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Panorama of scaling problems and 
algorithms



Overview

 Sinkhorn initiated study of 

matrix scaling in .

 Numerous applications in 

statistics, numerical 

computing, theoretical 

computer science and even

Sudoku!



Overview

 Generalized in several unexpected directions with 
multiple themes.

1. Analytic approaches for algebraic problems.
 Special cases of polynomial identity testing (PIT).
 Isomorphism related problems: Null cone, orbit 

intersection, orbit-closure intersection.
2. Provable fast convergence of alternating minimization

algorithms in problems with symmetries.
3. Tractable polytopes with exponentially many vertices 

and facets. Brascamp-Lieb polytopes, moment 
polytopes etc.



Outline

 Matrix scaling

 Operator scaling

 Unified source of scaling problems

 Even more scaling problems



Matrix scaling: Sinkhorn’s algorithm, analysis 
and an application



Matrix Scaling

 Non-negative matrix .
 Scaling: is a scaling of if . and are 

positive diagonal matrices. 

 Doubly stochastic: is doubly stochastic if all row and 
column sums are .

 [Sinkhorn ]: If for all , then a doubly 
stochastic scaling of exists.

 Proved that a natural iterative algorithm converges.
 [Sinkhorn, Knopp ]: Iterative algorithm converges iff

admits a perfect matching.



Matrix scaling: Example 

 [Sinkhorn ]: Alternately normalize rows 

and columns.
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Matrix scaling: Example 

 [Sinkhorn ]: Alternately normalize rows 

and columns.



Analysis

 Theorem [Linial, Samorodnitsky, Wigderson ]: With 
, “ -close to being DS” (if scalable).

 Initial integer entries with bit complexity .
 row and column sums of .



Algorithm S
• Input:
• Repeat for steps:
1. Normalize rows;
2. Normalize columns;
• Output: 



Analysis

 Need a potential function. 

 [Sinkhorn, Knopp ]: scalable iff admits a 
perfect matching.

 Potential function: 


.

 scalable and integer entries .

 After first normalization , .



-step analysis

 Therefore get -close to DS in steps.

 Crucial property of permanent:

 ( diagonal). Permanent invariant under action of 
diagonal matrices (with determinant ).

Analysis
• [Lower bound]: Initially ି(ା୪୭  ). 
• [Progress per step]: If -far from DS, normalization increases by 

a factor of . Consequence of a robust AM-GM inequality. 
• [Upper bound]: If row or column normalized, .



Another potential function: capacity

 [Gurvits, Yianilos ] provided an alternate analysis 
of Sinkhorn’s algorithm using the notion of capacity.

 Matrix scaling is equivalent to solving this 
optimization problem.



Application: Bipartite matching

 [Sinkhorn, Knopp ]: Iterative algorithm converges iff
admits a perfect matching.

 [Linial, Samorodnitsky, Wigderson ]: Only need to check 
close to DS.

Algorithm
• Input ீ

• Repeat for ଶ steps:
1. Normalize rows;
2. Normalize columns;
• Output 
• Test if ,

Yes: PM in .
No: No PM in .



Another algorithm: Matching

 has a perfect matching iff .

 Plug in random values and check non-zeroness.

 Fast parallel algorithm.

 The algorithm generalizes to a “much harder” problem.
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Edmonds’ problem [ ]

 : entries linear forms in .

 Edmonds’ problem: Test if .

 [Valiant ]: Captures PIT.

 Easy randomized algorithm.

 Deterministic algorithm major open 

challenge.

 Is there a scaling approach to 

Edmonds’ problem?

 Gurvits went on this quest.



Operator scaling: Gurvits’ algorithm and an 
application



Operator scaling

 Input: ଵ  complex matrices.

 Same type as input for Edmonds’ problem.

 : entries linear forms in ଵ  .   .

 Definition [Gurvits ]: Call ଵ  doubly stochastic if 

 
ற

 and 
ற

 .

 A generalization of doubly stochastic matrices.

 non-negative matrix ଶ matrices, ,ℓ ,ℓ ,ℓ.

 Natural from the point of quantum operators   
ற

 .

 Definition [Gurvits ]: ଵ  is a scaling of ଵ  if 
there exist invertible matrices s.t. ଵ 

ଵ  .

 Simultaneous basis change.



Operator scaling

 Question [Gurvits ]: When can we scale to 
doubly stochastic?

 Does it solve Edmonds’ problem?

 Gurvits designed a scaling algorithm.

 Proved it converges in poly time in special cases.

 Solves special cases of the Edmonds’ problem, e.g. all ’s 
rank .

 [G, Gurvits, Oliveira, Wigderson ]: Proved Gurvits’ 
algorithm converges in poly time, in general.

 Solves a close cousin of the Edmonds’ problem (non-
commutative version).



Gurvits’ algorithm

 Goal: Transform ଵ  to satisfy

 
்

 and 
்

 .

 Left normalize: ଵ   
்


ିଵ/ଶ

ଵ  
்


ିଵ/ଶ

.

 Ensures  
்

 .

 Right normalize: ଵ  ଵ 
்


ିଵ/ଶ

 
்


ିଵ/ଶ

.

 Ensures 
்

 .

Algorithm G
• Input: ଵ 

• Repeat for steps:
1. Left normalize;
2. Right normalize;
• Output: ଵ 



Gurvits’ algorithm

 Theorem [G, Gurvits, Oliveira, Wigderson ]: With 

, “ -close to being DS” (if scalable).

 : bit complexity of input.

 Analysis in Rafael’s next talk.



Non-commutative singularity

 Symbolic matrices: 

 are complex matrices.

 Edmonds’ problem: Test if .

 Or is non-singular?

 Implicitly assume s commute.

 NC-SING: non-singular when s 

non-commuting?

 Highly non-trivial to define.

 Work by Cohn and others in ’s.



Non-commutative singularity

 Easiest definition: NC-SING if

,

for all , are generic matrices (entries distinct 

formal commutative  variables).

 Theorem [G, Gurvits, Oliveira, Wigderson ]: 
Deterministic poly time algorithm for NC-SING.

 [Ivanyos, Qiao, Subrahmanyam 16; Derksen, Makam 16]: 
Algebraic algorithms. Work over other fields.

 Strongest PIT result in non-commutative algebraic 
complexity.



Analysis for algebra: source of scaling



Linear actions of groups

 Group acts linearly on vector space .

 group homomorphism.

 invertible linear map .

 ଵ ଶ ଵ ଶ and .

Example 
•  acts on  by permuting coordinates. 

ଵ  ఙ(ଵ) ఙ() .

Example 
•  acts on  by conjugation. 

ିଵ.



Orbits and orbit-closures

 Group acts linearly on vector space .

Objects of study
• Orbits: Orbit of vector , ௩ . 
• Orbit-closures: Orbits may not be closed. Take their closures.

Orbit-closure of vector ௩ .

Example 
•  acts on  by permuting coordinates. 

ଵ  ఙ(ଵ) ఙ() .
• , in same orbit iff they are of same type. 

 .
• Orbit-closures same as orbits.



Orbits and orbit-closures

 Capture several interesting problems in theoretical computer science.
 Graph isomorphism: Whether orbits of two graphs the same. Group 

action: permuting the vertices.
 Arithmetic circuits: The vs question. Whether permanent lies 

in the orbit-closure of the determinant. Group action: Action of మ

on polynomials induced by action on variables. 
 Tensor rank: Whether a tensor lies in the orbit-closure of the diagonal 

unit tensor. Group action: Natural action of    .

Example 
•  acts on  by conjugation. 

ିଵ.
• Orbit of : with same Jordan normal form as .
• If not diagonalizable, orbit and orbit-closure differ.
• Orbit-closures of and intersect iff same eigenvalues.



Connection to scaling

 Scaling: finding minimal norm elements 

in orbit-closures!

 Group acts linearly on vector space .

 .

 Null cone: s.t. , i.e. .

 Determines scalability.

 scalable iff not in null cone.

 Null cone membership fundamental problem in invariant 
theory.

 Scaling: natural analytic approach.



Example : Matrix scaling

 Given non-negative matrix , find non-negative 
diagonal matrices s.t. doubly stochastic.

 What is the group action? 

 Defined by the problem itself!
Vector space complex matrices.

(Minor translation: : , ,
ଶ
.)

Group action Left-right multiplication by diagonal matrices.

Annoying technicality Need determinant constraint.

Why doubly stochastic? Critical point (KKT) condition.

Optimization problem Gurvits’ capacity for matrices.

Null cone Bipartite matching.



Example : Operator scaling

Vector space Tuple of complex matrices.

Group action Simultaneous left-right multiplication.

Annoying technicality Need determinant constraint.

Why doubly stochastic? Critical point (KKT) condition.

Optimization problem Gurvits’ capacity for operators.

Null cone Non-commutative singularity.



Example : Geometric programming

Vector space Polynomials in variables ଵ .

Group action Scaling of variables.   .

Annoying technicality Need Laurent polynomials. Polynomials in ଵ , 

ଵ
ିଵ


ିଵ. Or determinant constraint.

Optimization problem Unconstrained Geometric programming. Or Gurvits’ 
capacity for polynomials.

Null cone Linear programming.



Significance for isomorphism problems

 Group acts linearly on vector 
space .

  for simplicity.

 Natural equivalence relation:
ଵ ଶ if orbit-closures 

intersect.

 Strategy for testing 
equivalence: find canonical
elements and test if equal.

 Fundamental theorems in 
invariant theory: minimal 
norm elements canonical 

(up to unitary action).

 Reduce problem to simpler 
unitary subgroup.

 Useful for orbit problems? 
When orbits closed – random 
orbits?



More scaling problems: interesting polytopes



Non-uniform matrix scaling

 probability distributions over .

 Non-negative matrix .

 Scaling of with row sums 

and column sums ?

 .

 [ ; Rothblum, Schneider ]: convex polytope!

 = .

 Commutative group actions: classical marginal problems.

 Computing maximum entropy distributions: Nisheeth’s
talk.

ଵ



ଵ 



Quantum marginals

 Pure quantum state ௌభ,…,ௌ ( quantum systems).

 Characterize marginals ௌభ ௌ (marginal states on systems)?

 Only the spectra matter (local rotations for free).

 Collection of such spectra convex polytope!

 Follows from theory of moment polytopes.

 See Michael and Matthias’ talks.

 Efficient algorithms via non-uniform tensor 

scaling. Cole’s talk at FOCS (Tuesday ).

 Underlying group action: Products of ’s on tensors.

 Other interesting moment polytopes: Schur-Horn, Horn, 
Brascamp-Lieb polytopes.



Conclusion and open problems

 Scaling problems: natural optimization problems with 
symmetries.

 Analytic tools for algebraic problems.

 Waiting for killer apps.

 Polynomial time algorithms for

1. Null cone membership?

2. Moment polytope membership, separation and 
optimization?

3. Orbit-closure intersection?



Thank You


