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Frames

Frame: a collection of vectors uq, u,, ..., u, € R4 that spans R4
Equal norm: if ||y, = ||uj||2 forall i, j.

. n T __
Parseval: if )., uju; =1 .

An equal norm Parseval frame is an overcomplete basis:

n
Z(x,ul-) u; =x Vx€R?
i=1

It has applications in signal processing, communication theory,

and quantum information theory.



Motivation

Equal norm Parseval frames are difficult to construct with only a few
known algebraic constructions.

[Holmes-Paulsen 04] were interested in constructing Grassmaniann frames,
. . 2
equal norm Parseval frames with minimal m_ax(ui,uj) ,
L]
which are even more difficult to construct.

It is easier to construct “approximate” equal norm Parseval frames

(e.g. random unit vectors, optimal packing of lines).

Question: Can we turn an “approximate” frame into an equal norm
Parseval frame by just moving the vectors “slightly”?




The Paulsen Problem

What is the best function f(n, d, €) such that for any uy, ..., u,, € R% with

2 d ;
(1-— e); < ||u;ll5 < (1 + 6); V1<i<n (€—nearlyequal norm)

n
(1—-¢e)l; < 2 wu] < (1+e)ly (e — nearly Parseval),
i=1

there exist vy, ..., v, € R% with

n
d
||vi||§=£ Vi<i<n and ZUivf=Id
i=1
such that

n
Dl = will3 < f(nd,e)?
=1



Previous work

[Bodmann-Casazza, 10] f(d,n,e) < 0(d** n'8 €2) when gcd(d,n) = 1.
* dynamical system improves on equal norm while keeping Parseval.
[Casazza-Fickus-Mixon, 12] f(d,n,€) < 0(d?%/7 n?/7 €2/7)

* gradient descent improves on Parseval while keeping equal norm.

There are examples showing that f(d, n, €) = de.

Question: Can the bound be independent of n?




Main Result

Theorem. f(d,n,€) < 0(d'3/? ¢)

The proof has two parts.

First, we define a dynamical system based on operator scaling,
and show that f(d,n,€) < 0(d? ne).

Then, we do a smoothed analysis to remove the dependency on n.

*[Hamilton, Moitra 18] f(d,n,€) < 0(d%¢)



Outline
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Alternating Algorithm

How to move an approximate frame to satisfy the two conditions exactly?
The problems is difficult with two conditions. It is easy with one condition.
e To satisfy the equal norm condition, we just rescale the vectors.

* To satisfy the Parseval condition, we can set

1
) n

n 2
U; « (Z w;u]) u;  sothat 2 wu =1I,.
i=1

i=1

A natural algorithm is to alternate between these two steps and

hope that it will converge to a solution satisfying both conditions.



First Idea

Our starting point is to bound the distance by the total movement in

the alternating algorithm (assuming it converges):

(1)}/ \ s{ (Oo)}

This is a special case of the alternating algorithm for operator scaling,
which was analyzed in [Gurvits 04, Garg-Gurvits-Oliveira-Wigderson 16].

{u(o)}s
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Operator Scaling

An operator is a collection of matrices Uy, ..., U, € R™*™,

[Gurvits 04]
Given Uy, ..., U, € R™ ™ we would like to find L € R™™ and R € R™*"

such that if we define V; = LU;R for 1 < k < n then

k

k
z v,V =cnl, and 2 VIV, = eml,
i=1 i=1

for some constant c.

We say an operator satisfying the two conditions doubly balanced.
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Alternating Algorithm

Repeat the following two steps [Gurvits 04]:

* To satisfy the condition Z 1 U; UT L, we set

U; <—(zUUT

« To satisfy the condition Y:¥_, UTU; = I,,, we set

1

2

k
U; < U; (z Ui'u;)
j=1

A natural algorithm is to alternate between these two steps and

hope that it will converge to a solution satisfying both conditions.



Reduction

A simple reduction from frame scaling to operator scaling:

u; ER4 - UiE<0 U; O)ERdx"

* The condition Y1, U;U; = I, is the Parseval condition Y1~ u;u; = I,.

L d, . "
* The condition X1-, U U; = Iy is the equal norm condition

lully 0\ g
. | =<1,
0 gl

So we focus on this more general setting in this part of the talk.



The Operator Paulsen Problem

What is the best function g(m, n, k, €) s.t. for any Uy, ...,

(1-e)l,

there exist V3, ...,

such that

EU Ul <1 +el, (1 —e)—I zuT

Vi € R™™ with

k
2 v,V =1, and z Vv, =
=1 1

k
Z:HUL' —Villz < gim,n,k,€)
i=1

=

< m?ne

U, € R™*™ with

< (1+ e)—I
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Applications

Matrix Scaling:

* Preconditioning for linear solvers [Osborne 60]

* QOptimal transportation [Wilson 69]

* Bipartite matching

 Deterministic approximation of permanents [Linial-Samorodnitsky-Wigderson 00]

Frame Scaling:

e Sign rank lower bound [Forster 02]
* Robust subspace recovery [Hardt-Moitra 13]
e Paulsen problem

PSD scaling:
e Approximation of mixed discriminants [Gurvits-Samorodnitsky 02]

Operator Scaling:

 Computing non-commutative rank [Garg-Gurvits-Oliveira-Wigderson 16]
 Computing Brascamp-Lieb constants [Garg-Gurvits-Oliveira-Wigderson 17]
* OQOrbitintersection problem [AllenZzhu-Garg-Li-Oliveira-Wigderson 18]
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Issues in First Idea

(0)
SRR PO o)

§~

1 —
") T~ ™)
l

There are examples which do not converge:
(o)) @) =(F2).(%2)-0)

Even if it converges, the path could zig-zag a lot and

the total movement is much larger than the distance.
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Error Measure

(Gurvits 04]
k 2 k 2
1 T 1 T
A=% slm—szjUj +E SIn—nEUjUj
Jj=1 o j=1 F
_ 'k 2 . :
where § = i=1”Ui |F is the size of the operator.

« Aiszeroif and only if the operator is doubly balanced.

e Can show that A < m?2e?.

* Focus on proving the total movement is < mnvA < m2ne.

The dynamical system is moving in the direction that minimizes A.

17



Continuous Operator Scaling

Dynamical System: Do both steps simultaneously and continuously.

k k
d
—-Ui= (sl — mz UiUNH U + U;(sl, —n z Ui Uj)
j=1 j=1

where § = é;l || Ul- ||12: is the size of the operator.

We find some nice identities to analyze the convergence.

Lemma 1.

d
— s®) = _A®
7r S :

Lemma 2. i AL —
dt

“d
©
iy 5
D g v
=1

2

F

Claim. The dynamical system converges to a doubly balanced operator.
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Total Movement

(- _ ("

()
{u; "}
We again bound the final distance by the path length.

| b=
[ =

‘ Ui(oo) _ Ui(O)HZ) _ (z f diUi(t) dt
) = 1o at F
J (Z HiU-(t) ) " =j _iA(t) it movement
o \&lldt 0

N1=

(i

Il
[N

IA

. dt

(triangle inequality) (Lemma 2)



Half Time

Let T be the first time that AT = A0 /2.

2

T d T T d
f ——A® gt s(j 1dt>(f ——A(t)dt)STA(O).
0o N @t 0 o dt

We can complete the movement bound by a geometric sum argument.
So it remains to bound the half time.

Note Lemma 1 implies for all time up to T:

d
— ¢®) = A <« _A) /9
dt =47/
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Capacity

[Gurvits 04] Potential function to analyze operator scaling

m det(¥i, U XU] )%

Cap({Ul}) = XEIR%Q{X>O det(X)%

Lemma 3. Capacity is unchanged over time.

Lemma 4. s > cap® > 5O — mn/A®,

We adapt the proof of Lemma 4 from [GGOW 16].

One implication is that s(®) = cap(®) = cap(®.
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Bounding Halt Time

Half time. Want to upper bound the first time T so that AT = A(©) /2.

Lemma 3. Capacity is unchanged over time.

oL

Lemmad. s® > cap® > s — mnyA®,

|:> S(T) 2 Cap(T) — Cap(o) 2 S(O) —mn A(O)

|:> size of the operator decreases by at most mn+/ A(®)

d
Lemmma 1. o s = _AW®) |:> size decreases by at Ieast% AT

|:> T < ’_> total movement < TA < mnvA.
\/Z 22




Summary of Analysis

local
movement

K , o k d 2\ 2
squared co 0 (©)
Gy e -uel, =\ (S el)
i=1 =1

< f —iA(t) dt
0 N

half time, geometric (0)

Capacity argument,
< mn+/ A©) Lemma 1
< m2ne.
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Capacity and Total Movement

Part Il can be understood as a reduction from total movement

to capacity lower bound:

cap = s — f(d,n,A) Iﬁ dist? < f(d,n,A).

In Part Il, we proved f(d,n,A) < dnVA.
In Part Ill, we prove that f(d,n,A) < d¢v/A in “perturbed” instances.

Remark: Smoothed analysis only works in the frame setting,

not (yet) in the operator setting.
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Smoothed Analysis

Intuition: operators with small capacity are rare.

|dea: perturb an operator, and apply the dynamical system.

perturbed . (¢
g, )

original balanced
input output
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Plan

movement in dynamical system < f(d, n,A(l?j)

perturbed
: ~(0 —~(t) doubly
{Ui( ) T palanad

-
[
-
._—_
-
—
-
-—
-

1. Upper bound the perturbation movement, i.e. dist? ({Ui(o)},{

2. Error won’t increase too much, i.e. A(U) = A(U).

’0;(0)

3. Improved capacity in perturbed instances, i.e. f(d,n,A) < dVA.

27
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New Method in Capacity Lower Bound

New method: We use our dynamical system to bound matrix capacity.

partll >

capacity lower bound convergence of A

< part i
A

d
—EAEMA = casz—;.

So we need to show the fast convergence for the perturbed instances.

28



Outline

Part I: Paulsen problem

- Motivation from frame theory

Part |l: Continuous operator scaling

- Operator scaling, alternating algorithm, reduction

- Analysis of dynamical system

Part lll: Smoothed analysis

- Proof outline, capacity lower bound

Part IV: Discussions

29



Open Problems

New tools in bounding the mathematical quantities in scaling problems.

1. Bounding the condition number of scaling solutions. *

 Used in fast algorithms for scaling problems.

2. Bounding (non-uniform) operator capacity

 Equivalent in bounding Brascamp-Lieb constants.

3. Smoothed analysis of operator scaling

4. Generalization to Tensor scaling etc.
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