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Panorama of scaling problems and 
algorithms



Overview

 Sinkhorn initiated study of 

matrix scaling in .

 Numerous applications in 

statistics, numerical 

computing, theoretical 

computer science and even

Sudoku!



Overview

 Generalized in several unexpected directions with 
multiple themes.

1. Analytic approaches for algebraic problems.
 Special cases of polynomial identity testing (PIT).
 Isomorphism related problems: Null cone, orbit 

intersection, orbit-closure intersection.
2. Provable fast convergence of alternating minimization

algorithms in problems with symmetries.
3. Tractable polytopes with exponentially many vertices 

and facets. Brascamp-Lieb polytopes, moment 
polytopes etc.



Outline

 Matrix scaling

 Operator scaling

 Unified source of scaling problems

 Even more scaling problems



Matrix scaling: Sinkhorn’s algorithm, analysis 
and an application



Matrix Scaling

 Non-negative matrix .
 Scaling: is a scaling of if . and are 

positive diagonal matrices. 

 Doubly stochastic: is doubly stochastic if all row and 
column sums are .

 [Sinkhorn ]: If for all , then a doubly 
stochastic scaling of exists.

 Proved that a natural iterative algorithm converges.
 [Sinkhorn, Knopp ]: Iterative algorithm converges iff

admits a perfect matching.



Matrix scaling: Example 

 [Sinkhorn ]: Alternately normalize rows 

and columns.
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Analysis

 Theorem [Linial, Samorodnitsky, Wigderson ]: With 
, “ -close to being DS” (if scalable).

 Initial integer entries with bit complexity .
 row and column sums of .



Algorithm S
• Input:
• Repeat for steps:
1. Normalize rows;
2. Normalize columns;
• Output: 



Analysis

 Need a potential function. 

 [Sinkhorn, Knopp ]: scalable iff admits a 
perfect matching.

 Potential function: 
೙

.

 scalable and integer entries .

 After first normalization , .



-step analysis

 Therefore get -close to DS in steps.

 Crucial property of permanent:

 ( diagonal). Permanent invariant under action of 
diagonal matrices (with determinant ).

Analysis
• [Lower bound]: Initially ି௡(௕ା୪୭୥ ௡ ). 
• [Progress per step]: If -far from DS, normalization increases by 

a factor of . Consequence of a robust AM-GM inequality. 
• [Upper bound]: If row or column normalized, .



Another potential function: capacity

 [Gurvits, Yianilos ] provided an alternate analysis 
of Sinkhorn’s algorithm using the notion of capacity.

 Matrix scaling is equivalent to solving this 
optimization problem.



Application: Bipartite matching

 [Sinkhorn, Knopp ]: Iterative algorithm converges iff
admits a perfect matching.

 [Linial, Samorodnitsky, Wigderson ]: Only need to check 
close to DS.

Algorithm
• Input ீ

• Repeat for ଶ steps:
1. Normalize rows;
2. Normalize columns;
• Output 
• Test if ,

Yes: PM in .
No: No PM in .



Another algorithm: Matching

 has a perfect matching iff .

 Plug in random values and check non-zeroness.

 Fast parallel algorithm.

 The algorithm generalizes to a “much harder” problem.
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Edmonds’ problem [ ]

 : entries linear forms in .

 Edmonds’ problem: Test if .

 [Valiant ]: Captures PIT.

 Easy randomized algorithm.

 Deterministic algorithm major open 

challenge.

 Is there a scaling approach to 

Edmonds’ problem?

 Gurvits went on this quest.



Operator scaling: Gurvits’ algorithm and an 
application



Operator scaling

 Input: ଵ ௠ complex matrices.

 Same type as input for Edmonds’ problem.

 : entries linear forms in ଵ ௠ . ௜ ௜௜ .

 Definition [Gurvits ]: Call ଵ ௠ doubly stochastic if 

௜ ௜
ற

௜ and ௜
ற

௜௜ .

 A generalization of doubly stochastic matrices.

 non-negative matrix ଶ matrices, ௞,ℓ ௞,ℓ ௞,ℓ.

 Natural from the point of quantum operators ஺ ௜ ௜
ற

௜ .

 Definition [Gurvits ]: ଵ ௠ is a scaling of ଵ ௠ if 
there exist invertible matrices s.t. ଵ ௠

ଵ ௠ .

 Simultaneous basis change.



Operator scaling

 Question [Gurvits ]: When can we scale to 
doubly stochastic?

 Does it solve Edmonds’ problem?

 Gurvits designed a scaling algorithm.

 Proved it converges in poly time in special cases.

 Solves special cases of the Edmonds’ problem, e.g. all ’s 
rank .

 [G, Gurvits, Oliveira, Wigderson ]: Proved Gurvits’ 
algorithm converges in poly time, in general.

 Solves a close cousin of the Edmonds’ problem (non-
commutative version).



Gurvits’ algorithm

 Goal: Transform ଵ ௠ to satisfy

௜ ௜
்

௜ and ௜
்

௜௜ .

 Left normalize: ଵ ௠ ௜ ௜
்

௜
ିଵ/ଶ

ଵ ௜ ௜
்

௜
ିଵ/ଶ

௠.

 Ensures ௜ ௜
்

௜ .

 Right normalize: ଵ ௠ ଵ ௜
்

௜௜
ିଵ/ଶ

௠ ௜
்

௜௜
ିଵ/ଶ

.

 Ensures ௜
்

௜௜ .

Algorithm G
• Input: ଵ ௠

• Repeat for steps:
1. Left normalize;
2. Right normalize;
• Output: ଵ ௠



Gurvits’ algorithm

 Theorem [G, Gurvits, Oliveira, Wigderson ]: With 

, “ -close to being DS” (if scalable).

 : bit complexity of input.

 Analysis in Rafael’s next talk.



Non-commutative singularity

 Symbolic matrices: 

 are complex matrices.

 Edmonds’ problem: Test if .

 Or is non-singular?

 Implicitly assume s commute.

 NC-SING: non-singular when s 

non-commuting?

 Highly non-trivial to define.

 Work by Cohn and others in ’s.



Non-commutative singularity

 Easiest definition: NC-SING if

,

for all , are generic matrices (entries distinct 

formal commutative  variables).

 Theorem [G, Gurvits, Oliveira, Wigderson ]: 
Deterministic poly time algorithm for NC-SING.

 [Ivanyos, Qiao, Subrahmanyam 16; Derksen, Makam 16]: 
Algebraic algorithms. Work over other fields.

 Strongest PIT result in non-commutative algebraic 
complexity.



Analysis for algebra: source of scaling



Linear actions of groups

 Group acts linearly on vector space .

 group homomorphism.

 invertible linear map .

 ଵ ଶ ଵ ଶ and .

Example 
• ௡ acts on ௡ by permuting coordinates. 

ଵ ௡ ఙ(ଵ) ఙ(௡) .

Example 
• ௡ acts on ௡ by conjugation. 

ିଵ.



Orbits and orbit-closures

 Group acts linearly on vector space .

Objects of study
• Orbits: Orbit of vector , ௩ . 
• Orbit-closures: Orbits may not be closed. Take their closures.

Orbit-closure of vector ௩ .

Example 
• ௡ acts on ௡ by permuting coordinates. 

ଵ ௡ ఙ(ଵ) ఙ(௡) .
• , in same orbit iff they are of same type. ௜

௜ .
• Orbit-closures same as orbits.



Orbits and orbit-closures

 Capture several interesting problems in theoretical computer science.
 Graph isomorphism: Whether orbits of two graphs the same. Group 

action: permuting the vertices.
 Arithmetic circuits: The vs question. Whether permanent lies 

in the orbit-closure of the determinant. Group action: Action of ௡మ

on polynomials induced by action on variables. 
 Tensor rank: Whether a tensor lies in the orbit-closure of the diagonal 

unit tensor. Group action: Natural action of ௡ ௡ ௡ .

Example 
• ௡ acts on ௡ by conjugation. 

ିଵ.
• Orbit of : with same Jordan normal form as .
• If not diagonalizable, orbit and orbit-closure differ.
• Orbit-closures of and intersect iff same eigenvalues.



Connection to scaling

 Scaling: finding minimal norm elements 

in orbit-closures!

 Group acts linearly on vector space .

 .

 Null cone: s.t. , i.e. .

 Determines scalability.

 scalable iff not in null cone.

 Null cone membership fundamental problem in invariant 
theory.

 Scaling: natural analytic approach.



Example : Matrix scaling

 Given non-negative matrix , find non-negative 
diagonal matrices s.t. doubly stochastic.

 What is the group action? 

 Defined by the problem itself!
Vector space complex matrices.

(Minor translation: : ௜,௝ ௜,௝
ଶ
.)

Group action Left-right multiplication by diagonal matrices.

Annoying technicality Need determinant constraint.

Why doubly stochastic? Critical point (KKT) condition.

Optimization problem Gurvits’ capacity for matrices.

Null cone Bipartite matching.



Example : Operator scaling

Vector space Tuple of complex matrices.

Group action Simultaneous left-right multiplication.

Annoying technicality Need determinant constraint.

Why doubly stochastic? Critical point (KKT) condition.

Optimization problem Gurvits’ capacity for operators.

Null cone Non-commutative singularity.



Example : Geometric programming

Vector space Polynomials in variables ଵ ௡.

Group action Scaling of variables. ௜ ௜ ௜.

Annoying technicality Need Laurent polynomials. Polynomials in ଵ ௡, 

ଵ
ିଵ

௡
ିଵ. Or determinant constraint.

Optimization problem Unconstrained Geometric programming. Or Gurvits’ 
capacity for polynomials.

Null cone Linear programming.



Significance for isomorphism problems

 Group acts linearly on vector 
space .

 ௡ for simplicity.

 Natural equivalence relation:
ଵ ଶ if orbit-closures 

intersect.

 Strategy for testing 
equivalence: find canonical
elements and test if equal.

 Fundamental theorems in 
invariant theory: minimal 
norm elements canonical 

(up to unitary action).

 Reduce problem to simpler 
unitary subgroup.

 Useful for orbit problems? 
When orbits closed – random 
orbits?



More scaling problems: interesting polytopes



Non-uniform matrix scaling

 probability distributions over .

 Non-negative matrix .

 Scaling of with row sums 

and column sums ?

 .

 [ ; Rothblum, Schneider ]: convex polytope!

 = .

 Commutative group actions: classical marginal problems.

 Computing maximum entropy distributions: Nisheeth’s
talk.

ଵ

௡

ଵ ௡



Quantum marginals

 Pure quantum state ௌభ,…,ௌ೏ ( quantum systems).

 Characterize marginals ௌభ ௌ೏ (marginal states on systems)?

 Only the spectra matter (local rotations for free).

 Collection of such spectra convex polytope!

 Follows from theory of moment polytopes.

 See Michael and Matthias’ talks.

 Efficient algorithms via non-uniform tensor 

scaling. Cole’s talk at FOCS (Tuesday ).

 Underlying group action: Products of ’s on tensors.

 Other interesting moment polytopes: Schur-Horn, Horn, 
Brascamp-Lieb polytopes.



Conclusion and open problems

 Scaling problems: natural optimization problems with 
symmetries.

 Analytic tools for algebraic problems.

 Waiting for killer apps.

 Polynomial time algorithms for

1. Null cone membership?

2. Moment polytope membership, separation and 
optimization?

3. Orbit-closure intersection?



Thank You


