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Overview

A RELATIONSHIP BETWEEN ARBITRARY POSITIVE MATRICES AND
DOUBLY STOCHASTIC MATRICES

» Sinkhorn initiated study of A

Undversity of Houston

Y % O 1. Introduction. Suppose one observes n transitions of a Markov chain with
' , l a trlx Sca lng ln 1 9 6 4- N states and stochastic matrix P = (py;). The usual estimate of pi; is {;; = @i;/\i
* where a;; is the number of transitions from 7 to j which are observed, and \; =
> ;. (Cf. [1).) This amounts to a normalization of the rows of 4 = (ai),
and ean be expressed as a matrix equation T = D;A where T = (l;;) and Dy =
diaglhl_lv Ty AI_"‘]'
If it is known that the stochastic matrix P is in fact doubly stochastic, (i.e.,
S :pi = 1), what then is a good estimate of T? The maximum likelihood
equations are difficult to solve. One estimate which has been used (for example,
by Welch [4]) is to alternately normalize the rows and columns of 4, in the

o Numerou S app l ica tio n S in belief that this iterative process converges to a doubly stochastic matrix, T,

which might be, in some sense, a good estimate.

statistics, numerical
. . Sinkhorn Solves Sudoku
CO mp utl n g , th e O retl C al Todd K. Moon, Senior Member, IEEE, Jacob H. Gunther, Member, IEEE, and Joseph J. Kupin

Abstract—The Sudoku puzzle is a discrete constraint satisfac-  (sometimes called Sinkhorn scaling) has been widely studiec

tion problem, as lb‘.lhk‘ error cnr@chundec}u]mg problem. We pro-  and makes its appearance in a variety of applications. (See, fo
m r 1 n n ‘ 7 I I pose here an algorithm for solution to the Sinkhorn puzzle based on example [6].) The Sinkhorn balancing approach to solution i
Sinkhorn balancing. Sinkhorn balancing is an algorithm for pro- sticoasehil ab saIviReall blie s innet. dithcals SHdak _—
Jjecting a matrix onto the space of doubly stochastic matrices. The successiut al sofving alt but the most cIFICUTL Sudokl puzzles

Sinkhorn balancing solver is capable of solving all but the most Sinkhorn balancing furthermore generalizes well to situation
difficult puzzles. A proof of convergence is presented, with some  in which clues are presented as random elements in a set.

' information theoretic connections. A random generalization of the As there are other methods of solving Sudoku puzzles, th
l I O l I Sudoku puzzle is presented, for which the Sinkhorn-based solver  method presented here needs some justification. Our exploratio
o is also very effective. was motivated by a desire to develop decoding algorithms fo

Index Terms—Belief propagation (BP), constraint satisfaction, linear codes having many cycles in their Tanner graphs. Whil
low-density parity-check (LDPC) decoding, Sinkhorn, Sudoku. the BP algorithm fares poorly for such codes (and Sudoku puz



Overview

Generalized in several unexpected directions with
multiple themes.

Analytic approaches for algebraic problems.
Special cases of polynomial identity testing (PIT).

Isomorphism related problems: Null cone, orbit
intersection, orbit-closure intersection.

Provable fast convergence of alternating minimization
algorithms in problems with symmetries.

Tractable polytopes with exponentially many vertices
and facets. Brascamp-Lieb polytopes, moment
polytopes etc.
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Matrix scaling: Sinkhorn’s algorithm, analysis
and an application




Matrix Scaling

» Non-negative n X n matrix A.

» Scaling: B is a scaling of A if B = RAC. R and C are
positive diagonal matrices.

Bij= Rii-Cjj-A;;
» Doubly stochastic: B is doubly stochastic if all row and
column sums are 1.

* [Sinkhorn 64]: If A; ; > 0 for all i, j, then a doubly
stochastic scaling of A exists.

» Proved that a natural iterative algorithm converges.

 [Sinkhorn, Knopp 67]: Iterative algorithm converges iff
supp(4) admits a perfect matching.



Matrix scaling: Example 1

» [Sinkhorn 64]: Alternately normalize rows .3\_‘;//.
and columns. 0*}(  J
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Matrix scaling: Example 2

» [Sinkhorn 64]: Alternately normalize rows
and columns.
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Matrix scaling: Example 2

» [Sinkhorn 64]: Alternately normalize rows
and columns.




Analysis

Algorithm S
* Input: 4
» Repeat for N steps:
1. Normalize rows;
2. Normalize columns;
« Output: 4

Theorem [Linial, Samorodnitsky, Wigderson 00]: With N =
0 (n(b+1°g(n))), A “e-close to being DS” (if scalable).

€
Initial A integer entries with bit complexity b.

71y wwe» Ty C1, «uv, C, TOW and column sums of A.

ds(/i) =Y.(r,—1)*+ Zj(cj — 1)2 <e€




Analysis
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3-step analysis

Analysis
e [Lower bound]: Initially perm > 2~ (®+log(n),
» [Progress per step]: If e-far from DS, normalization increases perm by
a factor of exp(e/6). Consequence of a robust AM-GM inequality.
» [Upper bound]: If row or column normalized, perm < 1.

n(b+log(n))
€

» Therefore get e-close to DS in O ( ) steps.

» Crucial property of permanent:
perm(RAC) =[[;R;; [];C; j perm(A)

* (R, C diagonal). Permanent invariant under action of
diagonal matrices (with determinant 1).



Another potential function: capacity

» [Gurvits, Yianilos 98] provided an alternate analysis
of Sinkhorn’s algorithm using the notion of capacity.

\

.
cap(4) = inf{ H(Ax)i : nxi =1,x>0;
! i J
» Matrix scaling is equivalent to solving this
optimization problem.




Application: Bipartite matching

* [Sinkhorn, Knopp 67]: Iterative algorithm converges iff
supp(4) admits a perfect matching.

e [Linial, Samorodnitsky, Wigderson 00]: Only need to check
1/n close to DS.

Algorithm

* Input 4,
 Repeat for O(n*log(n)) steps:
1. Normalize rows;
2. Normalize columns;
 Output A
o Testifds(4) < 1/n,

Yes: PM in G.

No: No PM in G.




Another algorithm: Matching

X111X1- |IX
[0 [0 A

3 [0 Pegg

Aa Ag(X)

G has a perfect matching iff Det( 4 (X)) # 0.
Plug in random values and check non-zeroness.

Fast parallel algorithm.
The algorithm generalizes to a “much harder” problem.



Edmonds’ problem [1967]

L(X): entries linear forms in X = {x, ..., x,,,}
Edmonds’ problem: Test if Det(L(X)) # 0.
[Valiant 79]: Captures PIT.

Easy randomized algorithm.

Deterministic algorithm major open
challenge.

Is there a scaling approach to
Edmonds’ problem?

Gurvits went on this quest.




Operator scaling: Gurvits’ algorithm and an
application




Operator scaling

Input: 44, ..., 4,,, n X n complex matrices.

Same type as input for Edmonds’ problem.

L(X): entries linear forms in X = {x4, ..., x,,}. L(X) = )}, x; A;.

Definition [Gurvits 04]: Call 4,4, ..., 4,,, doubly stochastic if
Y AAT =Tand ¥;AT4; = 1.

A generalization of doubly stochastic matrices.

n X n non-negative matrix M — n* matrices, A , = /My ; Ej 5.

Natural from the point of quantum operators T,: P = }; A l-PAzr.
Definition [Gurvits 04]: 4;/, ..., A,,' is a scaling of A4, ..., A, if

!

there exist invertible matrices B, C s.t. 4,, ..., 4,," =
BA,C, ..,BA,.C.

Simultaneous basis change.



Operator

e Question [Gurvits 04]: When ¢
doubly stochastic?

» Does it solve Edmonds’ proble,
» Gurvits designed a scaling algori
» Proved it converges in poly time in special cases.

» Solves special cases of the Edmonds’ problem, e.g. all A4;’s
rank 1.

* [G, Gurvits, Oliveira, Wigderson 16]: Proved Gurvits’
algorithm converges in poly time, in general.

» Solves a close cousin of the Edmonds’ problem (non-
commutative version).



Gurvits’ algorithm
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Non-commutative singularity

» Symbolic matrices: L = )/, x;A; .
* A, ..., A, aren X n complex matrices.
 Edmonds’ problem: Test if Det(L(X )) + 0.

* Oris L(X) non-singular?

» Implicitly assume x;'s commute.

» NC-SING: L(X) non-singular when x;’s L(X)
non-commuting?

» Highly non-trivial to define.
» Work by Cohn and others in 70’s.



Non-commutative singularity

» Easiest definition: L = )2, x;A; NC-SING if
Det(X;21 X; ® 4;) = 0,
for all d, X; are d X d generic matrices (entries distinct
formal commutative variables).

e Theorem [G, Gurvits, Oliveira, Wigderson 16]:
Deterministic poly time algorithm for NC-SING.

e [Ivanyos, Qiao, Subrahmanyam 16; Derksen, Makam 16]:
Algebraic algorithms. Work over other fields.

» Strongest PIT result in non-commutative algebraic
complexity.



Analysis for algebra: source of scaling




Linear actions of groups

O

» Group G acts linearly on vector space /.

e m:G — GL(V) group homomorphism.
» m(g):V — V invertible linear map V g € G.

* m(g192) = n(g1) °m(g,) and w(id) = id.

Example 1
G =S, actsonV = C" by permuting coordinates.

g (Xq, ., X)) & (xa(l), ...,xa(n)).

Example 2
* G =GL,(C)actsonV = M, (C) by conjugation.
A-X =AXA™1.




Orbits and orbit-closures

O

» Group G acts linearly on vector space V/.

Objects of study
 Orbits: Orbit of vector v, 0, = {g-v: g € G}.
 Orbit-closures: Orbits may not be closed. Take their closures.
Orbit-closure of vector v,0, =cl{g-v:g € G}.

Example 1
* G =S5, actsonV = C" by permuting coordinates.
o - (Xl, ...,Xn) - (xO'(l)' ...,Xo-(n)).
* x,y in same orbit iff they are of same type. Vc € C, |{i: x; = c}| =

[{i:y; = c}l.
e QOrbit-closures same as orbits.




Orbits and orbit-closures

Example 2
G =GL,(C)actsonlV = M, (C) by conjugation.
A-X =AXAL.
Orbit of X: Y with same Jordan normal form as X.
If X not diagonalizable, orbit and orbit-closure differ.
Orbit-closures of X and Y intersect iff same eigenvalues.

Capture several interesting problems in theoretical computer science.
Graph isomorphism: Whether orbits of two graphs the same. Group
action: permuting the vertices.

Arithmetic circuits: The VP vs VNP question. Whether permanent lies
in the orbit-closure of the determinant. Group action: Action of GL, > (C)
on polynomials induced by action on variables.

Tensor rank: Whether a tensor lies in the orbit-closure of the diagonal
unit tensor. Group action: Natural action of GL,,(C) X GL,,(C) X GL,,(C).



Connection to scaling

S|

Scaling: finding minimal norm elements
in orbit-closures!
Group G acts linearly on vector space V.

NC(v) = inf||g - v]|5. = .
gEeG

Null cone: v s.t. NC(v) = 0, i.e ﬁ
Determines scalability.

Bemd Sturmiets

T Algorithms in
@ Invariant Theory
P> ¢ N

Ny

v scalable iff not in null cone. #-

Null cone membership fundamental problem in invariant
theory.

Scaling: natural analytic approach.



Example 1: Matrix scaling

O

» Given non-negative n X n matrix 4, find non-negative
diagonal matrices R, C s.t. RAC doubly stochastic.

» What is the group action?
» Defined by the problem itself!

Vector space n X n complex matrices.
: : 2
(Minor translation: M €V » A: A;; = |M; ;|

Group action Left-right multiplication by diagonal matrices.

Annoying technicality Need determinant 1 constraint.

Why doubly stochastic? | Critical point (KKT) condition.

Optimization problem Gurvits’ capacity for matrices.

Null cone Bipartite matching.




Example 2: Operator scaling

O

Vector space

Tuple of n X n complex matrices.

Group action

Simultaneous left-right multiplication.

Annoying technicality Need determinant 1 constraint.
Why doubly stochastic? | Critical point (KKT) condition.
Optimization problem Gurvits’ capacity for operators.
Null cone Non-commutative singularity.




Example 3: Geometric programming

O

Vector space Polynomials in n variables x4, ..., x;,.

Group action Scaling of variables. x; —» a;x;.

Annoying technicality Need Laurent polynomials. Polynomials in x4, ..., x,,,

x71, ..., x;1. Or determinant 1 constraint.

Optimization problem | Unconstrained Geometric programming. Or Gurvits’
capacity for polynomials.

Null cone Linear programming.




Significance for isomorphism problems

Group G acts linearly on vector
space I/.

G = GL,, for simplicity.

Natural equivalence relation:
v, ~ v, if orbit-closures
intersect.

Strategy for testing
equivalence: find canonical
elements and test if equal.

» Reduce problem to simpler
unitary subgroup.
» Usetul for orbit problems?

When orbits closed — random
orbits?

Fundamental theorems in
invariant theory: minimal
norm elements canonical

(up to unitary action).



More scaling problems: interesting polytopes




Non-uniform matrix scaling

O —

» (r,c): probability distributions over {1, ..., n}.

T
* Non-negative n X n matrix A. .1
» Scaling of A with row sums r, ..., 1, : B = RAC

and column sums cy, ..., c,? :
* P, ={such (r,c)}.

T

e [...; Rothblum, Schneider 89]: P, convex polytope!
e P, ={(r,c):3Q,supp(Q) < supp(4), Q marginals (r, c)}.

o Commutative group actions: classical marginal problems.

» Computing maximum entropy distributions: Nisheeth’s
talk.




Quantum marginals

Pure quantum state [{)s, s (d quantum systems).
Characterize marginals ps , ..., ps, (marginal states on systems)?

Only the spectra matter (local rotations for free).

Collection of such spectra convex polytope!
Follows from theory of moment polytopes.

See Michael and Matthias’ talks.

Efficient algorithms via non-uniform tensor
scaling. Cole’s talk at FOCS 2018 (Tuesday 16: 20).
Underlying group action: Products of GL’s on tensors.

Other interesting moment polytopes: Schur-Horn, Horn,
Brascamp-Lieb polytopes.



Conclusion and open problems

» Scaling problems: natural optimization problems with
symmetries.

» Analytic tools for algebraic problems.
» Waiting for killer apps.

» Polynomial time algorithms for

1. Null cone membership?

2. Moment polytope membership, separation and
optimization?

5. Orbit-closure intersection?
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