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Frame: a collection of vectors !", !$, … , !& ∈ ℝ) that spans ℝ)

Equal norm: if !* $ = !, $ for all -, ..

Parseval: if ∑*1"& !*!*2 = 3).

An equal norm Parseval frame is an overcomplete basis:

4
*1"

&
5, !* !* = 5 ∀ 5 ∈ ℝ)

It has applications in signal processing, communication theory,

and quantum information theory.

Frames
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Equal norm Parseval frames are difficult to construct with only a few
known algebraic constructions.

[Holmes-Paulsen 04] were interested in constructing Grassmaniann frames,

equal norm Parseval frames with minimal max$,& '$, '&
(

,

which are even more difficult to construct.

It is easier to construct “approximate” equal norm Parseval frames

(e.g. random unit vectors, optimal packing of lines).

Motivation

Question: Can we turn an “approximate” frame into an equal norm 
Parseval frame by just moving the vectors “slightly”?
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What is the best function ! ", $, % such that for any &', … , &) ∈ ℝ, with

1 − %
$

"
≤ &0 1

1 ≤ 1 + %
$

"
∀ 1 ≤ 4 ≤ " (ϵ − nearly equal norm)

1 − % B, ≼D
0E'

)

&0&0
F ≼ 1 + % B, (ϵ − nearly Parseval),

there exist J', … , J) ∈ ℝ, with

J0 1
1 =

$
"

∀ 1 ≤ 4 ≤ " and D
0E'

)

J0J0
F = B,

such that

D
0E'

)

&0 − J0 1
1 ≤ ! ", $, % ?

The Paulsen Problem
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[Bodmann-Casazza, 10]  ! ", $, % ≤ ' "() $*+ %) when gcd ", $ = 1.

• dynamical system improves on equal norm while keeping Parseval.

[Casazza-Fickus-Mixon, 12] ! ", $, % ≤ ' ")2/4 $)/4 %)/4

• gradient descent improves on Parseval while keeping equal norm.

There are examples showing that ! ", $, % ≥ "%.

Previous work

Question: Can the bound be independent of $?
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Theorem. ! ", $, % ≤ ' "()/+ %

Main Result

The proof has two parts.

First, we define a dynamical system based on operator scaling, 

and show that ! ", $, % ≤ ' "+ $ % .

Then, we do a smoothed analysis to remove the dependency on $.

*[Hamilton, Moitra 18] ! ", $, % ≤ ' "+%
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How to move an approximate frame to satisfy the two conditions exactly?

The problems is difficult with two conditions.  It is easy with one condition.

• To satisfy the equal norm condition, we just rescale the vectors.

• To satisfy the Parseval condition, we can set

!" ← (%
"&'

(
!"!"))

+',
!" so that %

"&'

(
!"!") = 34.

A natural algorithm is to alternate between these two steps and 

hope that it will converge to a solution satisfying both conditions.

Alternating Algorithm
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Our starting point is to bound the distance by the total movement in 

the alternating algorithm (assuming it converges):

First Idea

{"#$ }

{"#& }

{"#' }

{"#( }…

This is a special case of the alternating algorithm for operator scaling,
which was analyzed in [Gurvits 04, Garg-Gurvits-Oliveira-Wigderson 16].
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An operator is a collection of matrices !",… , !% ∈ ℝ(×*.

[Gurvits 04]

Given !",… , !% ∈ ℝ(×*, we would like to find + ∈ ℝ(×( and , ∈ ℝ*×*

such that if we define -. = +!., for 1 ≤ 2 ≤ 3 then

4
.5"

%
-.-.6 = 738( and 4

.5"

%
-.6-. = 7<8*

for some constant c.

We say an operator satisfying the two conditions doubly balanced.

Operator Scaling
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Alternating Algorithm
Repeat the following two steps [Gurvits 04]:

• To satisfy the condition ∑"#$% &"&"' = )*, we set

&" ← (-
.#$

%
&.&.')

0$1
&"

• To satisfy the condition ∑"#$% &"'&" = )2, we set

&" ← &" (-
.#$

%
&.'&.)

0$1

A natural algorithm is to alternate between these two steps and 

hope that it will converge to a solution satisfying both conditions.
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A simple reduction from frame scaling to operator scaling:

!" ∈ ℝ% → '" ≡
| | |
0 !" 0
| | |

∈ ℝ%×,

Reduction

• The condition ∑"./, '"'"0 = 2% is the Parseval condition ∑"./, !"!"0 = 2%.

• The condition ∑"./, '"0'" = %
, 2, is the equal norm condition

!/ 33 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ !, 33

= 7
8 2,.

So we focus on this more general setting in this part of the talk.
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The Operator Paulsen Problem

What is the best function ! ", $, %, & s.t. for any '(,… , '* ∈ ℝ-×/ with

1 − & 2- ≼4
56(

*
'5'57 ≼ 1 + & 2-, 1 − & "

$ 2/ ≼4
56(

*
'57'5 ≼ 1 + & "

$ 2/

there exist 9(,… , 9* ∈ ℝ-×/ with

4
56(

*
95957 = 2- and 4

56(

*
95795 =

"
$ 2/

such that

4
56(

*
'5 − 95 >? ≤ ! ", $, %, & ?≤ "?$&
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Matrix Scaling:
• Preconditioning for linear solvers [Osborne 60]

• Optimal transportation [Wilson 69]

• Bipartite matching
• Deterministic approximation of permanents [Linial-Samorodnitsky-Wigderson 00]

Frame Scaling:

• Sign rank lower bound [Forster 02]

• Robust subspace recovery [Hardt-Moitra 13]

• Paulsen problem

PSD scaling:

• Approximation of mixed discriminants [Gurvits-Samorodnitsky 02]

Operator Scaling:

• Computing non-commutative rank [Garg-Gurvits-Oliveira-Wigderson 16]

• Computing Brascamp-Lieb constants [Garg-Gurvits-Oliveira-Wigderson 17]

• Orbit intersection problem [AllenZhu-Garg-Li-Oliveira-Wigderson 18]

Applications
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There are examples which do not converge:

1
0 , 10 , 01 ⇔ 2/2

0 , 2/2
0 , 01

Even if it converges, the path could zig-zag a lot and 

the total movement is much larger than the distance.

Issues in First Idea

{()* }

{(), }

{()- }

{(). }…
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where ! = ∑$%&' ($ )
* is the size of the operator.

• Δ is zero if and only if the operator is doubly balanced.

• Can show that Δ ≤ -*.*.  

• Focus on proving the total movement is ≤ -/ Δ ≤ -*/ϵ.

Error Measure

[Gurvits 04]

Δ = 1
- !23 −-5

6%&

'
(6(67

)

*

+ 1
/ !29 − /5

6%&

'
(67(6

)

*

The dynamical system is moving in the direction that minimizes Δ.
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Dynamical System: Do both steps simultaneously and continuously.

Continuous Operator Scaling

!
!" #$ = ('() −+,

-./

0
#-#-1) #$ + #$ ('(4 − 5 ,

-./

0
#-1#-)

where ' = ∑$./0 #$ 7
8 is the size of the operator.

We find some nice identities to analyze the convergence.

Lemma 1.
!
!" '

9 = −Δ 9 . Lemma 2. !
!" Δ

9 = −,
$./

0 !
!" #$

9
7

8
.

Claim.  The dynamical system converges to a doubly balanced operator.
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We again bound the final distance by the path length.

Total Movement

{"# $ } {"# & }

{"#' }

(
#)*

+
"#' − "# $ -

.
*
.
= (

#)*

+
0
$

' 1
12 "#

& 12
-

.
*
.

local 
movement

≤ 0
$

'
(
#)*

+ 1
12 "#

&
-

.
*
.
12

(triangle inequality)

distance

= 0
$

'
− 1
12 Δ

& 12

(Lemma 2)
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Half Time

Let ! be the first time that Δ # = Δ % /2.

)
%

#
− +
+, Δ

- +,
.

≤ )
%

#
1+, )

%

#
− +
+, Δ

- +, ≤ ! Δ % .

We can complete the movement bound by a geometric sum argument. 
So it remains to bound the half time.

+
+, 1

- = −Δ - ≤ −Δ % /2

Note Lemma 1 implies for all time up to T:
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Capacity

[Gurvits 04] Potential function to analyze operator scaling

cap $% = inf*∈ℝ-×-,*≻1
2 345 ∑789: ;7*;7<

9
=

345 *
9
-

Lemma 4. > ? ≥ cap ? ≥ > ? − BC Δ ? .

We adapt the proof of Lemma 4 from [GGOW 16].

One implication is that > F = cap F = cap 1 .

Lemma 3. Capacity is unchanged over time.
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Bounding Half Time
Half time. Want to upper bound the first time ! so that Δ # = Δ % /2.

Lemma 3.   Capacity is unchanged over time.

Lemma 4. ) * ≥ cap * ≥ ) * − 01 Δ * .

) # ≥ cap # = cap % ≥ ) % − 01 Δ %

size of the operator decreases by at most 01 Δ %

Lemma 1.
2
23 )

* = −Δ * . size decreases by at least 45 Δ
% !

! ≤ 201
Δ

total movement ≤ !Δ ≤ 01 Δ.
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Summary of Analysis

{"# $ } {"# & }
{"#' }

(
#)*

+
"#' − "# $ -

.squared 
distance ≤ 0

$

'
(
#)*

+ 1
12 "#

&
-

.
*
.
12

.

local 
movement

≤ 0
$

'
− 1
12 Δ

& 12
.

Lemma 2

≤ 4Δ $half time, geometric 
sum, Cauchy-Schwarz

≤ 56 Δ $
Capacity argument, 

Lemma 1

≤ 5.67.9. vs 9'
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Part II can be understood as a reduction from total movement 

to capacity lower bound:

Capacity and Total Movement

cap ≥ % − ' (, *, Δ part II dist2 ≤ ' (, *, Δ .

Remark: Smoothed analysis only works in the frame setting,

not (yet) in the operator setting.

In Part II, we proved ' (, *, Δ ≤ (* Δ.
In Part III, we prove that ' (, *, Δ ≤ (5 Δ in “perturbed” instances.
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Intuition: operators with small capacity are rare.

Idea: perturb an operator, and apply the dynamical system.

Smoothed Analysis

{"#$
% } {"#$ ' }

{"#$
( }

{#$ % }
original 
input

perturbed 
input

doubly 
balanced 

output
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1. Upper bound the perturbation movement, i.e. !"#$% &' ( , *&'
(

.

2. Error won’t increase too much, i.e. Δ(*&) ≈ Δ & .

3. Improved capacity in perturbed instances, i.e. 0 !, 1, Δ ≤ !3 Δ.

Plan

{*&'
( } {*&'

6 }

{*&'
7 }

{&' ( }

original 
input

perturbed 
input

doubly 
balanced 

output

movement in dynamical system ≤ 0 !, 1, Δ(*&)
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New Method in Capacity Lower Bound

New method: We use our dynamical system to bound matrix capacity.

capacity lower bound
part II

convergence of Δ
part III

− #
#$ Δ ≥ &Δ ⇒ cap ≥ + − ,

-.

So we need to show the fast convergence for the perturbed instances. 
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New tools in bounding the mathematical quantities in scaling problems.

Open Problems

1. Bounding the condition number of scaling solutions. *

• Used in fast algorithms for scaling problems.

2. Bounding (non-uniform) operator capacity 

• Equivalent in bounding Brascamp-Lieb constants.

3. Smoothed analysis of operator scaling

4. Generalization to Tensor scaling etc. 


