Tensors: From Entanglement to Computational Complexity

Matthias Christandl (Copenhagen \& MIT) DMATH

Peter Vrana (Budapest) and Jeroen Zuiddam (Amsterdam->IAS)
arXiv:1709.0781, Proc. STOC'18

Outline

- Two motivations
- Resource theory of tensors
- Entanglement polytopes
- Tensor \otimes tensor $\otimes \ldots$ tensor
- Quantum functionals

Two motivations

Quantum states

State of a
 system
(3 qubits)
$e_{0}=\binom{1}{0}$

$e_{1}=\binom{0}{1}$
$t=e_{0} \otimes e_{0} \otimes e_{0}+e_{1} \otimes e_{1} \otimes e_{1}$

Quantum state=tensor

$$
\begin{gathered}
t \in \mathbf{C}^{d} \otimes \mathbf{C}^{d} \otimes \mathbf{C}^{d} \\
t=\sum_{i, j, k=1}^{d} t_{i j k} e_{i} \otimes e_{j} \otimes e_{k}
\end{gathered}
$$

GHZ state = unit tensor

Greenberger-Horne-Zeilinger

$$
\langle r\rangle=\sum_{i=1}^{r} e_{i} \otimes e_{i} \otimes e_{i}
$$

Local operations

Local
trans-
formation:
Flip first bit
Local
trans-
formation:
Flip first qubit

$1=$
$0=$

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
t=e_{0} \otimes e_{0} \otimes e_{0}+e_{0} \otimes e_{1} \otimes e_{1}
$$

Local operations=restrictions

$$
t \geq t^{\prime} \text { if }(a \otimes b \otimes c) t=t^{\prime}
$$

for some matrices a, b, c

Linear combination of slices

3 qubits

Algebraic Complexity

$$
M(d)=\text { algebra of } d \times d \text { complex matrices }
$$

$$
\begin{aligned}
M a m u(d): M(d) \times M(d) & \rightarrow M(d) \quad \text { bilinear } \\
(A, B) & \mapsto A \cdot B
\end{aligned}
$$

d^{3} multiplications

Bilinear maps=tensors

$$
\begin{aligned}
& \operatorname{Mamu}(d): M(d) \times M(d) \times M(d)^{*} \rightarrow \mathbf{C} \\
&(A, B, C) \mapsto \operatorname{tr} A \cdot B \cdot C \\
& M a m u(d)=\sum_{i, j, k=1}^{d} e_{i j} \otimes e_{j k} \otimes e_{k i}^{d} e_{i j}=e_{i} \otimes e_{j} \\
&=\sum_{i, j, k=1}^{d}\left(e_{i} \otimes e_{j}\right) \otimes\left(e_{j} \otimes e_{k}\right) \otimes\left(e_{k} \otimes e_{i}\right)
\end{aligned}
$$

Complexity=Tensor rank

Strassen: \# elementary multiplications = tensor rank

$$
\begin{aligned}
& e_{00} \otimes e_{00} \otimes e_{00}+e_{11} \otimes e_{11} \otimes e_{11} \\
& e_{01} \otimes e_{10} \otimes e_{00}+e_{10} \otimes e_{01} \otimes e_{11} \\
& e_{01} \otimes e_{11} \otimes e_{10}+e_{10} \otimes e_{00} \otimes e_{01} \\
& e_{00} \otimes e_{01} \otimes e_{10}+e_{11} \otimes e_{10} \otimes e_{01}
\end{aligned}
$$

$$
\begin{aligned}
= & e_{-1} \otimes e_{1+} \otimes e_{00}+e_{1+} \otimes e_{00} \otimes e_{-1}+e_{00} \otimes e_{-1} \otimes e_{1+} \\
& -e_{-0} \otimes e_{0+} \otimes e_{11}-e_{0+} \otimes e_{11} \otimes e_{-0}-e_{11} \otimes e_{-0} \otimes e_{0+} \\
& +\left(e_{00}+e_{11}\right) \otimes\left(e_{00}+e_{11}\right) \otimes\left(e_{00}+e_{11}\right)
\end{aligned}
$$

Resource theory of tensors

free
operations

Resource theory of tensors

valuable resource

- Restriction
- Unit
$t \geq t^{\prime}$ if $(a \otimes b \otimes c) t=t^{\prime}$
for some matrices a, b, c $\langle r\rangle=\sum_{i=1}^{r} e_{i} \otimes e_{i} \otimes e_{i}$

$$
\begin{aligned}
R(t) & =\min \{r:\langle r\rangle \geq t\} \\
& =\min \left\{r: t=\sum_{i=1}^{r} \alpha_{i} \otimes \beta_{i} \otimes \gamma_{i}\right\}
\end{aligned}
$$

- Subrank
$Q(t)=\max \{r: t \geq\langle r\rangle\}$

Restriction

$t \geq t^{\prime}$ if $(a \otimes b \otimes c) t=t^{\prime}$
for some matrices a, b, c
$t \cong t^{\prime}$ if $t \geq t^{\prime}$ and $t^{\prime} \geq t$
iff $(a \otimes b \otimes c) t=t^{\prime}$
for invertible a, b, c

$$
G=G L(d) \times G L(d) \times G L(d)
$$

Deciding restriction
Classifying orbits and their relations

GHZ state

Degeneration

$$
\begin{gathered}
\left(e_{0}+\epsilon e_{1}\right)^{\otimes 3}-e_{0}^{\otimes 3} \\
=\epsilon\left(e_{0} \otimes e_{0} \otimes e_{1}+e_{0} \otimes e_{1} \otimes e_{0}+e_{1} \otimes e_{0} \otimes e_{0}\right)+O\left(\epsilon^{2}\right) \\
\quad t \geq t^{\prime} \text { if } t_{\epsilon} \underset{\epsilon \mapsto 0}{ } t^{\prime}, t \geq t_{\epsilon}
\end{gathered}
$$

Deciding degeneration
Classifying orbit closures and their relations

Deciding degeneration

- Orbit closures are G-invariant algebraic varieties
$t \nsupseteq t^{\prime}$ iff there exists

$$
G \text { - covariant polynomial } f \text { : }
$$

$$
f(t)=0, \text { but } f\left(t^{\prime}\right) \neq 0
$$

- Example:

$$
e_{0} \otimes e_{0} \otimes e_{0}+e_{1} \otimes e_{1} \otimes e_{1}
$$

$f=$ Cayley hyperdeterminant

$$
\approx e_{0} \otimes e_{0} \otimes e_{1}+e_{0} \otimes e_{1} \otimes e_{0}+e_{1} \otimes e_{0} \otimes e_{0}
$$

be happy with partial information

Entanglement polytopes

Local spectra

Entanglement polytopes Reduced density matrices

Ch-Mitchison, Klyachko, Daftuar-Hayden (2004) based in part on Kirwan

Walter-Doran-Gross-Ch,
Sawicki-Oszmaniec-Kus (2010) based on Brion

Experimental Detection

- if measured value
- not in W-polytope
- Then must be in GHZ-class!
- easy test for entanglement!

A little more partial information?

- Orbit closures are G-invariant algebraic varieties
$t \nsupseteq t^{\prime}$ iff there exists G - covariant polynomial $f: f(t) \neq f\left(t^{\prime}\right)$ $f(t)=0$, but $f\left(t^{\prime}\right) \neq 0$
- f's come in types indexed by 3 Young diagrams

Weyl's construction

- Schur-Weyl duality

$$
S_{n} \text { acts } \quad G L(d) \text { acts }
$$

$$
\left(\mathbf{C}^{d}\right)^{\otimes n} \cong \bigoplus_{\lambda}[\lambda] \otimes V_{\lambda}
$$

- $P_{\lambda_{A}}$ orthogonal projector onto λ_{A} component

$$
\begin{aligned}
& \underbrace{\left(P_{\lambda_{A}} \otimes\right.}_{=: P_{\lambda}} P_{\lambda_{B}} \otimes P_{\lambda_{C}})
\end{aligned} t^{\otimes n}+\left(\sum_{i} v_{i} v_{i}^{*}\right) t^{\otimes n}=\sum_{i} v_{i}^{*} f_{i}(t) \text {. }
$$

Relaxation

- Orbit closures are G-invariant algebraic varieties $t \nsupseteq t^{\prime}$ iff there exists
$G-$ covariant polynomial f :

$$
f(t)=0, \text { but } f\left(t^{\prime}\right) \neq 0
$$

if there is λ s.th.

$$
P_{\lambda} t^{\otimes n}=0 \text { but } P_{\lambda} t^{\prime \otimes n} \neq 0
$$

occurrence obstructions (Geometric Complexity Theory) Mulmuley-Sohoni, Strassen, Bürgisser-Ikenmeyer, ...

Entanglement polytopes Invariant-theoretic

$$
\left(\frac{4}{8}, \frac{3}{8}, \frac{1}{8}\right)
$$

$$
\begin{aligned}
& g_{\lambda} \neq 0 \\
& \text { Kronecker } \\
& =\text { marginal } \\
& \text { polytope }
\end{aligned}
$$

tensor \otimes tensor $\otimes \ldots \otimes$ tensor

(Quantum) information theory

Shannon: storage cost= all bits

Shannon: storage cost $=H(X)$ bits/symbol

A small observation

$d=2^{n}$
$e_{i}=e_{i_{1} i_{2} \cdots i_{n}}=e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{n}}$
$\sum_{i=1}^{d} e_{i} \otimes e_{i}=\left(\sum_{i_{1}=1}^{2} e_{i_{1}} \otimes e_{i_{1}}\right) \otimes\left(\sum_{i_{2}=1}^{2} e_{i_{2}} \otimes e_{i_{2}}\right) \otimes \cdots \otimes\left(\sum_{i_{n}=1}^{2} e_{i_{n}} \otimes e_{i_{n}}\right)$

$$
=\left(e_{0} \otimes e_{0}+e_{1} \otimes e_{1}\right)^{\otimes n}
$$

$\langle d\rangle=\sum_{i=1}^{d} e_{i} \otimes e_{i} \otimes e_{i}=\left(e_{0} \otimes e_{0} \otimes e_{0}+e_{1} \otimes e_{1} \otimes e_{1}\right)^{\otimes n}=\langle 2\rangle^{\otimes n}$
$\operatorname{Mamu}(d)=\sum_{i, j, k=1}^{d} e_{i j} \otimes e_{j k} \otimes e_{k i}=\left(\sum_{i, j, k=1}^{2} e_{i j} \otimes e_{j k} \otimes e_{k i}\right)^{\otimes n}=\operatorname{Mamu}(2)^{\otimes n}$

Algebraic complexity theory

 d
d^{3} multiplications

- Exponent of matrix multiplication $O\left(d^{\omega}\right)$

$$
2 \leq 2.38 \leq \cdots \leq 2.8 \leq 3
$$

..., Coppersmith-Winograd

Strassen

$$
\omega=\inf \left\{r:\langle 2\rangle^{\otimes(n r+o(n))} \geq \operatorname{Mamu}(2)^{\otimes n}\right\}
$$

- Conjecture: $\langle 2\rangle^{\otimes 2 n+o(n)} \geq \operatorname{Mamu}(2)^{\otimes n}$

Asymptotic resource theory

- Asymp. restriction $t \gtrsim t^{\prime}$ if $t^{\otimes n+o(n)} \geq t^{\prime \otimes n}$
- Unit

$$
\langle r\rangle=\sum_{i=1}^{r} e_{i} \otimes e_{i} \otimes e_{i}
$$

- Asymp. rank

$$
\tilde{R}(t):=\lim _{n \rightarrow \infty} R\left(t^{\otimes n}\right)^{\frac{1}{n}}
$$

- Asymp. subrank $\tilde{Q}(t):=\lim _{n \rightarrow \infty} Q\left(t^{\otimes n}\right)^{\frac{1}{n}}$ $\tilde{R}(\operatorname{Mamu}(2))=2^{\omega}$

Strassen's spectral theorem

$t \gtrsim t^{\prime}$ iff $F(t) \geq F\left(t^{\prime}\right)$ for all F :
F monotone
F normalised
F multiplicative F additive
$\tilde{R}(t)=\max _{F} F(t)$
$\tilde{Q}(t)=\min _{F} F(t)$
under restriction

$$
\begin{aligned}
& F(s) \geq F\left(s^{\prime}\right) \text { for all } s \geq s^{\prime} \\
& F(\langle r\rangle)=r \\
& F\left(s \otimes s^{\prime}\right)=F(s) \cdot F\left(s^{\prime}\right) \\
& F\left(s \oplus s^{\prime}\right)=F(s)+F\left(s^{\prime}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & \text { easy } \\
\Leftarrow & \text { difficult }
\end{array}
$$

every F is an obstruction

What are the F's?

- Existence non-constructive
- Compact space worth of them
- 3 Gauge points: ranks of slicings
- Construction of others open since '80s

- Theorem also true for subclasses of tensors
- Oblique tensor
- Strassen's support functionals

Main Result: Quantum functionals

$\theta=\left(\theta_{A}, \theta_{B}, \theta_{C}\right)$ probability distribution e.g. $\theta_{A}=\theta_{B}=\theta_{C}=\frac{1}{3}$

$$
E_{\theta}(t):=\max _{\lambda \in \Delta(t)}\left\{\theta_{A} H\left(\lambda_{A}\right)+\theta_{B} H\left(\lambda_{B}\right)+\theta_{C} H\left(\lambda_{C}\right)\right\}
$$

$$
F_{\theta}(t):=2^{E_{\theta}(t)}
$$

quantum functionals
Measures distance to origin (relative entropy distance)

$$
E_{\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)} \quad 1 \quad h\left(\frac{1}{3}\right) \approx 0.92 \quad \frac{2}{3} \quad 0
$$

Main Result: Quantum functionals

$E_{\theta}(t):=\max _{\lambda \in \Delta(t)}\left\{\theta_{A} H\left(\lambda_{A}\right)+\theta_{B} H\left(\lambda_{B}\right)+\theta_{C} H\left(\lambda_{C}\right)\right\}$
$F_{\theta}(t):=2^{E_{\theta}(t)}$
F_{θ} monotone
easy, since polytope gets smaller under restriction quantum functional gets smaller
easy, since polytope of unit tensor contains uniform point $F(\langle r\rangle)=r$
F_{θ} multiplicative
similar to multiplicativity, see paper
F_{θ} additive

Multiplicativity

$$
\begin{gathered}
F_{\theta}\left(t \otimes t^{\prime}\right)=F_{\theta}(t) \cdot F_{\theta}\left(t^{\prime}\right) \\
E_{\theta}\left(t \otimes t^{\prime}\right)=E_{\theta}(t):=2^{E_{\theta}(t)}+E_{\theta}\left(t^{\prime}\right)
\end{gathered}
$$

Entanglement polytope: Reduced density matrices
\leq
Entanglement polytopes:
Invariant-theoretic

Quantum functionals: Some facts

- Extend Strassen's support functionals
- Are they complete?
- If complete, then $\omega=2$
- General setting of tensors of order k
- Connect Strassen's framework to capset
- Reproves recent results
- Characterise slice-rank

Summary

$$
t \geq t^{\prime} \text { if }(a \otimes b \otimes c) t=t^{\prime}
$$ for some matrices a, b, c

$$
t \gtrsim t^{\prime} \text { if } t^{\otimes n+o(n)} \geq t^{\prime \otimes n}
$$

$$
\begin{aligned}
& E_{\theta}(t):=\max _{\lambda \in \Delta(t)}\left\{\theta_{A} H\left(\lambda_{A}\right)+\theta_{B} H\left(\lambda_{B}\right)+\theta_{C} H\left(\lambda_{C}\right)\right\} \\
& F_{\theta}(t):=2^{E_{\theta}(t)} \quad \text { If all, then } \omega=2
\end{aligned}
$$

