patible with all less-entangled classes. Strikingly,
there are always only finitely many entanglement
polytopes, and they naturally form a hierarchy: If
a state in the class C can be approximated ar-
bitrarily well by states from D, then ∆C ⊆ ∆D.
This reflects geometrically the fact that states in
the second class are more powerful for quantum
information processing.

To compute ∆C, and to see that it is indeed a
convex polytope, we use tools from algebraic
geometry andgroup representation theory, presented
in detail in (14). We use the characterization of
SLOCC operations as invertible local operators
A1 ⊗…⊗ AN (6), which act on the class C, and
therefore also on the set of polynomial functions
on C. The irreducible subspaces of this action
correspond to covariants, i.e., vector-valued poly-
nomial functions transforming in a well-defined
way. By the representation theory of Lie groups,
each covariant is labeled by a highest-weight
m
→ ¼ ðm→ð1Þ

; :::; m
→ðNÞÞ, where the m→ðkÞ are vectors of

natural numbers whose entries are ordered de-
creasingly and sum to the degree n of the poly-
nomial. Thus, any normalized highest-weight
m
→
=n formally looks like an eigenvalue vector l

→
.

This formal similarity corresponds to a factual
correspondence: ∆C is essentially given by those
m
→
=n’s whose associated covariants do not vanish

on C (15). The statement that ∆C is a convex
polytope then follows from the fact that the
covariants form a finitely generated algebra (15).
We explain how to algorithmically compute a fi-
nite set of generators by using computational
invariant theory (16), motivated in part by (17).
The polytope can then be obtained as the convex
hull of the normalized highest weights m

→
=n of

those generators that are nonzero on the class C.
In the following, we illustrate our method

with a number of paradigmatic examples: For
qubit systems, each single-particle reduced-
density matrix r(k) has two eigenvalues, which
are nonnegative and sum to one; hence, its spec-
trum is completely characterized by the maximal
eigenvalue lðkÞmax, which can take values in the
closed interval 0.5 to 1. In the case of three
qubits, wemay therefore regard the entanglement
polytopes as subsets of three-dimensional (3D)
space. There are two full-dimensional polytopes
(18): one for the W class (the upper pyramid in
Fig. 1) and the other for the GHZ class (the entire
polytope, i.e., the union of both pyramids). The

1Institute for Theoretical Physics, Eidgenössische Technische
Hochschule (ETH) Zürich, Wolfgang-Pauli-Strasse 27, 8093
Zürich, Switzerland. 2Department of Mathematics, ETH Zürich,
Rämistrasse 101, 8092 Zürich, Switzerland. 3Institute for
Physics, University of Freiburg, Rheinstrasse 10, 79104
Freiburg, Germany.

*Corresponding author. E-mail: mwalter@phys.ethz.ch
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Fig. 1. Entanglement polytopes as witnesses (illustrated for three qubits). (A) An entanglement
polytope contains all possible local eigenvalues of states in the entanglement class (the W class and its
polytope are shown in blue; H is the set of all pure states). (B) For a sufficiently pure quantum state r, local
tomography is performed to determine its local eigenvalues. (C) The indicated eigenvalues are not
compatible with the W class nor its closure, hence r must have GHZ-type entanglement.
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(2, 3). Considerable efforts have been directed
at obtaining a systematic characterization of mul-
tiparticle entanglement; however, our under-
standing remains limited as the complexity of
entanglement scales exponentially with the num-
ber of particles (4).

In this work, we show that, for pure quantum
states, single-particle information alone can serve
as a powerful witness to multiparticle entangle-
ment. In fact, we find that a finite list of linear
inequalities characterizes the eigenvalues of the
single-particle states in any given class of en-
tanglement. Their violation provides a criterion
for witnessing multiparticle entanglement that (i)
only requires access to a linear number of degrees
of freedom, (ii) applies universally to quantum
systems of arbitrary size and statistics, and (iii)
distinguishes among many important classes of
entanglement, including genuine multiparticle en-
tanglement. Geometrically, these inequalities cut
out a hierarchy of polytopes, which captures all
information about the global pure-state entangle-
ment deducible from local information alone. Our
methods are sufficiently robust to be applicable
to situations where the state is affected by low
levels of noise.

Formally, a pure state is said to be entangled if
it cannot bewritten as a product |y(1)〉⊗…⊗|y(N) 〉
(4). Two states can be considered to belong to the
same entanglement class if they can be converted
into each other with a finite probability of success
using local operations and classical communica-
tion (stochastic LOCC, or SLOCC) (5, 6). For
small systems, these entanglement classes are
well understood. In the simplest scenario of three
qubits (two-level systems), there exist two classes
of genuinely entangled states of very different na-
tures: The first contains the famous Greenberger-
Horne-Zeilinger (GHZ) state 1ffiffi

2
p (|↑↑↑ 〉 + |↓↓↓ 〉),

which exhibits a particularly strong form of quan-
tum correlations (7); the second contains the W
state 1ffiffi

3
p (|↑↑↓ 〉 + |↑↓↑ 〉 + |↓↑↑ 〉) (6). Whereas

states in the W class can be approximated to
arbitrary precision by states from the GHZ class,
the converse is not true, implying stronger en-
tanglement of the GHZ class (6). Already for four
particles there exist infinitely many entanglement
classes (8), and the number of parameters re-
quired to determine the class grows exponentially
with the particle number. As a result, only spo-
radic results have been obtained for larger sys-
tems, despite the enormous amount of literature
dedicated to the problem (4).

Our approach tomultiparticle entanglement is
based on establishing a connection to the one-body
quantum marginal problem, or N-representability
problem in quantum chemistry. This fundamental
problem about quantum correlations asks which

single-particle density matrices r(1), ...,r(N) can
appear as the reduced-density matrices of a
globally pure quantum state. Its solution is easily
seen to depend only on the eigenvalues l

→ðkÞ
of

the densities and allows for an elegant mathe-
matical description: The set of possible vectors
l
→ ¼ ðl→ð1Þ

; :::;l
→ðNÞÞ forms a convex polytope

(9–11) whose defining inequalities can be computed
algorithmically (10, 11). For fermions, the most fa-
mous such inequality is the Pauli principle (12, 13).

Here, we make the crucial observation that
these local eigenvalues alone can already give
considerable information about the entanglement
of the global state, provided that it is pure. To
make this precise, we consider the set of all
eigenvalue vectors l

→
of the states in the closure

of a given entanglement class. Surprisingly, this
set also forms a convex polytope (i.e., it is the
convex hull of finitely many such vectors), and
we call it the entanglement polytope of the class.
Entanglement polytopes immediately lead to a
local criterion for witnessing global multipar-
ticle entanglement: If the collection of eigen-
values l

→ ¼ ðl→ð1Þ
; :::;l

→ðNÞÞ of the single-particle,
reduced-density matrices of a pure quantum state
|y〉 does not lie in an entanglement polytope
∆C, then the given state cannot belong to the
corresponding entanglement class C (Fig. 1).
Mathematically,

l
→ ¼ ð l→

ð1Þ
,:::,l

→ðNÞ
Þ ∉ DC ⇒ jy〉 ∉ C ð1Þ

Phrased differently, the criterion allows us to
witness the presence of a highly entangled state
by showing that its local eigenvalues are incom-
patible with all less-entangled classes. Strikingly,
there are always only finitely many entanglement
polytopes, and they naturally form a hierarchy: If
a state in the class C can be approximated ar-
bitrarily well by states from D, then ∆C ⊆ ∆D.
This reflects geometrically the fact that states in
the second class are more powerful for quantum
information processing.

To compute ∆C, and to see that it is indeed a
convex polytope, we use tools from algebraic
geometry andgroup representation theory, presented
in detail in (14). We use the characterization of
SLOCC operations as invertible local operators
A1 ⊗…⊗ AN (6), which act on the class C, and
therefore also on the set of polynomial functions
on C. The irreducible subspaces of this action
correspond to covariants, i.e., vector-valued poly-
nomial functions transforming in a well-defined
way. By the representation theory of Lie groups,
each covariant is labeled by a highest-weight
m
→ ¼ ðm→ð1Þ

; :::; m
→ðNÞÞ, where the m→ðkÞ are vectors of

natural numbers whose entries are ordered de-
creasingly and sum to the degree n of the poly-
nomial. Thus, any normalized highest-weight
m
→
=n formally looks like an eigenvalue vector l

→
.

This formal similarity corresponds to a factual
correspondence: ∆C is essentially given by those
m
→
=n’s whose associated covariants do not vanish

on C (15). The statement that ∆C is a convex
polytope then follows from the fact that the
covariants form a finitely generated algebra (15).
We explain how to algorithmically compute a fi-
nite set of generators by using computational
invariant theory (16), motivated in part by (17).
The polytope can then be obtained as the convex
hull of the normalized highest weights m

→
=n of

those generators that are nonzero on the class C.
In the following, we illustrate our method

with a number of paradigmatic examples: For
qubit systems, each single-particle reduced-
density matrix r(k) has two eigenvalues, which
are nonnegative and sum to one; hence, its spec-
trum is completely characterized by the maximal
eigenvalue lðkÞmax, which can take values in the
closed interval 0.5 to 1. In the case of three
qubits, wemay therefore regard the entanglement
polytopes as subsets of three-dimensional (3D)
space. There are two full-dimensional polytopes
(18): one for the W class (the upper pyramid in
Fig. 1) and the other for the GHZ class (the entire
polytope, i.e., the union of both pyramids). The
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Fig. 1. Entanglement polytopes as witnesses (illustrated for three qubits). (A) An entanglement
polytope contains all possible local eigenvalues of states in the entanglement class (the W class and its
polytope are shown in blue; H is the set of all pure states). (B) For a sufficiently pure quantum state r, local
tomography is performed to determine its local eigenvalues. (C) The indicated eigenvalues are not
compatible with the W class nor its closure, hence r must have GHZ-type entanglement.
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(2, 3). Considerable efforts have been directed
at obtaining a systematic characterization of mul-
tiparticle entanglement; however, our under-
standing remains limited as the complexity of
entanglement scales exponentially with the num-
ber of particles (4).

In this work, we show that, for pure quantum
states, single-particle information alone can serve
as a powerful witness to multiparticle entangle-
ment. In fact, we find that a finite list of linear
inequalities characterizes the eigenvalues of the
single-particle states in any given class of en-
tanglement. Their violation provides a criterion
for witnessing multiparticle entanglement that (i)
only requires access to a linear number of degrees
of freedom, (ii) applies universally to quantum
systems of arbitrary size and statistics, and (iii)
distinguishes among many important classes of
entanglement, including genuine multiparticle en-
tanglement. Geometrically, these inequalities cut
out a hierarchy of polytopes, which captures all
information about the global pure-state entangle-
ment deducible from local information alone. Our
methods are sufficiently robust to be applicable
to situations where the state is affected by low
levels of noise.

Formally, a pure state is said to be entangled if
it cannot bewritten as a product |y(1)〉⊗…⊗|y(N) 〉
(4). Two states can be considered to belong to the
same entanglement class if they can be converted
into each other with a finite probability of success
using local operations and classical communica-
tion (stochastic LOCC, or SLOCC) (5, 6). For
small systems, these entanglement classes are
well understood. In the simplest scenario of three
qubits (two-level systems), there exist two classes
of genuinely entangled states of very different na-
tures: The first contains the famous Greenberger-
Horne-Zeilinger (GHZ) state 1ffiffi

2
p (|↑↑↑ 〉 + |↓↓↓ 〉),

which exhibits a particularly strong form of quan-
tum correlations (7); the second contains the W
state 1ffiffi

3
p (|↑↑↓ 〉 + |↑↓↑ 〉 + |↓↑↑ 〉) (6). Whereas

states in the W class can be approximated to
arbitrary precision by states from the GHZ class,
the converse is not true, implying stronger en-
tanglement of the GHZ class (6). Already for four
particles there exist infinitely many entanglement
classes (8), and the number of parameters re-
quired to determine the class grows exponentially
with the particle number. As a result, only spo-
radic results have been obtained for larger sys-
tems, despite the enormous amount of literature
dedicated to the problem (4).

Our approach tomultiparticle entanglement is
based on establishing a connection to the one-body
quantum marginal problem, or N-representability
problem in quantum chemistry. This fundamental
problem about quantum correlations asks which

single-particle density matrices r(1), ...,r(N) can
appear as the reduced-density matrices of a
globally pure quantum state. Its solution is easily
seen to depend only on the eigenvalues l

→ðkÞ
of

the densities and allows for an elegant mathe-
matical description: The set of possible vectors
l
→ ¼ ðl→ð1Þ

; :::;l
→ðNÞÞ forms a convex polytope

(9–11) whose defining inequalities can be computed
algorithmically (10, 11). For fermions, the most fa-
mous such inequality is the Pauli principle (12, 13).

Here, we make the crucial observation that
these local eigenvalues alone can already give
considerable information about the entanglement
of the global state, provided that it is pure. To
make this precise, we consider the set of all
eigenvalue vectors l

→
of the states in the closure

of a given entanglement class. Surprisingly, this
set also forms a convex polytope (i.e., it is the
convex hull of finitely many such vectors), and
we call it the entanglement polytope of the class.
Entanglement polytopes immediately lead to a
local criterion for witnessing global multipar-
ticle entanglement: If the collection of eigen-
values l

→ ¼ ðl→ð1Þ
; :::;l

→ðNÞÞ of the single-particle,
reduced-density matrices of a pure quantum state
|y〉 does not lie in an entanglement polytope
∆C, then the given state cannot belong to the
corresponding entanglement class C (Fig. 1).
Mathematically,

l
→ ¼ ð l→

ð1Þ
,:::,l

→ðNÞ
Þ ∉ DC ⇒ jy〉 ∉ C ð1Þ

Phrased differently, the criterion allows us to
witness the presence of a highly entangled state
by showing that its local eigenvalues are incom-
patible with all less-entangled classes. Strikingly,
there are always only finitely many entanglement
polytopes, and they naturally form a hierarchy: If
a state in the class C can be approximated ar-
bitrarily well by states from D, then ∆C ⊆ ∆D.
This reflects geometrically the fact that states in
the second class are more powerful for quantum
information processing.

To compute ∆C, and to see that it is indeed a
convex polytope, we use tools from algebraic
geometry andgroup representation theory, presented
in detail in (14). We use the characterization of
SLOCC operations as invertible local operators
A1 ⊗…⊗ AN (6), which act on the class C, and
therefore also on the set of polynomial functions
on C. The irreducible subspaces of this action
correspond to covariants, i.e., vector-valued poly-
nomial functions transforming in a well-defined
way. By the representation theory of Lie groups,
each covariant is labeled by a highest-weight
m
→ ¼ ðm→ð1Þ

; :::; m
→ðNÞÞ, where the m→ðkÞ are vectors of

natural numbers whose entries are ordered de-
creasingly and sum to the degree n of the poly-
nomial. Thus, any normalized highest-weight
m
→
=n formally looks like an eigenvalue vector l

→
.

This formal similarity corresponds to a factual
correspondence: ∆C is essentially given by those
m
→
=n’s whose associated covariants do not vanish

on C (15). The statement that ∆C is a convex
polytope then follows from the fact that the
covariants form a finitely generated algebra (15).
We explain how to algorithmically compute a fi-
nite set of generators by using computational
invariant theory (16), motivated in part by (17).
The polytope can then be obtained as the convex
hull of the normalized highest weights m

→
=n of

those generators that are nonzero on the class C.
In the following, we illustrate our method

with a number of paradigmatic examples: For
qubit systems, each single-particle reduced-
density matrix r(k) has two eigenvalues, which
are nonnegative and sum to one; hence, its spec-
trum is completely characterized by the maximal
eigenvalue lðkÞmax, which can take values in the
closed interval 0.5 to 1. In the case of three
qubits, wemay therefore regard the entanglement
polytopes as subsets of three-dimensional (3D)
space. There are two full-dimensional polytopes
(18): one for the W class (the upper pyramid in
Fig. 1) and the other for the GHZ class (the entire
polytope, i.e., the union of both pyramids). The

1Institute for Theoretical Physics, Eidgenössische Technische
Hochschule (ETH) Zürich, Wolfgang-Pauli-Strasse 27, 8093
Zürich, Switzerland. 2Department of Mathematics, ETH Zürich,
Rämistrasse 101, 8092 Zürich, Switzerland. 3Institute for
Physics, University of Freiburg, Rheinstrasse 10, 79104
Freiburg, Germany.
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C

Fig. 1. Entanglement polytopes as witnesses (illustrated for three qubits). (A) An entanglement
polytope contains all possible local eigenvalues of states in the entanglement class (the W class and its
polytope are shown in blue; H is the set of all pure states). (B) For a sufficiently pure quantum state r, local
tomography is performed to determine its local eigenvalues. (C) The indicated eigenvalues are not
compatible with the W class nor its closure, hence r must have GHZ-type entanglement.
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A little more partial information?

• Orbit closures are G-invariant algebraic varieties

• f’s come in types indexed by 3 Young diagrams

�A = .

d
�

d

ei ⌦ el 7! �i,lei

1

# boxes=degree

t 6 Dt0 i↵ there exists

f(t) = 0, but f(t0) 6= 0

G� covariant polynomial f : f(t) 6= f(t0)



Weyl’s construction
• Schur-Weyl duality

• orthogonal projector onto component

(Cd)⌦n ⇠=
M

�

[�]⌦ V�

Sn acts GL(d) acts

(P�A ⌦ P�B ⌦ P�C )| {z }
=:P�

t⌦n

�AP�A

=

 
X

i

viv
⇤
i

!
t⌦n =

X

i

v⇤i fi(t)



Relaxation

• Orbit closures are G-invariant algebraic varieties

if there is � s.th.

P�t
⌦n = 0 but P�t

0⌦n 6= 0

occurrence obstructions (Geometric Complexity Theory)
Mulmuley-Sohoni, Strassen, Bürgisser-Ikenmeyer, …

t 6 Dt0 i↵ there exists

f(t) = 0, but f(t0) 6= 0

G� covariant polynomial f : f(t) 6= f(t0)



Entanglement polytopes
Invariant-theoretic

14

Figure S1. Entanglement polytopes for three qubits: (A) GHZ polytope (entire polytope, i.e., upper and lower pyramid), (B) W polytope (upper
pyramid), (C) three polytopes corresponding to EPR pairs shared between any two of the three parties (three solid edges in the interior), (D)
polytope of the unentangled states (interior vertex).
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Figure S1. Entanglement polytopes for three qubits: (A) GHZ polytope (entire polytope, i.e., upper and lower pyramid), (B) W polytope (upper
pyramid), (C) three polytopes corresponding to EPR pairs shared between any two of the three parties (three solid edges in the interior), (D)
polytope of the unentangled states (interior vertex).

✓
4

8
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3

8
,
1

8
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d
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d

ei ⌦ el 7! �i,lei

1

P�t
⌦n 6= 0

Kronecker
= marginal
polytope
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tensor tensor ...     tensor⌦ ⌦ ⌦



(Quantum) information theory

Source Encoder Storage Decoder

Shannon: storage cost= all bits
Source 

Encoder Storage Decoder
Source 

Source 

Shannon: storage cost= H(X) bits/symbol

...
...



A small observation
d = 2n

ei = ei1i2···in = ei1 ⌦ ei2 ⌦ · · ·⌦ ein

dX

i=1

ei ⌦ ei =

 
2X

i1=1

ei1 ⌦ ei1

!
⌦
 

2X

i2=1

ei2 ⌦ ei2

!
⌦ · · ·⌦

 
2X

in=1

ein ⌦ ein

!

= (e0 ⌦ e0 + e1 ⌦ e1)
⌦n

dX

i=1

ei ⌦ ei ⌦ ei = (e0 ⌦ e0 ⌦ e0 + e1 ⌦ e1 ⌦ e1)
⌦n

dX

i,j,k=1

eij ⌦ ejk ⌦ eki =

0

@
2X

i,j,k=1

eij ⌦ ejk ⌦ eki

1

A
⌦n

= h2i⌦n

= Mamu(2)⌦nMamu(d) =

hdi =



Algebraic complexity theory

• Exponent of matrix multiplication

• Conjecture: 

d3 multiplications

O(d!)

2  2.38  · · ·  2.8  3
…, Coppersmith-Winograd Strassen

h2i⌦2n+o(n) � Mamu(2)⌦n

! = inf{r : h2i⌦(nr+o(n)) � Mamu(2)⌦n}

d

x =d



Asymptotic resource theory

• Asymp. restriction

• Unit

• Asymp. rank

• Asymp. subrank

hri =
rX

i=1

ei ⌦ ei ⌦ ei

t & t0 if t⌦n+o(n) � t0⌦n

R̃(t) := lim
n!1

R(t⌦n)
1
n

Q̃(t) := lim
n!1

Q(t⌦n)
1
n

R̃(Mamu(2)) = 2!



Strassen’s spectral theorem
t & t0 i↵ F (t) � F (t0) for all F :

F monotone

F normalised

F multiplicative

F additive

F (hri) = r

F (s⌦ s0) = F (s) · F (s0)

F (s� s0) = F (s) + F (s0)

R̃(t) = max
F

F (t)

Q̃(t) = min
F

F (t)

) easy
( difficult

every F is an obstruction

Asymptotic analogue of completeness of invariants for degeneration

under restriction
F (s) � F (s0) for all s � s0



What are the F’s?

• Existence non-constructive
– Compact space worth of them
– 3 Gauge points: ranks of slicings
– Construction of others open since ’80s

• Theorem also true for subclasses of tensors
– Oblique tensor
– Strassen’s support functionals



Main Result: Quantum functionals
✓ = (✓A, ✓B , ✓C) probability distribution e.g. ✓A = ✓B = ✓C =

1

3

E✓(t) := max
�2�(t)

{✓AH(�A) + ✓BH(�B) + ✓CH(�C)}

F✓(t) := 2E✓(t)

Measures distance to origin (relative entropy distance)
14

Figure S1. Entanglement polytopes for three qubits: (A) GHZ polytope (entire polytope, i.e., upper and lower pyramid), (B) W polytope (upper
pyramid), (C) three polytopes corresponding to EPR pairs shared between any two of the three parties (three solid edges in the interior), (D)
polytope of the unentangled states (interior vertex).
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1
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⇡ 0.921E( 1
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1
3 )
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quantum functionals

entanglement polytope

operator scaling



Main Result: Quantum functionals

F✓ monotone

F✓ normalised

F✓ multiplicative

F✓ additive

E✓(t) := max
�2�(t)

{✓AH(�A) + ✓BH(�B) + ✓CH(�C)}

F✓(t) := 2E✓(t)

easy, since polytope gets smaller under restriction
quantum functional gets smaller

easy, since polytope of unit tensor
contains uniform point

similar to multiplicativity, see paper

F (hri) = r



Multiplicativity

F✓(t) := 2E✓(t)

F✓(t⌦ t0) = F✓(t) · F✓(t
0)

�
Entanglement polytope:
Reduced density matrices


Entanglement polytopes: 
Invariant-theoretic

E✓(t⌦ t0) = E✓(t) + E✓(t
0)



Quantum functionals: Some facts

• Extend Strassen’s support functionals
• Are they complete?
– If complete, then

• General setting of tensors of order k
• Connect Strassen’s framework to capset
– Reproves recent results
– Characterise slice-rank

! = 2



Summary
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Figure S1. Entanglement polytopes for three qubits: (A) GHZ polytope (entire polytope, i.e., upper and lower pyramid), (B) W polytope (upper
pyramid), (C) three polytopes corresponding to EPR pairs shared between any two of the three parties (three solid edges in the interior), (D)
polytope of the unentangled states (interior vertex).

GHZ
=all

W
EPR

productt � t0 if (a⌦ b⌦ c) t = t0

for some matrices a, b, c

t & t0 if t⌦n+o(n) � t0⌦n

E✓(t) := max
�2�(t)

{✓AH(�A) + ✓BH(�B) + ✓CH(�C)}

F✓(t) := 2E✓(t) If all, then ! = 2



x =

1

1


