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Summary

These are notes for a course given at Stanford University and the University of Amsterdam for
advanced undergraduates and graduate students. The course gives an introduction to quantum
information theory. Somewhat unconventionally, it uses symmetries as a guiding principle to study
fundamental features of quantum information and solve quantum information processing tasks.
For more thorough introductions to the subject, see the textbooks by Nielsen and Chuang [NC10],
Wilde [Wil17], or Watrous [Wat18], or the lecture notes by Preskill [Pre22].
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Chapter 1

Introduction to quantum mechanics,
uncertainty principle

By now, quantum information science is an established field, with theoreticians and experimen-
talists seeking to leverage the laws of quantum mechanics to process information and compute in
fundamentally new and interesting ways. But quantum information theory also offers a fresh
perspective on fundamental physics, by providing us with a versatile language and a useful
toolbox to clarify abstract notions such as information and computing and how they are realized
in the physical world.

This course on Symmetry and Quantum Information will give an introduction to this way of
thinking and provide you with a concrete toolbox for your future endeavors in quantum information
and computing. We will discuss a number of fundamental information theoretic problems, such as
the storage, measurement, compression, and transmission of quantum information. Our guiding
principle will be to identify the symmetries that are hidden behind these problems (an approach
that many of you may well be familiar from your previous courses in mathematics and physics),
and we will learn how to leverage those symmetries using the machinery of group representation
theory to solve the problems at hand.

1.1 Axioms of quantum mechanics

Today, we start with an introduction to the axioms (laws, postulates) of quantum mechanics.
We will careful go through each axiom and discuss a number of consequences and challenges that
will motivate much of what we will study in this course. While the following list will be roughly
what you remember from a previous course on quantum mechanics, you should think of it as a
first attempt. As we go along this term, we will extend our repertoire and rephrase these rules in
a way that (while equivalent) is more useful from the perspective of quantum information theory.

Axiom A (Systems). To every quantum mechanical system, we associate a Hilbert space H.
For a joint system composed of two subsystems A and B, with Hilbert spaces HA and HB, the
Hilbert space is the tensor product HAB := HA ⊗HB.

Throughout this course we will restrict to finite-dimensional Hilbert spaces. Recall that a
finite-dimensional Hilbert space is nothing but a vector space together with an inner product,
which we denote by ⟨·|·⟩. By convention, the inner product is linear in the second argument.

The simplest quantum mechanical system is the qubit (short for quantum bit), described by
the two-dimensional Hilbert space H = C2. Thus a system composed of n qubits corresponds
to (C2)⊗n = C2 ⊗C2 ⊗ . . . ⊗C2. Note that the dimension of the latter space is 2n, which is
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exponential in the number of qubits. This explains some of the difficulty in simulating quantum
mechanics on an ordinary “classical” (i.e., non-quantum) computer.

Axiom B (Pure States). Unit vectors |ψ⟩ ∈ H describe the state of quantum mechanical systems.

Here we use Dirac’s “bra-ket” notation, with “kets” |ψ⟩ denoting vectors in H and “bras” ⟨ψ|
denoting the corresponding dual vector in H∗, i.e., ⟨ψ| := ⟨ψ|·⟩. Thus, “bra” and “ket” together
give the inner product: ⟨ϕ|ψ⟩ = ⟨ϕ| |ψ⟩. A unit vector is a vector |ψ⟩ whose norm (or norm
squared) is equal to one, i.e., ⟨ψ|ψ⟩ = 1. We will denote by X† the adjoint of an operator X
between two Hilbert spaces. We can think of |ψ⟩ ∈ H as an operator C→ H, so that ⟨ψ| = |ψ⟩†.

Note that the notation |ψ⟩⟨ψ| is precisely the projection onto the one-dimensional subspace
spanned by |ψ⟩. When we say projection or “projector” , we always mean an orthogonal projection,
that is, a linear operator P that satisfies P 2 = P † = P . In coordinates (i.e., for H = Cd):

|ψ⟩ =

ψ1

...
ψd

 , ⟨ψ| =
(
ψ1 · · · ψd

)
, ⟨ϕ|ψ⟩ =

d∑
i=1

ϕiψi, |ψ⟩ ⟨ϕ| =

ψ1ϕ1 . . . ψ1ϕd
...

...

ψdϕ1 . . . ψdϕd

 ,

and the adjoint is given by the conjugate transpose: X† = (X)T = XT .
When we speak of a basis of a Hilbert space then we always mean an orthonormal basis. The

standard basis or computational basis of Cd is denoted by |0⟩ , |1⟩ , . . . , |d− 1⟩. In particular, for
a qubit, the computational basis is given by

|0⟩ :=
(
1
0

)
, |1⟩ :=

(
0
1

)
.

We can think of these as the two states of a classical bit that has been embedded into a qubit:
{0, 1} ∋ x 7→ |x⟩ ∈ C2. This makes sense because these two states are orthogonal, ⟨0|1⟩ = 0, and
as we shall see below this means that they can be perfectly distinguished. For n qubits, we write

|i1 . . . in⟩ := |i1, . . . , in⟩ := |i1⟩ ⊗ . . .⊗ |in⟩

for the computational basis of (C2)⊗n.
The fact that for any two states |ϕ⟩ and |ψ⟩ we have an entire continuum of “superposition”

states α |ϕ⟩+ β |ψ⟩ of states is sometimes called the superposition principle.

Some states of a composite systemHA⊗HB can be written as a tensor product, |Ψ⟩ = |α⟩⊗|β⟩.
Such states are called product states; otherwise they are called entangled. An example of an
entangled state of two qubits is the following,

|Φ+⟩ := 1√
2
(|00⟩+ |11⟩) ∈ C2 ⊗C2, (1.1)

which is known as a maximally entangled state, an EPR pair, or simply as an ebit. In Exercise 1.1
you can show that this state is indeed entangled.

In Chapter 2, we will see some first indications that entanglement can be a powerful resource
for quantum information processing. In Chapter 3, we will see that it can lead to strong
correlations that go beyond what can be produced by a classical local theory.

Axiom C (Unitary dynamics). Given a unitary operator U on H, the transformation |ψ⟩ 7→ U |ψ⟩
is physical. In other words, in principle one can engineer an evolution of a quantum system for
some finite time such that, when we start in an arbitrary initial state |ψ⟩, the final state is U |ψ⟩.
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Recall that a unitary operator U is one such that UU † = U †U = I, i.e., the adjoint is the
inverse (we denote identity operators by I). Unitary matrices are precisely those linear maps
that map unit vectors to unit vector. We denote the set of unitary operators by U(H). We will
use pictures such as the following to indicate an evolution by some unitary U :

|ψ⟩ U U |ψ⟩

The relationship to the Schrödinger equation is that, in order to implement a given unitary, one
can evolve the quantum system for some time with a suitable Hamiltonian.

The next axiom explains how to extract classical information from a quantum system. Before
stating it, we recall the spectral theorem for Hermitian operators. This theorem asserts that any
Hermitian operator O can be diagonalized, with real eigenvalues and an orthonormal eigenbasis.
We can write this as O =

∑
x∈Ω xPx, where Ω ⊆ R is the (finite) set of eigenvalues of O and

where Px denotes the orthogonal projection onto the eigenspace corresponding to eigenvalue x ∈ Ω.
Eigenspaces for distinct eigenvalues are orthogonal: we have PxPy = δx,yPx. If an eigenspace is
one-dimensional and spanned by some unit vector |ex⟩, we can write Px = |ex⟩⟨ex|.

Axiom D (Observables). Any Hermitian operator O on H corresponds to an observable quantity
or measurement. Let O =

∑
x∈Ω xPx be the spectral decomposition. Then the Born rule asserts

that the probability of outcome x in state |ψ⟩ is given by

Prψ(outcome x) = ⟨ψ|Px|ψ⟩ = ∥Px |ψ⟩∥2. (1.2)

(We will often omit the subscript ψ if the state is clear.) Moreover, if the outcome is x then the
quantum state of the system changes (“collapses”) into the post-measurement state

|ψ′⟩ = Px |ψ⟩
∥Px |ψ⟩∥

=
Px |ψ⟩√
⟨ψ|Px|ψ⟩

. (1.3)

Measurements will be indicated as follows:

|ψ⟩ x

|ψ′⟩

The top right wire carries the measurement outcome, while the bottom one the post-measurement
state (we may leave out one or the other). We follow the convention that single lines correspond
to quantum systems, while double lines refer to classical information.

As a consequence of the Born rule in Eq. (1.2), the expectation value of the outcome of a
quantum measurement can be succinctly expressed in terms of the observable O:

Eψ[outcome] =
∑
x∈Ω

x ⟨ψ|Px|ψ⟩ = ⟨ψ|O|ψ⟩ ,

Axiom D states that, in general, measurement outcomes are probabilistic and lead to a
“collapse” of the quantum state. This is a very fundamental statement with numerous consequences.
For example, it implies that quantum information cannot be “cloned”, that is, copied (in contrast
to, say, the value of an ordinary bit in the memory of your computer). In fact, we will find
that when we want to process quantum information, we have to do so in a way that avoids
learning anything about the state of the quantum information itself – for learning is equivalent
to measuring an aspect of the state, and measurements in general lead to a “collapse” of the
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quantum state in the sense of Eq. (1.3). We will later see how to make this precise. This is
a major challenge and closely related to the “fragility” of quantum information – but it also
gives rise to a powerful way of constructing quantum communication protocols known as the
decoupling principle, which we will discuss in Chapter 17.

Given an observable O, are there states |ψ⟩ that are not “collapsed” by the measurement of
an observable? In other words, are the states for which the post-measurement state is equal to
the state before the measurement? It is not hard to see that this happens precisely when |ψ⟩ is
an eigenvector of O (by Eq. (1.3)), i.e., when Px |ψ⟩ = δx,x0 |ψ⟩, where x0 is the corresponding
eigenvalue. Equivalently, this means that ⟨ψ|Px|ψ⟩ = δx,x0 , i.e., the states that do not collapse
are precisely those states for which the measurement outcome is deterministic (“certain”).

A closely related question is when a pair of quantum states {|α⟩ , |β⟩} can be perfectly
distinguished by some observable. That is, when does there exists an observable O such that
when we measure on |α⟩ we always obtain outcome +1, say, while if we measure on |β⟩ we always
obtain outcome −1, as in the following figure?

|α⟩ +1 |β⟩ -1

The answer is that this is possible precisely when the two states are orthogonal, i.e., ⟨α|β⟩ = 0.
Indeed, in this case we can measure the observable O = |α⟩⟨α| − |β⟩⟨β|, which has |α⟩ as an
eigenvector with eigenvalue +1 and |β⟩ as an eigenvector with eigenvalue −1. In Exercise 1.2, you
can show the converse: two states can be perfectly distinguished only when they are orthogonal.

We conclude our discussion of the axioms of quantum mechanics with one last observation.
A careful look at Axioms A-D reveals that any two states |ψ⟩ and eıθ |ψ⟩ are completely
indistinguishable. This means that there is some redundancy when we characterize states
by unit vectors – we should really identify any two unit vectors that can be obtained from
each other by multiplication with a complex number of absolute value one (a “global phase”).
Mathematically, this means that we should work with the projective space P(H). One convenient
way to achieve this is to consider |ψ⟩⟨ψ|, which as mentioned is the orthogonal projection
onto the one-dimensional subspace spanned by a unit vector |ψ⟩. Note that the subspace and
hence also the operator |ψ⟩⟨ψ| are insensitive to multiplying the state by an overall phase
eıθ. Conversely, we can recover |ψ⟩ up to phase by choosing any unit vector in the range
of the operator |ψ⟩⟨ψ|, so this achieves precisely what we wanted. A useful notation is to
write ψ := |ψ⟩⟨ψ|. Note that we can rephrase all our axioms in terms of ψ. For example,
the unitary dynamics |ψ⟩ 7→ U |ψ⟩ now becomes ψ 7→ UψU † = U |ψ⟩ ⟨ψ|U †, Born’s rule reads
Prψ(outcome x) = tr[ψPx] = tr[|ψ⟩ ⟨ψ|Px] = ⟨ψ|Px|ψ⟩, and the corresponding post-measurement
state is ψ′ = PxψPx/ tr[Pxψ].

What kind of object is ψ? It is positive semidefinite (which we write as ψ ≥ 0) and its trace
is tr[ψ] = tr[|ψ⟩⟨ψ|] = ⟨ψ|ψ⟩ = 1. In Chapter 7 we will see that these two properties define the
notion of a density operator, which is a useful and physical generalization of the notion of a
quantum state as introduced in Axiom B.

1.2 Measuring a qubit

For an ordinary bit, there is essentially only a single interesting measurement: Is the bit in state 0
or is it in state 1? For a quantum bit, however, Axiom D provides us with (infinitely) many
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inequivalent measurements that we can perform. For example, consider the three Pauli matrices

X =

(
0 1
1 0

)
= |+⟩ ⟨+| − |−⟩ ⟨−| ,

Y =

(
0 −i
i 0

)
= |L⟩ ⟨L| − |R⟩ ⟨R| ,

Z =

(
1 0
0 −1

)
= |0⟩ ⟨0| − |1⟩ ⟨1| ,

(1.4)

which are all Hermitian and have eigenvalues ±1 (so they are also unitary!). On the right-hand
side, we indicated their spectral decomposition in terms of the eigenvectors

|+⟩ = 1√
2
(|0⟩+ |1⟩), |−⟩ = 1√

2
(|0⟩ − |1⟩);

|L⟩ = 1√
2
(|0⟩+ i |1⟩), |R⟩ = 1√

2
(|0⟩ − i |1⟩);

as well as the computational basis vectors |0⟩ and |1⟩, which we have already met. The basis
vectors |+⟩ and |−⟩ make up the so-called Hadamard basis.

We briefly discuss some useful mathematical properties. First, the three Pauli matrices
together with the identity matrix form a basis of the real vector space of the Hermitian 2× 2
matrices. This means that any Hermitian operator onC2 can be written as O = αI+βX+γY +δZ
for some suitable α, β, γ, δ ∈ R. In fact, they form an orthogonal basis with respect to the inner
product (O,O′) := tr[O†O′] = tr[OO′]. The latter can be easily seen from the relations

X2 = Y 2 = Z2 = I

and

XY = iZ, Y Z = iX, ZX = iY, (1.5)

together with the fact that the Pauli matrices are traceless. Second, the Pauli matrices do not
commute. This follows from Eq. (1.5), which implies that [X,Y ] := XY − Y X = 2iZ and
similarly [Y,Z] = 2iX and [Z,X] = 2iY . In fact, the Pauli matrices anti-commute, meaning that
{X,Y } := XY + Y X = 0 and similarly {Y,Z} = {Z,X} = 0. In Exercise 1.3 you can show that
this implies that if we measure two Pauli matrices then the order in which we do so is important!

1.3 An uncertainty relation

Above we discussed that when we measure an observable then the states for which outcome is
deterministic are precisely the observable’s eigenvectors. But no pair of Pauli operators has a
joint eigenvector, as is clear from the spectral decompositions in Eq. (1.4). Accordingly, for every
state |ψ⟩ and any pair of Pauli operators, say X and Z, there is necessarily some uncertainty in
either the measurement outcome for X or in the measurement outcome for Z (or both).

To make this statement quantitative, we need a way to quantify the uncertainty in a
measurement outcome. To this end, we can use

⟨ψ|X|ψ⟩2 = (pX(1)− pX(−1))2 = (2pX(1)− 1)2 = (1− 2pX(−1))2, (1.6)

where pX(x) denotes the probability of outcome x when measuring the observable X in state |ψ⟩.
Clearly,

0 ≤ ⟨ψ|X|ψ⟩2 ≤ 1.
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Z-outcome
is certain

X-outcome
is certain

←− region forbidden by the
uncertainty principle

|⟨ψ|X|ψ⟩|

|⟨ψ|Z|ψ⟩|

0 1

1

Figure 1.1: An illustration of the region excluded by the uncertainty relation in Theorem 1.1.

When are these values saturated? The upper bound is saturated precisely when either pX(1) = 1
or pX(−1) = 1, that is, when the measurement outcome is certain. On the other hand, the
lower bound is saturated when pX(1) = pX(−1) = 1/2, which means that the measurement
outcome is completely uncertain (i.e., uniformly random). Thus, ⟨ψ|X|ψ⟩2 is a meaningful way
to quantify the certainty of the measurement outcome when the quantum bit is in state |ψ⟩ and
we measure the observable X. We can similarly quantify the certainty of an Z measurement
outcome by ⟨ψ|Z|ψ⟩2.

By adding the upper bound for X and for Z, we obtain that

⟨ψ|X|ψ⟩2 + ⟨ψ|Z|ψ⟩2 ≤ 2.

But note that this upper bound can never be saturated – for otherwise |ψ⟩ would be a state such
that both outcomes are certain, and we have argued that no such state exists. This means that
we must in fact have ⟨ψ|X|ψ⟩2 + ⟨ψ|Z|ψ⟩2 < 2. We will now show a significant strengthening.
Namely, we will show that the sum of the two “certainties” cannot even exceed one (see also
Fig. 1.1). Such a result is called an uncertainty relation.

Theorem 1.1 (Uncertainty relation for Pauli matrices). For every state |ψ⟩ ∈ C2, it holds that

⟨ψ|X|ψ⟩2 + ⟨ψ|Z|ψ⟩2 ≤ 1 < 2, (1.7)

and similarly for the other two pairs of Pauli matrices.

Proof. We prove the result by a brute-force calculation (in a couple of weeks we will be able to
give a more beautiful argument). Let |ψ⟩ = α |0⟩+ β |1⟩ ∈ C2 be an arbitrary unit vector. Then:

⟨ψ|X|ψ⟩2 + ⟨ψ|Z|ψ⟩2 =
(
ᾱβ + β̄α

)2
+
(
ᾱα− β̄β

)2
= ᾱ2β2 + α2β̄2 + |α|4 + |β|4

= (α2 + β2)(ᾱ2 + β̄2) =
∣∣α2 + β2

∣∣2,
and now the claim follows because |ψ⟩ is a unit vector and hence |α2 + β2| ≤ |α|2 + |β|2 = 1.

We close with one final remark on the interpretation of the above result. Similarly as in
Eq. (1.6), we can write

|⟨ψ|X|ψ⟩| = 2max{pX(1), pX(−1)} − 1 = 2pguess,X − 1,

where the quantity
pguess,X := max{pX(1), pX(−1)}
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is often called a guessing probability because it can be interpreted as the maximal probability of
correctly guessing the outcome of an X-measurement on the state |ψ⟩ in advance of performing
it (just go for the outcome that has the larger probability – there is no better way). Now observe
that, Eq. (1.7) implies that |⟨ψ|X|ψ⟩|+ |⟨ψ|Z|ψ⟩| ≤

√
2 using the Cauchy-Schwarz inequality.

We can write this as follows in terms of guessing probabilities:

pguess,X + pguess,Z ≤ 1 +
1√
2
< 2

This has a very transparent interpretation: it simply bounds the sum of the probabilities of
guessing the two measurement outcomes correctly.

Uncertainty relations of the above form are powerful since they make nontrivial predictions
for every quantum state (the upper bound is nontrivial and in fact independent of |ψ⟩). More
sophisticated uncertainty relations play an important role in quantum cryptography.

Exercises

1.1 Entanglement criterion: Let |Ψ⟩ =
∑

i,jMij |i⟩ ⊗ |j⟩ ∈ Cd ⊗Cd be an arbitrary quantum
state, expanded in the computational basis. Let M denote the d× d-matrix with entries Mij .

(a) Show that |Ψ⟩ = |α⟩ ⊗ |β⟩ for some |α⟩, |β⟩ ∈ Cd if and only if the rank of M is one.
(b) Conclude that the ebit state |Φ+⟩ defined in Eq. (1.1) is entangled.

1.2 Perfectly distinguishing quantum states: Show that if two quantum states |α⟩ and |β⟩
can be perfectly distinguished by an observable, then the states must be orthogonal: ⟨α|β⟩ = 0.

1.3 Order of meausurements: In this problem, you will see how the order of measurements
can matter in quantum mechanics. Let |ψ⟩ be an arbitrary state of a qubit.

(a) Imagine that we first measure the Pauli matrix X, with outcome x, and then the Pauli
matrix Z, with outcome z. Derive a formula for the joint probability, denoted p(x→ z),
of the two measurement outcomes.

(b) Derive a similar formula for the joint probability p(x ← z) corresponding to first
measuring Z and then X.

(c) Find a state |ψ⟩ such that p(x→ z) ̸= p(x← z).

In fact, this is a general feature of noncommutativity:

(d) Let O and O′ be two arbitrary observables. Show that the order of measurement is
irrelevant for every state precisely when [O,O′] = 0.

11
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Chapter 2

Entanglement as a resource, generalized
measurements

Last time we discussed the axioms of quantum mechanics and in particular the measurement of
observables. In particular, for any observable O with spectral decomposition O =

∑
x∈Ω xPx,

the probability of obtaining an outcome x ∈ Ω is given by Born’s rule, ⟨ψ|Px|ψ⟩ = ∥Px |ψ⟩∥2,
and the post-measurement state is given Px |ψ⟩ /∥Px |ψ⟩∥. Note that the preceding only makes
use of the collection of projections {Px}x∈Ω rather than the observable O itself. As discussed,
we have that P 2

x = P †
x = Px,

∑
x Px = I, and PxPy = δx,yPx for all x, y ∈ Ω. We will refer to

any collection of projections {Px}x∈Ω which these properties as a projective measurement. To
summarize:

O =
∑
x∈Ω

xPx ↔ {Px}x∈Ω.

While any projective measurement can be implemented by the measurement of an observable,
it is often useful to directly work with the projections. For example, we can then allow the
set of possible outcomes to be an arbitrary finite set Ω, not necessarily a subset of R (as one
would get for the eigenvalues of a Hermitian operator). This is just a simple relabeling, but often
convenient.

Before we launch into the main subject of today’s lecture, let us discuss one last axiom that
we did not spell out explicitly in the last lecture:

Axiom E (Operations on subsystems). Consider a quantum system composed of two subsystems,
with joint Hilbert space HAB = HA ⊗HB. If we want to perform a unitary UA on the subsystem
modeled by HA, then the appropriate unitary on the joint system is UA ⊗ IB. Similarly, if OA is
an observable on HA then the appropriate observable on the joint system is OA⊗IB. Equivalently,
if {PA,x}x∈Ω is a projective measurement on HA then the corresponding projective measurement
on HAB is {PA,x ⊗ IB}x∈Ω.

Note that the set of possible measurement outcomes remains the same (OA and OA ⊗ IB
have the same eigenvalues, albeit with different multiplicities), which is of course what we expect.
Above and throughout these notes we follow the common convention of labeling subsystems by
A (“Alice”), B (“Bob”), etc., and using subscripts to indicate the subsystems that mathematical
objects such as states or operators are associated with.

Let us consider an example. Take the ebit state from Eq. (1.1),

|Φ+
AB⟩ =

1√
2
(|00⟩+ |11⟩) = 1√

2

∑
i∈{0,1}

|i⟩A ⊗ |i⟩B .

13



Take an arbitrary basis {|ex⟩}x∈{0,1} of C2 and denote by PA,x := |ex⟩⟨ex|A the corresponding
projective measurement. If we apply this measurement on the first subsystem of the ebit, the
probability of outcomes according to the Born rule is given by

PrΦ+(outcome x) = ⟨Φ+
AB|PA,x ⊗ IB|Φ

+
AB⟩

=
1

2

∑
i,j

(⟨i|A ⊗ ⟨i|B)(PA,x ⊗ IB)(|j⟩A ⊗ |j⟩B)

=
1

2

∑
i

⟨iA|PA,x|jA⟩ ⟨iB|IB|jB⟩︸ ︷︷ ︸
=δi,j

=
1

2

∑
i

⟨iA|PA,x|iA⟩ =
1

2
tr[PA,x] =

1

2
, (2.1)

since the trace of a projection is equal to its rank. Thus, for any basis measurement we obtain
either outcome with 50% probability. This is quite interesting – even though the joint system is
in a well-defined state, measurement outcomes on the subsystem are completely uninformative.
Nevertheless, ebits can be a useful resource in communication scenarios, as we will discuss next.
This will also help us clarify the distinctions between bits and qubits.

2.1 Encoding bits into qubits: superdense coding

Consider a scenario where a sender – commonly called Alice – would like to send one out of M
possible classical messages to a receiver – commonly called Bob – by sending a single qubit. Here
is a sketch of a possible communication protocol :

What is the maximal number M of possible classical messages such that Bob can always perfectly
decode? This requires that the quantum states |ψm⟩ are all orthogonal, since only orthogonal
quantum states can be distinguished perfectly (i.e., with zero probability of error), as we discussed
last time. Thus, M ≤ 2, since no three states in a two-dimensional Hilbert space can be orthogonal.
Moreover, M = 2 can clearly be achieved – simply encode the two messages using any orthonormal
basis, such as the computational basis: m 7→ |ψm⟩ := |m⟩ for m ∈ {0, 1}. In summary, we found
that by sending over a single qubit we can perfectly communicate a single bit, but no more.

In fact, as a consequence of the so-called Holevo bound, it es even impossible to communicate
at an asymptotic rate higher than the trivial rate of one classical bit per qubit sent.

14



Superdense coding

We will now see that we can overcome this “no go” result by using entanglement. For this,
consider the following set of vectors in C2 ⊗C2:

|β0⟩ :=
1√
2
(|00⟩+ |11⟩) = (I ⊗ I) |Φ+⟩ ,

|β1⟩ :=
1√
2
(|00⟩ − |11⟩) = (Z ⊗ I) |Φ+⟩ ,

|β2⟩ :=
1√
2
(|10⟩+ |01⟩) = (X ⊗ I) |Φ+⟩ ,

|β3⟩ :=
1√
2
(|10⟩ − |01⟩) = (XZ ⊗ I) |Φ+⟩ .

(2.2)

Note that {|βm⟩}m∈{0,1,2,3} is an orthonormal basis, so the four states can be perfectly distin-
guished by a two-qubit measurement (namely the one with projections PAB,m = |βm⟩⟨βm|). This
is called the Bell basis of two qubits. Moreover, as indicated on the right, each of the four states
can be produced from the ebit by applying one out of the four unitaries I, Z,X,XZ on Alice’s
side. That is, we can write

|βm⟩AB = (UA,m ⊗ IB) |Φ+
AB⟩ ,

where UA,0 = I, UA,1 = Z, and so forth.
The preceding considerations suggest a communication protocol known as superdense coding .

It allows Alice to communicate two bits (i.e., one out of four messages) by sending a single qubit
to Bob, provided Alice and Bob already share an ebit [BW92]:

Protocol 2.1 (Superdense coding). The goal is for Alice to communicate a two-bit message m ∈
{0, 1, 2, 3} by sending one qubit to Bob.

1. Assume Alice and Bob share an ebit |Φ+
AB⟩.

2. To send m ∈ {0, 1, 2, 3}, Alice applies the unitary UA,m to her qubit and sends the qubit
over to Bob.

3. Upon receiving Alice’s qubit, Bob applies the projective measurement {PAB,m}m∈{0,1,2,3} =
{|βm⟩ ⟨βm|AB}m∈{0,1,2,3} on both qubits in his possession. The outcome is Alice’s message m.

The correctness of the protocol follows directly by the preceding discussion. Here is an illustration
of the protocol:

Of course, in order to establish the ebit between Alice and Bob, some form of prior (quantum)
communication must have occurred. The point however is the following: the ebit state used
in the protocol is completely independent (and can therefore be shared well in advance) of the
message m that is later sent in superdense coding. Thus, shared entanglement is a resource that,
once established, can be used for information processing tasks (such as the one we just saw:
communicating classical bits at twice the rate than what is possible without shared entanglement).
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2.2 Encoding qubits into bits, teleportation

Now we consider the “dual” problem to the above. Suppose Alice has a qubit in some arbitrary
unknown state |ψ⟩ in her possession (i.e., a quantum message!) that she would like to communicate
to Bob. Can she do so if she is only able to send over a classical bit or bitstring x?

x

classical|ψ⟩ ? |ψ⟩

This is clearly impossible, provided that they want to achieve this task perfectly. An easy way to
see this is that there are only finitely possible values for x, but infinitely many quantum states –
so there must be two distinct quantum states corresponding to the same bitstring x, which is a
contradiction.

A sharper argument is the following: Suppose that the protocol works for arbitrary qubit
states, so in particular for |0⟩ and |+⟩. Then the protocol must send over different bitstrings x
for these two states. Because any two bitstrings are perfectly distinguishable, this means that
we have found a way to perfectly distinguish two quantum states that are not orthogonal. As
discussed in the last lecture, this is impossible.1 In summary, we found that is not possible to
(perfectly) communicate an unknown qubit by sending any number of classical bits.

Teleportation

We will now see that this task becomes possible (and in fact two bits suffice) in the pres-
ence of shared entanglement. The protocol is called (quantum) teleportation and it looks as
follows [BBC+93]:

The protocol uses the same elements as above, but in a different order and on different subsystems.
Let us first write down the protocol more precisely and then see why it works:

Protocol 2.2 (Superdense coding). The goal is for Alice to communicate a qubit M in some
arbitrary unknown state by sending two bits to Bob.

1. Assume Alice and Bob share an ebit |Φ+
AB⟩.

2. Next, Alice measures {PMA,m}m∈{0,1,2,3} = {|βm⟩ ⟨βm|MA}m∈{0,1,2,3} on both qubits in her
possession, and sends the outcome m over to Bob.

3. Upon receiving m, Bob applies the unitary UB,m. Now the qubit B is in the same state
that M was in before the start of the protocol.

To verify that the protocol works as advertised we compute the joint state of all qubits after
Alice’s measurement if the message qubit M is initially in some arbitrary state |ψ⟩M and the

1In Exercise 1.2 you showed that two qubit states can be distinguished by an observable measurement only if
they are orthogonal. The same is true for arbitrary procedures. See Section 2.4 and Exercise 2.4.
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measurement outcome is m ∈ {0, 1, 2, 3}. Using the rules for measuring subsystems (Axioms D
and E), we should calculate:

(PMA,m ⊗ IB)
(
|ψM ⟩ ⊗ |Φ+

AB⟩
)
= (|βMA,m⟩ ⊗ IB)(⟨βMA,m| ⊗ IB)

(
|ψM ⟩ ⊗ |Φ+

AB⟩
)

= (|βMA,m⟩ ⊗ IB)
(
⟨Φ+

MA| ⊗ IB
)(
U †
M,m ⊗ IAB

)(
|ψM ⟩ ⊗ |Φ+

AB⟩
)

= (|βMA,m⟩ ⊗ IB)
(
⟨Φ+

MA| ⊗ IB
)(
IM ⊗ |Φ+

AB⟩
)︸ ︷︷ ︸U †

M,m |ψM ⟩ .

We now compute the underbraced expression:(
⟨Φ+

MA| ⊗ IB
)(
IM ⊗ |Φ+

AB⟩
)
=

1

2

∑
i,j

(⟨iM | ⊗ ⟨iA| ⊗ IB)(IM ⊗ |jA⟩ ⊗ |jB⟩)

=
1

2

∑
i,j

δi,j |jB⟩ ⟨iM | =
1

2
IM→B,

it is simply one half times IM→B, the identity map from qubit M to qubit B. Thus,

(PMA,m ⊗ IB)
(
|ψM ⟩ ⊗ |Φ+

AB⟩
)
=

1

2
|βMA,m⟩ ⊗ U †

B,m |ψB⟩ . (2.3)

Thus we see that the three qubits are in state |βm⟩MA ⊗ U
†
B,m |ψ⟩B right after the measurement.

In the last step of the protocol, Bob applies the unitary UB,m on his qubit to obtain the desired
state in his subsystem. Thus the teleportation protocols indeed works as advertised.

Equation (2.3) also shows that the four possible measurement outcomes m ∈ {0, 1, 2, 3}
occur with probability 1/4 each – irrespective of the state |ψ⟩M of the qubit that Alice wants to
teleport to Bob. This means that Alice’s measurement does not reveal any information about
the teleported state. In Chapter 17 we will discuss the decoupling principle, which implies that
this is both necessary and sufficient for a teleportation protocol to succeed.

What happens if the message qubit is entangled with another subsystem? In other words,
what does the teleportation protocol do when the initial state is

|ψ⟩MR ⊗ |Φ
+⟩AB ,

where R is an additional “reference” system? In Exercise 2.1 you can show that the result is
|ψ⟩BR ⊗ |βm⟩AB. Thus, Bob’s qubit is now entangled with R in the same way that previously
Alice’s qubit was entangled with E, which is exactly the desired behavior. This is also known as
entanglement swapping , because it can be used to establish entanglement between subsystems
that have not initially been entangled!

2.3 Resources for information processing tasks

We have now seen two examples where the maximally entangled state served as a resource that
enables information processing tasks. Similarly, the capability of sending a classical or a quantum
bit can be though of as resources. We can use some symbolic notation for this and denote the
former by [c→ c] and the latter by [q → q]. More generally, we write formal linear combinations
such as ebit + 2[c→ c] for combinations of these resources and use inequalities ≥ to compare
them. For example

[q → q] ≥ [c→ c]
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means that if we are able to send over a qubit then we can also use this to send a bit. That is, an
inequality such as the above means that the left-hand side resources are sufficient to implement
the right-hand side ones (allowing arbitrary local quantum operations on Alice and Bob’s side).

We can use this notation to conveniently summarize the discussion of the preceding sections.
Thus,

[q → q] ̸≥ 2[c→ c],

ebit + [q → q] ≥ 2[c→ c],

where the second inequality summarizes superdense coding. Likewise, the fact that no number n ∈
N of classical bits enables the capability of communicating qubits, while teleportation shows that
two bits suffice in the presence of a shared ebit can be summarized as

n[c→ c] ̸≥ [q → q],

ebit + 2[c→ c] ≥ [q → q].

In other words, classical and quantum communication become equivalent when shared entangle-
ment is free (up to a factor two):

2[c→ c] ≡ [q → q] (mod ebit)

Furthermore, it is clear that

[q → q] ≥ ebit,

because in order to establish a shared ebit, Alice can prepare it locally and send over one qubit
to Bob, and it is intuitive plausible (and we will prove later) that for any n ∈ N,

n ebit ̸≥ [q → q], n ebit ̸≥ [c→ c],

meaning that shared entanglement alone cannot be used to communicate.

2.4 POVM measurements

We conclude today’s lecture by returning to the subject of measurements. So far, we always used
observables or projective measurements

O =
∑
x∈Ω

xPx ↔ {Px}x∈Ω.

Are these the most general “measurement” procedures we can think of? Certainly not! For
example, even if our goal is to extract information about a quantum system A, we could introduce
an auxiliary system B that we initialize in some fixed state, say |0⟩B , and then apply an arbitrary
projective measurement {PAB,x}x∈Ω on the joint system, as illustrated below:

A

B

|ψ⟩
{PAB,x}

x

|0⟩
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What is the probability of an outcome x ∈ Ω? According to the Born rule, Eq. (1.2), it is

Pr|ψ⟩(outcome x) = (⟨ψA| ⊗ ⟨0B|)PAB,x(|ψA⟩ ⊗ |0B⟩)

= ⟨ψA|

(IA ⊗ ⟨0B|)PAB,x(IA ⊗ |0B⟩)︸ ︷︷ ︸
=:Qx

 |ψA⟩
where we have introduce new operators {Qx}x∈Ω on HA. These operators have the following
properties:

(a) Qx ≥ 0 for all x ∈ Ω (meaning they are positive semidefinite), and
(b)

∑
x∈ΩQx = IA.

We will call any collection of operators {Qx}x∈Ω satisfying properties (a) and (b) a POVM
with outcomes in Ω. POVM is short for positive-operator valued measure. The operators Qx
are called POVM elements. As we saw above, the probability of outcomes when performing a
POVM measurement takes the familiar form of the Born rule:

Pr(outcome x) = ⟨ψ|Qx|ψ⟩ . (2.4)

A POVM measurement that has two possible outcomes is called a binary POVM measurement,
and it has the form {Q, I −Q}, hence is specified by a single POVM element 0 ≤ Q ≤ I. Note
that the Qx need not be pairwise orthogonal, nor will they in general be projections! In particular,
it will no longer be true that we can rewrite ⟨ψ|Qx|ψ⟩ as ∥Qx |ψ⟩∥2.

Example 2.3. The four operators {12 |0⟩⟨0| ,
1
2 |1⟩⟨1| ,

1
2 |+⟩⟨+| ,

1
2 |−⟩⟨−|} make up a POVM with

four possible outcomes. Measuring it is the same as performing either a measurement in the
standard basis |0⟩ , |1⟩ or in the Hadamard basis|+⟩ , |−⟩, with 50% probability each.

Example 2.4. The operators {23 |0⟩⟨0| ,
2
3 |α

+⟩⟨α+| , 23 |α
−⟩⟨α−|}, where |α±⟩ = 1

2 |0⟩ ±
√
3
2 |1⟩,

make up a POVM with three outcomes. Indeed, it is easily verified that

2

3
|0⟩ ⟨0|+ 2

3
|α+⟩ ⟨α+|+ 2

3
|α−⟩ ⟨α−| = I.

Unlike the previous example, this POVM cannot be decomposed in an interesting way.

POVM measurements are the most general “memoryless” measurements (as we defined them,
with finitely many outcomes) provided by quantum mechanics. Importantly, any POVM can
be implemented by a projective measurement on a larger system. However, note that a POVM
only prescribes the probabilities of outcomes, but not the post-measurement state. In general,
there are many different ways of implementing a POVM by a projective measurement on a larger
system. For example, this can always be achieved as follows, as you can show in Exercise 2.3:

A

B

|ψ⟩
UAB

|0⟩ x

(2.5)

where B is a quantum system such that the Hilbert space HB has one basis vector |xB⟩ for each
possible measurement outcome x ∈ Ω, UAB is a unitary, and the measurement is simple the
corresponding basis measurement. We can think of this intuitively as coupling our quantum
system to a measurement apparatus, applying a unitary, and reading off the result by measuring
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the apparatus. Note that the last two steps can be combined into a single projective measurement
by taking PAB,x = U †

AB(IA ⊗ |x⟩⟨x|B)UAB.
We have just expanded our quantum information toolbox. While POVMs can always be

implemented by projective measurements on a larger system, they can sometimes outperform
projective measurements on the same system. In Exercise 2.2 you will see an example of this.
On the other hand, is it still true that only orthogonal states can be perfectly distinguished, as
you will show in Exercise 2.2.

Exercises

2.1 Entanglement swapping: Here you will discuss teleportation in a setting where the
message qubit can be entangled with another system.

(a) Let |ψ⟩MR be an arbitrary quantum state and consider the state |ψ⟩MR ⊗ |Φ+⟩AB.
Suppose that the M and A subsystems are in Alice’ laboratory and the B subsystem
is in Bob’s laboratory, so that they can apply the teleportation protocol as in class.
(Neither Alice nor Bob have access to the R subsystem.) Show that after completion of
the teleportation protocol, the state of the B and R subsystems is |ψ⟩BR.

(b) Now assume that we have three nodes: Alice, Bob, and Charlie. Alice and Bob start
out by sharing an ebit, and Bob and Charlie also start out by sharing an ebit. In
other words, the initial state is |Φ+⟩AB1

⊗ |Φ+⟩B2C
. Explain how the three parties can

establish an ebit between Alice and Charlie without sending any quantum information.
(c) Sketch how to extend the scheme in (b) to a linear chain of N nodes, assuming that

initially only neighboring nodes share ebits.

2.2 POVMs can outperform projective measurements [NC10, §2.2.6)]: Imagine a qubit
source that emits the two states |0⟩ and |+⟩ = (|0⟩+ |1⟩)/

√
2 with equal probability 1/2. As

these are not orthogonal, they cannot be distinguished perfectly (Exercises 1.2 and 2.4).

Your task is to design a measurement that distinguishes the two states as well as you can in
the following scenario. Your measurement is allowed to report one of three possible outcomes:
that the true state is |0⟩, that the true state is |+⟩, or that you are not sure (the measurement
has been inconclusive). However, it is not allowed to ever give a wrong answer ! We define the
success probability of such a measurement as the probability that you identify the true state.

(a) Show that for any projective measurements the success probability is at most 1/4.
(b) Find a POVM measurement that achieves a success probability strictly larger than 1/4.

2.3 Implementing POVM measurements: In this exercise, you will show that every POVM
measurement can be realized by a projective measurement on a larger system. Thus, let
{Qx}x∈Ω be an arbitrary POVM measurement on some Hilbert space HA.

(a) Let HB be a Hilbert space with one basis vector |x⟩B for each x ∈ Ω, and fix some
arbitrary x0 ∈ Ω. Show that the linear map

|ψ⟩A ⊗ |x0⟩B 7→
∑
x

√
Qx |ψ⟩A ⊗ |x⟩B (2.6)

is an isometry (an isometry is a linear map V that preserves inner products; equivalently,
V †V = I). Here,

√
Qx is the square root of the positive semidefinite operator Qx defined

by taking the square root of each eigenvalue while keeping the same eigenspaces.
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Any isometry from a subspace into a larger Hilbert space can be extended to a unitary
operator on the larger space. Thus there is a unitary UAB on HA ⊗HB that extends the
isometry (2.6).

(b) Use UAB to design a projective measurement {PAB,x} on the joint system such that

Qx = (IA ⊗ ⟨x0|B)PAB,x (IA ⊗ |x0⟩B)

for all outcomes x ∈ Ω.
(c) Conclude that any POVM measurement can be implemented as in (2.5).

2.4 Distinguishing quantum states: The trace distance between two (pure) quantum states |ϕ⟩
and |ψ⟩ can be defined as follows:

T (ϕ, ψ) = max
0≤Q≤I

(⟨ϕ|Q|ϕ⟩ − ⟨ψ|Q|ψ⟩) (2.7)

Here, 0 ≤ Q ≤ I means that both Q and I −Q are positive semidefinite operators.

(a) Imagine you are handed either |ϕ⟩ or |ψ⟩ with probability 1/2 each. Show that the
optimal probability of correctly identifying the state by a POVM measurement is given by

1

2
+

1

2
T (ϕ, ψ).

Without using this formula: Why can this probability never be smaller than 1/2?
(b) Conclude that only orthogonal states (i.e., ⟨ϕ|ψ⟩ = 0) can be distinguished perfectly.
(c) Show that the trace distance is a metric. That is, T (ϕ, ψ) = 0 if and only if |ϕ⟩ = eıθ |ψ⟩,

T (ϕ, ψ) = T (ψ, ϕ), and the triangle inequality T (ϕ, ψ) ≤ T (ϕ, χ) + T (χ, ψ) holds.

You will now derive an explicit formula for the trace distance. For this, consider the Hermitian
operator ∆ := |ϕ⟩⟨ϕ| − |ψ⟩⟨ψ| and its spectral decomposition ∆ =

∑
i λi |ei⟩⟨ei|.

(d) Show that the operator Q =
∑

λi>0 |ei⟩⟨ei| achieves the maximum in (2.7). Deduce
from this the following formulas for the trace distance:

T (ϕ, ψ) =
∑
λi>0

λi =
1

2

∑
i

|λi|.

(e) Conclude that the optimal probability of distinguishing the two states in (a) remains
unchanged if we restrict to projective measurements.

In class, we will also use the fidelity , which for pure states is simply the overlap |⟨ϕ|ψ⟩|:

(f) Show that trace distance and fidelity are related by the following formula:

T (ϕ, ψ) =
√
1− |⟨ϕ|ψ⟩|2.

Hint: Argue that it suffices to verify this formula in the qubit case and with one state
equal to |0⟩. Then use the formula from part (d).

Thus, states with fidelity close to one are almost indistinguishable by any measurement.
Note that the trace distance is a distance measure (it is ≈ 0 if the states are close), while the
fidelity is a similarity measure (it is ≈ 1 if the states are close).

2.5 Ambiguity of POVMs: Find two implementations of the same POVM, as in (2.5), that
produce different post-measurement states.
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Chapter 3

Quantum correlations, non-local games,
rigidity

In the past two lectures, we discussed some of the nonclassical features of quantum mechanics.
In particular, we explored superpositions (such as |+⟩ = (|0⟩+ |1⟩)/

√
2), entanglement (|Ψ⟩AB ̸=

|ψ⟩A ⊗ |ϕ⟩B), and non-commuting observables ([X,Y ] ̸= 0), and how these features impose both
challenges (e.g., non-orthogonal states cannot be distinguished perfectly) and opportunities (e.g.,
entanglement gives rise to superdense coding and teleportation).

Today, we will discuss another way of quantifying the distinction between classical and
quantum mechanics, namely through the correlations predicted by these theories. A modern
perspective of studying and comparing correlations is through the notions of a nonlocal game.
This is closely related to Bell inequalities, which you may remember from your quantum mechanics
class – but we will discuss some interesting new aspects that you may not have seen before.

3.1 The GHZ game

In a nonlocal game, we imagine that a number of collaborating players play against a referee.
The referee hands them questions and the players reply with appropriate answers that win them
the game. The players’ goal is to maximize their chance of winning. Before the game starts,
may agree upon a joint strategy – but then they are separated from each other and cannot
communicate while the game is being played (this can be ensured by the laws of special relativity).
The point then is the following: Since the players are constrained by the laws of physics, we can
design games where players utilizing a quantum strategy may have an advantage. This way of
reasoning about quantum correlations is eminently operational and quantitative, as we will see.
There are many well-known such games in the literature.

Here will discuss the Greenberger-Horne-Zeilinger (GHZ) game [Mer90, GHSZ90], but we
note that another well-known game is the two-player Clauser–Horne–Shimony–Holt (CHSH)
game. The GHZ game involves three players – Alice, Bob, and Charlie. Each receives as question
a bit x, y, z ∈ {0, 1} and their answers are likewise bits a, b, c ∈ {0, 1}. They win the game if the
sum of their answers modulo two is as in the following table:

x y z a⊕ b⊕ c
0 0 0 0
1 1 0 1
1 0 1 1
0 1 1 1
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Figure 3.1: Setup of the three-player GHZ game. The winning condition is that a⊕b⊕c = x∨y∨z.

Note that the referee only asks four out of eight possible question triples xyz. The winning
condition can be succinctly stated as follows: a ⊕ b ⊕ c = x ∨ y ∨ z. We write ⊕ for addition
modulo 2 and ∨ for the logical or. Figure 3.1 summarizes the setup.

3.2 Classical strategies

It is not hard to see that the GHZ game cannot be won if the players’ strategies are described by
a “local” and “realistic” theory. Here, “local” means that each player’s answer only depends on
their immediate surroundings, and “realistic” means that the strategy assigns a definite answer
to any possible question (that is, in advance of the question being asked). Thus in a local and
realistic theory we assume that

a = a(x), b = b(y), c = c(z).

When we say that the players may jointly agree on a strategy before the game is being played, we
mean that they may select “question-answer functions” a, b, c in a correlated way. For example,
when the players meet before the game is being played, they could toss a coin, resulting in
some random λ ∈ {0, 1}, and agree on the strategy a(x) = x ⊕ λ, b(y) = y ⊕ λ, c(z) = z ⊕ λ.
Mathematically, this means that the functions a, b, c can be correlated random variables. This
does not at all influence the argument that follows. Equivalently, we could say that λ is a “hidden
variable”, with some probability distribution pλ, and consider a = a(x, λ) as a deterministic
function of both the input and the hidden variable. You can explore this in Exercise 3.3. If
the players’ strategy can be described by classical mechanics then the above would provide an
adequate model. Thus, strategies of this form are usually referred to as local hidden variable
strategies or simply as classical strategies.

Suppose now for sake of finding a contradiction that Alice, Bob, and Charlie can play the
GHZ game perfectly using such a classical strategy. Then,

1 = 0⊕ 1⊕ 1⊕ 1

= (a(0)⊕ b(0)⊕ c(0))⊕ (a(1)⊕ b(1)⊕ c(0))⊕ (a(1)⊕ b(0)⊕ c(1))⊕ (a(0)⊕ b(1)⊕ c(1))
= 0.

The first equality is plainly true, the second holds since we assumed that the strategy is perfect,
and the last equality holds because a(x)⊕ a(x) ≡ 0 etc., whatever the value of a(x). This is a
contradiction! We conclude that there is no perfect classical winning strategy for the GHZ game.

This means that if the referee selects each possible question triple xyz with equal probabil-
ity 1/4, then the game can be won with probability at most

pwin,cl ≤ 3/4, (3.1)
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since the players must get at least one of the four possible answers wrong (note that which one
they get wrong might well be a random variable). This winning probability can be achieved by,
e.g., the trivial strategy a(x) = b(y) = c(z) ≡ 1. Equation (3.1) can be called a Bell inequality .
If you have seen this term before: do you see the connection?

3.3 Quantum strategies

In a quantum strategy , we imagine that the three players are described by quantum mechanics.
Thus they start out by sharing an arbitrary joint state |ψ⟩ABC ∈ HA ⊗HB ⊗HC , where HA is
the Hilbert space describing a quantum system in Alice’s possession, etc., and upon receiving
their questions x, y, z ∈ {0, 1} they will each measure corresponding observables Ax, By, Cz on
their respective Hilbert spaces. While it might not be immediately obvious, any classical strategy
is also a quantum strategy. You can show this in Exercise 3.3.

It will be convenient to take the eigenvalues (i.e., measurement outcomes) of the observables
to be in {±1} rather than in {0, 1}. That is, if Alice measure Ax and obtains outcome (−1)a, she
sends back answer a to the referee, and similarly for the other players. The condition that Ax has
eigenvalues ±1 can be succinctly stated as A2

x = I. In this case, the eigenvalues of the observable
Ax ⊗By ⊗Cz are (−1)a+b+c = (−1)a⊕b⊕c, and they correspond precisely to the sum modulo two
of the answers. In particular, a perfect quantum strategy for the GHZ game in which the players
win with 100% probability would consist of a quantum state |ψABC⟩ and observables {Ax}, {By},
{Cz} such that A2

x = B2
y = C2

z = I for all x, y, z and

(A0 ⊗B0 ⊗ C0) |ψABC⟩ = + |ψABC⟩ ,
(A1 ⊗B1 ⊗ C0) |ψABC⟩ = − |ψABC⟩ ,
(A1 ⊗B0 ⊗ C1) |ψABC⟩ = − |ψABC⟩ ,
(A0 ⊗B1 ⊗ C1) |ψABC⟩ = − |ψABC⟩

(3.2)

(recall from Chapter 1 that an observable always give the same outcome precisely when the state
is an eigenvector, with eigenvalue equal to that outcome). In Exercise 3.2 you can verify that,
more generally, the probability of winning the GHZ game (for a uniformly random choice of
questions xyz) can be written as:

pwin,q =
1

2
+

1

8
⟨ψABC |A0 ⊗B0 ⊗ C0 −A1 ⊗B1 ⊗ C0

−A1 ⊗B0 ⊗ C1 −A0 ⊗B1 ⊗ C1 |ψABC⟩ .
(3.3)

Remarkably, there is indeed a quantum strategy for the GHZ game that allows the players to
win the game with probability pwin,q = 1. We assume that the players share the three-qubit state

|ΓABC⟩ =
1

2
(|000⟩ − |110⟩ − |101⟩ − |011⟩) ∈ C2 ⊗C2 ⊗C2, (3.4)

where the first qubit is in Alice’s possession, the second in Bob’s, and the third in Charlie’s (see
also Exercise 3.1). Upon receiving x = 0, Alice measures the Pauli observable A0 = Z =

(
1 0
0 −1

)
on her qubit, while upon receiving x = 1 she measures the Pauli observable A1 = X = ( 0 1

1 0 ) .
Bob and Charlie perform exactly the same strategy on their qubits. To see that this quantum
strategy wins the GHZ game every single time, we only need to verify (3.2) for this strategy.
Indeed:

(Z ⊗ Z ⊗ Z) |ΓABC⟩ = |ΓABC⟩ ,
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(X ⊗X ⊗ Z) |ΓABC⟩ =
1

2
(|110⟩ − |000⟩ − (−1) |011⟩ − (−1) |101⟩) = − |ΓABC⟩ ,

and similarly (X ⊗ Z ⊗X) |ΓABC⟩ = (Z ⊗X ⊗X) |ΓABC⟩ = − |ΓABC⟩.
This shows that in a precise quantitative sense, quantum mechanics enables stronger non-local

correlations than what is possible using any local realistic classical theory.

A glance a device-independent quantum cryptography

When the three players perform the optimal strategy described above then not only do their
answers satisfy the winning condition but their answers a, b, c are in fact uniformly random,
subject only to the constraint that a⊕ b⊕ c must sum to the desired value x∨y∨ z. In particular,
a, b ∈ {0, 1} are two independent random bits. You can easily verify this by inspection. For
example, for x = y = z = 0, Alice, Bob, and Charlie each measure their local Z observable. The
eigenvectors are |abc⟩ and so it is clear from Eq. (3.4) that we obtain abc ∈ {000, 110, 101, 011}
with equal probability 1/4.

The randomness obtained in this way is also private. We will only discuss this in a very
heuristic sense and you should be sceptical of the details, but I would still like to give you an
impression. Suppose that apart from Alice, Bob, Charlie, there is also an evil eavesdropper
(Evan) who would like to learn about the random bits generated in this way. Their joint state can
be described by a pure state |ψABCE⟩. If Alice, Bob, and Charlie indeed share the state |ΓABC⟩
then it must be the case that |ψABCE⟩ = |ΓABC⟩ ⊗ |ψ⟩E (this holds not just for |ΓABC⟩ but for
any “pure” quantum state). We will see how to formalize this statement in Chapter 8. Thus, our
three protagonists are in a product state with Evan. It follows that the bits a and b are not just
random but also independent from the outcomes of any measurement that Evan can do on the E
system (Exercise 3.4). All this means that the referee can use the players’ answers to generate
private randomess: by locking lock Alice, Bob, and Charlie (best thought of as quantum devices)
into a laboratory, ensuring that the devices cannot communicate with each other and the outside
world, and interrogating them with questions, as in the following picture:

But of course there is a catch: the referee cannot trust Alice, Bob, and Charlie to actually play
the quantum strategy described above. So this observation might seem not very useful at first
glance. . .however, what if the optimal strategy for winning the GHZ game was actually unique?
In this case, the referee could test Alice, Bob, and Charlie with randomly selected questions and
check that they pass the test every time. After a while, the referee become increasingly confident
that the players are in fact able to win the GHZ game every time. But then, by uniqueness of the
winning strategy, the referee will in fact know the precise strategy that Alice, Bob, and Charlie
are pursuing! In other words, the referee would not have to put any trust into Alice, Bob, and
Charlie – they would rather prove themselves by winning the GHZ game every time.

This remarkable idea for generating private random bits was proposed by Colbeck [Col09].
Note that we need private random bits in the first place to generate the random questions – thus
this protocol proposes to achieve a task known as randomness expansion. Private random bits
cannot be generated without an initial seed of random bits. The argument sketched so far is of
course not rigorous at all: we do not take into account that Alice, Bob, Charlie may not behave
the same way every time we play the game, that they may have a (quantum) memory, we ignored
questions of robustness and finite statistics, etc. However, these challenges can be circumvented
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and secure randomness expansion protocols using completely untrusted devices do exist [AM16].
This general line of research is known as device-independent quantum cryptography , since it
does not rely on assumptions on the inner workings of the devices involved, but only on their
observed correlations [MY98].

3.4 Rigidity of the GHZ game

In the remainder of the lecture, we will show that the perfect winning strategy for the GHZ game
is indeed essentially unique, following Colbeck and Kent [CK11]. We say that the GHZ game is
rigid or that it is a self-test for the three-qubit quantum strategy described above.

Let us first observe that in our three-qubit strategy, the state |ΓABC⟩ is already uniquely
determined by the measurement operators. This follows from Eq. (3.2), because any +1-
eigenvector of Z ⊗ Z ⊗ Z is necessarily of the form α |000⟩+ β |110⟩+ γ |101⟩+ δ |011⟩, and the
other three conditions are only satisfied if α = −β = −γ = −δ. Thus we obtain (3.4) up to an
irrelevant overall phase.

Let us now consider a general quantum strategy given by a state |ψABC⟩ ∈ HA ⊗HB ⊗HC
and observables Ax, By, Cz with A2

x = I, B2
y = I, and C2

z = I such that Eq. (3.2) is satisfied.
Our approach to proving the rigidity theorem will be to uncover some hidden symmetries that
allow us to reduce to the case of three qubits:

Claim 3.1 (Informal). In any optimal strategy, the observables must anticommute: “{A0, A1} = 0,
{B0, B1} = 0, {C0, C1} = 0” (see below for fine-print).

We will prove this claim later, but let us see first see how anticommutativity allows us to
identify three qubits on which the observables Ax act like the Pauli operators from our optimal
quantum strategy.

How to find a qubit?

Consider, e.g., the pair of observables A0, A1. By assumption, they satisfy A2
0 = A2

1 = I as well
as {A0, A1} = 0. Since A2

0 = ±I, its eigenvalues are ±1. If |ϕ⟩ be an eigenvector of A0 with
eigenvalue ±1, i.e., A0 |ϕ⟩ = ± |ϕ⟩, then

A0A1 |ϕ⟩ = −A1A0 |ϕ⟩ = −A1(±1 |ϕ⟩) = ∓A1ϕ,

so A1 |ϕ⟩ is an eigenvector of A0 with eigenvalue ∓1. This means that the unitary A1 interchanges
the two eigenspaces of A0. In particular, both must have the same dimension, which we shall
denote by mA. Moreover, if {|e0,j⟩}j=1,...,mA is an orthonormal basis of the +1-eigenspace then
the vectors |e1,j⟩ := A1 |e0,j⟩ form an orthonormal basis of the −1-eigenspace. Thus, the unitary
defined by

UA : HA → C
2 ⊗CmA , |ei,j⟩ 7→ |i, j⟩ = |i⟩ ⊗ |j⟩ .

maps A0 and A1 to the Pauli Z and X operators acting on the right-hand side qubit:

UA0U
† = Z ⊗ I, UA1U

† = X ⊗ I.

Indeed,

UA0U
† |i, j⟩ = UA0 |ei,j⟩ = U(−1)i |ei,j⟩ = (−1)i |i, j⟩ = (Z ⊗ I) |i, j⟩

UA1U
† |i, j⟩ = UA1 |ei,j⟩ = U |ei⊕1,j⟩ = |i⊕ 1, j⟩ = (X ⊗ I) |i, j⟩
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To summarize: We found that HA ∼= C2⊗CmA such that A0, A1 act by Z⊗I, X⊗I, respectively.
The same argument works for Bob and Charlie’s pairs of observables. Thus the total Hilbert

space decomposes as

HA ⊗HB ⊗HC ∼=
(
C

2 ⊗C2 ⊗C2
)
⊗ (CmA ⊗CmB ⊗CmC )

and the measurement operators act as in the three-qubit solution on the first tensor factor. E.g.,

A0
∼= (Z ⊗ I ⊗ I)⊗ (I ⊗ I ⊗ I),

A1
∼= (X ⊗ I ⊗ I)⊗ (I ⊗ I ⊗ I),

etc. We discussed above that in the three-qubit solution the state is uniquely determined by the
measurement operators. Thus,

|ψABC⟩ ∼= |Γ⟩ ⊗ |γ′⟩ ,

where |Γ⟩ ∈ C2⊗C2⊗C2 is the three-qubit state from Eq. (3.4) and |γ′⟩ ∈ CmA ⊗CmB ⊗CmC

some auxiliary state (which is irrelevant because the observables do not act on it). This is the
desired rigidity result.

Anticommutations from correlations (proof of claim 3.1)

We still need to prove Theorem 3.1. We first rewrite the optimality condition in Eq. (3.2) as

A0 |ψ⟩ = +B0C0 |ψ⟩
A0 |ψ⟩ = −B1C1 |ψ⟩
A1 |ψ⟩ = −B1C0 |ψ⟩
A1 |ψ⟩ = −B0C1 |ψ⟩ .

Above we used that B2
y = I and C2

z = I, and we write A0 instead of A0 ⊗ IB ⊗ IC , etc., to make
the formulas easier to read. From the first two and last two equations, respectively,

A0 |ψ⟩ = +
1

2
(B0C0 −B1C1) |ψ⟩

A1 |ψ⟩ = −
1

2
(B1C0 +B0C1) |ψ⟩

Hence,

A0A1 |ψ⟩ = −
1

4
(B1C0 +B0C1) (B0C0 −B1C1) |ψ⟩ = −

1

4
(B1B0 − C0C1 + C1C0 −B0B1) |ψ⟩ ,

A1A0 |ψ⟩ = −
1

4
(B0C0 −B1C1) (B1C0 +B0C1) |ψ⟩ = −

1

4
(B0B1 − C1C0 + C0C1 −B1B0) |ψ⟩ ,

where we used that Ax, By, and Cz operators commute pairwise (recall that these are just
shorthand notation for Ax ⊗ I ⊗ I, I ⊗By ⊗ I, and I ⊗ I ⊗Cz). Note that the right-hand side is
the same for both equations! Thus we have proved:

{A0, A1} |ψ⟩ = 0

This is almost what we wanted to show!
How can we show that {A0, A1} = 0? This is in fact not exactly true – hence the “quotes”

in Theorem 3.1. But what is true is that {A0, A1} = 0 on a subspace H̃A of HA such that
|ψ⟩ABC ∈ H̃A ⊗HB ⊗HC . Indeed, we can expand

|ψ⟩ABC =
∑
i

si |ei⟩A ⊗ |fi⟩BC
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where the |ei⟩ and |fi⟩ are orthonormal and si > 0 – this is called the Schmidt decomposition
and we will discuss it in more detail in MW: ref . If there are dimHA terms then the |ei⟩ form
a basis of HA and so {A0, A1} |ψ⟩ = 0 implies that {A0, A1} = 0. Otherwise, we can restrict to
the subspace H̃A := span{|ei⟩A}. In the latter case, |ψ⟩ABC ∈ H̃A⊗HB ⊗HC , the operators Ax
are block diagonal with respect to H̃A ⊕ H̃⊥

a , and {A0, A1} = 0 on H̃A. We can proceed likewise
for By and Cz.

Statement of the rigidity theorem

What have we proved? In mathematical terms, we have established the following theorem:

Theorem 3.2 (Rigidity for the GHZ game). Consider any perfect quantum strategy for the GHZ
game given by a state |ψABC⟩ ∈ HA ⊗HB ⊗HC and ±1-valued observables {Ax}, {By}, {Cz}.
Then there are isometries VA : C2 ⊗CmA → HA, VB : C2 ⊗CmB → HB, VC : C2 ⊗CmC → HC ,
for suitable mA,mB,mC ∈ N, and a state |γ⟩ ∈ CmA ⊗CmB ⊗CmC such that

|ψ⟩ABC = (VA ⊗ VB ⊗ VC)(|Γ⟩ ⊗ |γ⟩)

and

V †
AA0VA = Z ⊗ I, V †

AA1VA = X ⊗ I,

V †
BB0VB = Z ⊗ I, V †

BB1VB = X ⊗ I,

V †
CC0VC = Z ⊗ I, V †

CC1VC = X ⊗ I.

In the coming weeks, we will revisit the techniques used above in a more systematic way. At
the end of the term you will be well equipped to write up a fully formal proof of Theorem 3.2.

Outlook

There are many interesting aspects of nonlocal games beyond what we discussed in this lecture.
For example, is the rigidity theorem robust, in the sense that if players win the GHZ game with
probability close to 100% then their strategy must be “close” to the three-qubit strategy in some
suitable sense? And how do the results that we discussed generalize to a setting where one
plays many repetitions of a game – in multiple rounds (sequentially) or even at the same time
(in parallel)? It is clear that if p is the optimal winning probability for a single instance then
for n repetitions the winning probability is at least pn , but perhaps one can do better by using
strategies that exploit correlations or entanglement in a clever way? All this is also related to
remarkable progress in quantum complexity theory, where multi-prover interactive protocols play
an important role, for example on the topics of delegating and verifying quantum computations
(see, e.g., [Vid20]).

Exercises

3.1 GHZ state: Find unitaries UA, UB, UC such that

(UA ⊗ UB ⊗ UC) |ΓABC⟩ =
1√
2
(|000⟩+ |111⟩).

Conclude that one can also win the GHZ game by using the right-hand side state, which is
known as the GHZ state. Why is this no contradiction to the rigidity theorem?
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3.2 Quantum strategies: Verify that the winning probability of a general quantum strategy for
the GHZ game, specified by a state |ψABC⟩ and observables Ax, By, Cz, is given by Eq. (3.3).

3.3 Classical strategies: When they meet before the game is started, they toss a biased coin.
Let π denote the probability that the coin comes up heads. Depending on the outcome of the
coin toss, which we denote by λ ∈ {heads,tails}, they use one of two possible deterministic
strategies aλ(x), bλ(y), cλ(z) to play the game.

(a) Suppose that Alice, Bob, and Charlie play the following randomized classical strategy:
Find a formula analogous to Eq. (3.3) for the winning probability pwin,cl of their strategy.

(b) In class we argued that the bound pwin,cl ≤ 3/4 also applies to randomized classical
strategies. Verify this explicitly for the strategy described above by using the formula
you derived in (a).

(c) Any classical strategy can be realized by a quantum strategy. Show this explicitly for the
randomized classical strategy described above, by constructing a quantum state |ψABC⟩
and observables Ax, By, Cz such that pwin,cl = pwin,q.

3.4 Product states yield independent measurement outcomes: Suppose that Alice and
Bob share a quantum state |ΨAB⟩ ∈ HA⊗HB . Alice performs a POVM measurement {QA,x}
and Bob a POVM measurement {RB,y}, so the joint probability of their outcomes is given by

p(x, y) = ⟨ΨAB|QA,x ⊗RB,y|ΨAB⟩ .

Show that if |ΨAB⟩ is a product state then the measurement outcomes of Alice and Bob are
independent random variables.

3.5 Symmetries of ebit and singlet: Recall the ebit state |Φ+
AB⟩ =

1√
2
(|00⟩+ |11⟩).

(a) Show that (M ⊗ I) |Φ+
AB⟩ = (I ⊗MT ) |Φ+

AB⟩ for every operator M .
(b) Deduce that (U ⊗ Ū) |Φ+

AB⟩ = |Φ
+
AB⟩ for every unitary U .

Now consider the singlet |Ψ−
AB⟩ :=

1√
2
(|10⟩ − |01⟩), which is another of the Bell states in Eq. (2.2).

(a) Show that (M ⊗M) |Ψ−
AB⟩ = det(M) |Ψ−

AB⟩ for every operator M .
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Chapter 4

Pure state estimation, symmetric
subspace

Suppose we are given a quantum system and we would like to learn about its quantum state. Is
there a measurement that gives us a classical description “ψ” of the state |ψ⟩? Clearly, this cannot
be done perfectly – for otherwise we could distinguish non-orthogonal states (by comparing their
classical descriptions), which we already know to be impossible.

How about if we are given not just one copy of a state, but in fact many copies |ψ⟩⊗n? Note
that if ψ ̸= ϕ are any two distinct states, whether orthogonal or not, then |⟨ψ|ϕ⟩| < 1 and thus(

⟨ψ|⊗n
) (
|ϕ⟩⊗n

)
= ⟨ψ⊗n|ϕ⊗n⟩ = ⟨ψ|ϕ⟩n → 0,

suggesting that we may be able to distinguish them arbitrarily well in the limit of n → ∞
copies. Of course, since |⟨ψ|ϕ⟩| can be arbitrarily close to one, we have to be careful. But when
|⟨ψ|ϕ⟩| ≈ 1 then the two states are almost indistinguishable by any measurement (Exercise 2.4),
and so we make only a small error by conflating them. In the above discussion it is good
to recall from Chapter 1 that two vectors |ψ⟩ and eıη |ψ⟩ that only differ by an overall phase
should be really thought of as the same quantum state (they cannot be distinguished by any
procedure). We also discussed that a good way of getting rid of this ambiguity is by considering
the projector ψ = |ψ⟩⟨ψ| in place of |ψ⟩. We will always use this convention: if |ψ⟩ is a unit
vector then ψ refers to the corresponding projector. We call ψ or |ψ⟩ a pure quantum state.1

Given the preceding discussion, it is plausible that we can achieve the following task (Fig. 4.1):

Problem 4.1 (Pure state estimation). Find a POVM {Qϕ̂}ϕ̂∈Ω on (Cd)⊗n, with possible outcomes
in the set Ω = {ϕ̂ = |ϕ̂⟩⟨ϕ̂|} of pure state on Cd, such that when we measure ϕ⊗n = |ϕ⟩⊗n ⟨ϕ|⊗n,
we obtain an outcome ϕ̂ that is “close” to ϕ (on average, or even with high probability).

We will quantify “closeness” using (the square of) the fidelity |⟨ϕ̂|ϕ⟩|, which you know from
Exercise 2.4. Of course how well we can do will depend on the number n of copies of the state
that we are given (the more the easier) and the Hilbert space dimension d (the larger the harder).

1The name suggests that there also exist a more general notion of a quantum state. Indeed we have already
seen the need for this. For example, if two qubits are in the ebit state, then states of the individual qubits cannot
be described by pure states (i.e., vectors in C2). Can you see how this follows from Eq. (2.1)? Next week, in
Chapter 7, we will introduce a more general notion of a quantum state which allows us to model this situation.
These are the so-called non-pure or mixed quantum states. In turn, such mixed states can always be described
in terms of subsystems of a larger quantum system that is in a pure state. Thus the situation is completely
parallel to the case of measurements, where we identified a larger class of measurements (POVMs) which could
nevertheless be reduced to ordinary projective measurements on a larger system. But for today we focus on the
important case of pure states. Later in this course we will learn how to solve the state estimation or “tomography”
problem for general (i.e., not necessarily pure) quantum states (Chapter 14).
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|ϕ⟩

{Qϕ̂}

... “ϕ̂ ”

|ϕ⟩

Figure 4.1: Illustration of pure state estimation (Theorem 4.1). We put the outcome “ϕ̂ ” in
quotes to emphasize that it is the classical description of a quantum state.

4.1 Continuous POVMs and uniform measure

In the statement of the pure state estimation problem, we are faced with a formal difficulty. The
set of outcomes Ω is infinite (even continuously so), but so far we have only discussed POVMs
with a finite number of possible outcomes. How can we generalize the concept of a POVM to an
infinite set of outcomes Ω (e.g., the set of all pure states, or the set of all real numbers R, . . .)?

For simplicity, let us assume that the space of outcomes Ω carries some natural measure dx.
(E.g., if Ω = R, we could choose the Lebesgue measure.) If w replace the

∑
by this measure, we

arrive at the following definition. A collection of operators {Qx}x∈Ω is a (continuous) POVM
with outcomes in the measure space Ω if

(a) Qx ≥ 0 for all x ∈ Ω, as before, and
(b)

∫
Ω dxQx = I.

Moreover, x 7→ Qx must be a measurable function. (We will always consider Borel measures, so
that measurability is ensured by continuity.) The corresponding version of the Born rule states
that the probability density of the outcomes, with respect to the measure dx, is given by

pψ(x) = ⟨ψ|Qx|ψ⟩ . (4.1)

Thus, probabilities and expectation values can be computed as follows:

Prψ(outcome ∈ S) =
∫
S
dx ⟨ψ|Qx|ψ⟩ ,

Eψ [f(x)] =

∫
Ω
dx ⟨ψ|Qx|ψ⟩ f(x). (4.2)

Remark 4.2. Given the above, we can assign to any (measurable) subset X ⊆ Ω an operator
Q(X) :=

∫
X dxQx. Then it holds that (i) Q(X) ≥ 0, (ii) Q(∅) = 0, and (iii) Q(

⋃
kXk) =∑

kQ(Xk) for any collection (Xk) of disjoint subsets of Ω. Thus, Q behaves just like a measure –
except that each Q(X) is a positive semidefinite operator rather than a nonnegative number.
This explains the term “positive semidefinite operator-valued measure (POVM)”.

Note also that POVMs with finitely many outcomes as discussed in Section 2.4 are a special
case of the above setup. Indeed, if Ω is discrete then we can always choose dx to be the counting
measure, which assigns to any subset S ⊆ Ω its cardinality. Then,

∫
dx =

∑
x and so we recognize

the postulates from Section 2.4.

Just like in the discrete case, any continuous POVM is physical in the sense that it can be
implemented using the laws of quantum mechanics. You might be concerned whether we need
infinite-dimensional Hilbert spaces in order to implement continuous POVMs. This is not so:
any continuous POVM on a finite-dimensional Hilbert space can be implemented in the following
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fashion: (i) sample λ from some suitable probability distribution, and (ii) measure a finite POVM
depending on λ. For the details, see [CDS07].

Returning to Theorem 4.1, we still need to specify which measure dϕ we would like to put
on the set of pure states. One desirable property is certainly that the measure should treat all
quantum states the same. That is, if we substitute |ψ⟩ 7→ U |ψ⟩ then we would like all expectation
values to remain unchanged: ∫

dψ f(ψ) =

∫
dψ f(UψU †) (4.3)

for any integrable function f and any unitary d× d-matrix U ∈ U(d). One can show that there
exists a unique probability measure dψ that is unitarily invariant in this sense. It is called the
uniform (probability) measure on the set of pure quantum states. Sometimes, it is also referred
to as the Haar measure, because it is induced by the Haar probability measure of the unitary
group.

Remark 4.3. Here are three other measures that are similarly determined by their symmetries:

• For any finite set S, there exists a unique probability measure that is invariant under
relabeling (permuting) the elements of S: the uniform probability distribution on S.

• There exists a unique measure on R that assigns unit measure to the unit interval [0, 1],
and which is invariant under arbitrary translations x 7→ x+ a: the Lebesgue measure.

• There exists a unique probability measure on the unit sphere S2 that is invariant under
rotations in SO(3). The same is true for higher-dimensional unit spheres.

We can think of the set of pure states as the unit sphere of Cd modulo overall phases in U(1).
Thus the third example makes it quite plausible that the uniform measure dψ on the set of pure
states should exist. In fact, the pure states of a qubit can be exactly identified with S2. This is
known as the Bloch sphere, see Exercise 7.3.

4.2 Symmetric subspace

In order to come up with a good POVM for estimating pure states, let us analyze the symmetries
inherent in this problem. A first observation is that n copies of a quantum state |ϕ⟩ ∈ Cd is
described by

|ϕ⟩⊗n = |ϕ⟩ ⊗ · · · ⊗ |ϕ⟩ ∈ (Cd)⊗n,

which is a state that is invariant under permuting the subsystems (copies).
To make this more precise, we can use the symmetric group on n symbols, which is denoted Sn.

Its elements are permutations π : {1, . . . , n} → {1, . . . , n}. Thus, Sn has n! elements. This is
indeed a group, meaning that products and inverses are again contained in Sn. Moreover, for any
permutation π ∈ Sn, we can define a corresponding operator Rπ on the Hilbert space (Cd)⊗n:

Rπ : (C
d)⊗n → (Cd)⊗n, Rπ |ψ1⟩ ⊗ . . .⊗ |ψn⟩ = |ψπ−1(1)⟩ ⊗ . . .⊗ |ψπ−1(n)⟩ (4.4)

Then it holds that
R1 = I and RτRπ = Rτπ. (4.5)

Indeed, the latter is guaranteed by our judicious use of inverses in Eq. (4.4):

RτRπ |ψ1⟩ ⊗ . . .⊗ |ψn⟩ = Rτ |ψπ−1(1)⟩ ⊗ . . .⊗ |ψπ−1(n)⟩
= Rτ |ψπ−1(1)⟩ ⊗ . . .⊗ |ψπ−1(n)⟩
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= |ψπ−1(τ−1(1))⟩ ⊗ . . .⊗ |ψπ−1(τ−1(n))⟩
= |ψ(τπ)−1(1)⟩ ⊗ . . .⊗ |ψ(τπ)−1(n)⟩
= Rτπ |ψ1⟩ ⊗ . . .⊗ |ψn⟩ .

Note thatEq. (4.5) also implies that R−1
π = Rπ−1 . An assignment π 7→ Rπ that satisfies Eq. (4.5)

is called a representation. Thus, the above defines a representation of the symmetric group Sn on
the vector space (Cd)⊗n. In fact, it is a unitary representation, which means that the operators Rπ
are all unitary: R†

π = R−1
π . Next week, we will more formally introduce the machinery of group

and representation theory, but today we would like to see why it is useful.

Let us return to the states |ϕ⟩⊗n. Clearly, they have the property that Rπ |ϕ⟩⊗n = |ϕ⟩⊗n for
all π ∈ Sn. Thus, the vectors |ϕ⟩⊗n are elements of the so-called symmetric subspace

Symn(Cd) =
{
|Φ⟩ ∈ (Cd)⊗n : Rπ |Φ⟩ = |Φ⟩

}
.

In physics this is also known as the n-particle sector of the d-mode bosonic Fock space. Given an
arbitrary vector |Ψ⟩ ∈ (Cd)⊗n, we can always symmetrize it to obtain a vector in the symmetric
subspace. To this end we define the symmetrizer:

Πn =
1

n!

∑
π∈Sn

Rπ (4.6)

Lemma 4.4. The operator Πn is the orthogonal projection onto Symn(Cd) ⊆ (Cd)⊗n.

Proof. It suffices to verify the following three properties:

(a) If |Ψ⟩ is in the symmetric subspace then Πn |Ψ⟩ = |Ψ⟩:

Πn |Ψ⟩ =
1

n!

∑
π∈Sn

Rπ |Ψ⟩ =
1

n!

∑
π∈Sn

|Ψ⟩ = |Ψ⟩ .

(b) For any vector |Ψ⟩ ∈ (Cd)⊗n, the vector |Φ⟩ := Πn |Ψ⟩ is in the symmetric subspace:

Rτ |Φ⟩ = RτΠn |Ψ⟩ = Rτ
1

n!

∑
π∈Sn

Rπ |Ψ⟩ =
1

n!

∑
π∈Sn

Rτπ |Ψ⟩ =
1

n!

∑
π′∈Sn

Rπ′ |Ψ⟩ = Πn |Ψ⟩ = |Φ⟩ .

Here we used that π 7→ π′ = τπ is a bijection.
(c) The operator Πn is Hermitian:

Π†
n =

1

n!

∑
π∈Sn

R†
π =

1

n!

∑
π∈Sn

R−1
π =

1

n!

∑
π∈Sn

Rπ−1 =
1

n!

∑
π∈Sn

Rπ = Πn.

Here we used that π 7→ π−1 is a bijection.

In particular, we can obtain a basis of the symmetric subspace as follows: Take the standard
basis |i⟩ of Cd, consider the corresponding product basis |i1, . . . , in⟩ on (Cd)⊗n, and apply the
symmetrizer. The resulting vectors do not depend on the order of the indices i1, . . . , in, but only
on the number of times

ti = #{ik = i}

each index i appears. The ti’s are called occupation numbers and the tuple (t0, . . . , td−1) is called
a type. Note that we have ti ≥ 0 and

∑d−1
i=0 ti = n. For distinct types we obtain orthogonal

34



vectors, and together these vectors span the symmetric subspace. If we normalize them, we
obtain the occupation number basis of Symn(Cd):

∥t0, . . . , td−1⟩⟩ :=

√
n!

t0! · · · td−1!
Πn
(
|0⟩⊗t0 ⊗ · · · ⊗ |d−1⟩⊗td−1

)
(4.7)

=

√
n!

t0! · · · td−1!
Πn |0, . . . , 0︸ ︷︷ ︸

t0 times

, . . . , d−1, . . . , d−1︸ ︷︷ ︸
td−1 times

⟩

In particular, the dimension of the symmetric subspace is equal to the number of types:

dimSymn(Cd) = trΠn =

(
n+ d− 1

n

)
=

(n+ d− 1)!

n! (d− 1)!
(4.8)

In mathematics, types are also known as weights and the basis is called a weight basis.

Example 4.5. In the case of Sym2(C2), there are three types: (2, 0), (1, 1), and (0, 2). The
corresponding occupation number basis consists of:

∥2, 0⟩⟩ = |00⟩ , ∥1, 1⟩⟩ = 1√
2
(|01⟩+ |10⟩) , ∥0, 2⟩⟩ = |11⟩ .

Note that we can complete this to a basis of C2 ⊗ C2 by adding the singlet state (|10⟩ −
|01⟩)/

√
2, which is antisymmetric. More generally, it is true that (Cd)⊗2 = Sym2(Cd)⊕

∧2(Cd),
where

∧n(Cd) denotes the antisymmetric subspace, which consists of the vectors |Φ⟩ ∈ (Cd)⊗n

that pick up a minus sign for any transposition (swap) in Sn.

A resolution of the identity for the symmetric subspace

We studied the symmetric subspace because is contains the states |ϕ⟩⊗n that describe the input
in our pure state estimation problem. Now, not every vector in Symn(Cd) is of this form – for
example, 1√

2
(|01⟩ + |10⟩) isn’t. Moreover, the states |ϕ⟩⊗n are not orthogonal. Nevertheless,

there is a very useful formula for projection onto the symmetric subspace in terms of these states:

Πn =

(
n+ d− 1

n

)∫
dϕ |ϕ⟩⊗n ⟨ϕ|⊗n , (4.9)

where the measure dϕ is the uniform probability distribution on the set of pure states that we
discussed towards the end of Section 4.1. We will prove this formula in Section 5.4 by using
representation theory, see Theorem 5.7.

One way of interpreting the formula is that the vectors |ψ⟩⊗n form an “overcomplete basis”
of the symmetric subspace. To see what this means, take an arbitrary vector |Φ⟩ ∈ Symn(Cd).
Then, using Eq. (4.9), we find that

|Φ⟩ = Πn |Φ⟩ =
(
d+ n− 1

n

)∫
dϕ |ϕ⟩⊗n ⟨ϕ⊗n|Φ⟩ =

∫
dϕ cϕ(Φ) |ϕ⟩⊗n ,

where cϕ(Φ) =
(
d+n−1
n

)
⟨ϕ⊗n|Φ⟩. This shows that any vector in the symmetric subspace can be

written as a linear combination of the vectors |ψ⟩⊗n. See also Theorem 13.6.
Another way to interpret Eq. (4.9) is that it shows that

Qϕ̂ =

(
d+ n− 1

n

)
|ϕ̂⟩⊗n ⟨ϕ̂|⊗n (4.10)

defines a continuous POVM on the symmetric subspace, with outcomes in the set of pure
states! Indeed, we clearly have Qϕ̂ ≥ 0 and Eq. (4.9) precisely asserts that

∫
dϕ̂Qϕ̂ = Πn.

The POVM {Qϕ̂}ϕ̂∈Ω is called the uniform POVM and will now use it to solve the pure-state
estimation problem.
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4.3 Pure state estimation

Recall the goal of pure state estimation: we are given n copies of some arbitrary unknown
quantum state |ϕ⟩, and we want to obtain an estimate ϕ̂ of the pure state ϕ = |ϕ⟩⟨ϕ|. We will
now show that the uniform POVM defined in Eq. (4.10) gives us a good estimate, following [Chi10,
BCHW16, Har13]. As discussed, we will consider the fidelity squared, |⟨ϕ|ϕ̂⟩|2 between estimate
and true state.

Thus, suppose we are in state ϕ⊗n and suppose that we measure the unform POVM {Qϕ̂}.
Then then the expected value of |⟨ϕ|ϕ̂⟩|2k (which is a random quantity because the measurement
outcome ϕ̂ is random) can be computed as follows using Eq. (4.2):

E
[
|⟨ϕ|ϕ̂⟩|2

]
=

∫
dϕ̂ ⟨ϕ⊗n|Qϕ̂|ϕ

⊗n⟩ |⟨ϕ|ϕ̂⟩|2

=

(
n+ d− 1

n

)∫
dϕ̂ |⟨ϕ|ϕ̂⟩|2(n+1)

=

(
n+ d− 1

n

)∫
dϕ̂ ⟨ϕ|⊗(n+1) |ϕ̂⟩⊗(n+1) ⟨ϕ̂|⊗(n+1) |ϕ⟩⊗(n+1)

=

(
n+ d− 1

n

)
⟨ϕ⊗(n+1)|

(∫
dϕ̂ |ϕ̂⟩⊗(n+1) ⟨ϕ̂|⊗(n+1)

)
|ϕ⊗(n+1)⟩

=

(
n+ d− 1

n

)(
n+ d

n+ 1

)−1

⟨ϕ⊗(n+1)|Πn+1|ϕ⊗(n+1)⟩

=

(
n+ d− 1

n

)(
n+ d

n+ 1

)−1

=
n+ 1

n+ d
= 1− d− 1

n+ d
≥ 1− d

n
. (4.11)

The second equality follows from the definition of the POVM elements Qϕ̂ in Eq. (4.10). To get
the fifth equality, use formula for the projector onto the symmetric subspace Symn+1(Cd). The
rest are some simple algebraic manipulations and inequalities that I explained in class.

Success! We have shown that the uniform POVM (4.10) gives us a good estimate of the
unknown pure state ϕ as soon as n≫ d. We can also turn the above result into a statement about
the trace distance T (ϕ, ϕ̂), which was introduced in Exercise 2.4. Using the relation between
fidelity and trace distance that you proved in part (f) of this exercise, it follows that the uniform
POVM achieves an average error as quantified by the trace distance of

E
[
T (ϕ, ϕ̂)

]
= E

[√
1− |⟨ϕ|ϕ̂⟩|2

]
≤
√
E
[
1− |⟨ϕ|ϕ̂⟩|2

]
≤
√
d

n
.

The first inequality is Jensen’s inequality for the concave square root function, and the second
inequality is Eq. (4.11). This result is quite intuitive: On the one hand, ϕ has O(d) degrees of
freedoms (more precisely, 2(d− 1) real degrees of freedom, if we fix the norm to one and ignore
the phase), so we might expect that n = Θ(d) copies are necessary and hopefully also sufficient if
our goal is to estimate ϕ to constant precision. On the other hand, if the dimension is fixed then
we might expect that using n copies we can estimate each component to precision O(1/

√
n) (in

fact, this should be true even using a more naive procedure that measures one copy of ϕ at a
time). The bound that we derived agrees with both intuitions.

Exercises

4.1 Higher moments: Here you can generalize the proof given above from |⟨ϕ|ϕ̂⟩|2 to |⟨ϕ|ϕ̂⟩|2k.
This is a more stringent similarity measure, because |⟨ϕ|ϕ̂⟩|2k < |⟨ϕ|ϕ̂⟩|2 unless ϕ = ϕ̂.
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(a) Show that for any n, k, d ∈ N, it holds that
(
n+d−1
n

)(
n+k+d−1
n+k

)−1 ≥ 1− kd
n .

(b) Generalize the proof given above to show that if we measure the uniform POVM {Qϕ̂}
in the state ϕ⊗n, then the expected value of |⟨ϕ|ϕ̂⟩|2k is at least 1− kd

n .
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Chapter 5

Introduction to representation theory,
Schur’s lemma

Last time we discussed the problem of estimating an unknown pure state ϕ = |ϕ⟩⟨ϕ| given
n copies of it, i.e., ϕ⊗n = |ϕ⟩⊗n ⟨ϕ|⊗n. We approached this by focusing on the permutation
symmetry of the input state |ϕ⟩⊗n, which means that it is an element of the symmetric subspace
Symn(Cd), and we discussed that the set of all such states forms an ‘overcomplete basis’ of this
subspace. By the latter we meant more formally that we have the following formula (Eq. (4.9):

Πn =

(
n+ d− 1

n

)∫
dϕ |ϕ⟩⊗n ⟨ϕ|⊗n︸ ︷︷ ︸

=:Π′
n

. (5.1)

We used this formula to show that the uniform POVM {Qϕ̂ :=
(
n+d−1
n

)
|ϕ̂⟩⊗n ⟨ϕ̂|⊗n} gives a

good solution to the quantum state estimation problem. Yet, we still need to prove Eq. (5.1).
One way of going about this would be to explicitly perform the integration. See, e.g., [Har13]
for this approach. We will proceed differently and show that the symmetries of the left- and
right-hand side expressions alone imply that the equality Πn = Π′

n must hold.
What are these symmetries? Of course, both operators are invariant under permutations, but

in fact there is an additional symmetry that we have not yet discussed: the two operators also
commute with U⊗n, for any d× d unitary matrix U . This can be seen rather directly from the
definitions. For the left-hand side, which we recall was defined as Πn = 1

n!

∑
π∈Sn

Rπ in Eq. (4.6),
this follows because we have [U⊗n, Rπ] = 0 (we will prove this intuitive fact below). For the
right-hand side, which we denoted by Π′

n, we can use the fact (see Eq. (4.3)) that the integral is
invariant under substituting |ϕ⟩ 7→ U |ϕ⟩ or, equivalently, ϕ 7→ UϕU †, to obtain

U⊗nΠ′
n(U

†)⊗n =

(
n+ d− 1

n

)∫
dϕ (U |ϕ⟩)⊗n(⟨ϕ|U †)⊗n

=

(
n+ d− 1

n

)∫
dϕ |ϕ⟩⊗n ⟨ϕ|⊗n = Π′

n. (5.2)

To see that this symmetry indeed suffices will take us some work, since we first have to develop
the required mathematics. But this time will be well-invested, since we will be able to leverage
the techniques that we will learn throughout the remainder of this course!

A good reference for the material that follows is Part 1 of the textbook [Ser77].
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5.1 Groups and representations

Recall that a group G is given by a set together with an (associative) multiplication operation
(sometimes denoted · but mostly omitted), an identity element (denoted 1 unless there is a more
concrete notation), and inverses (denoted g−1).

For example, the symmetric group Sn consists of all permutations of the set {1, . . . , n}. That
is, its elements are the bijective functions from this set to itself. The multiplication law is given
by the composition of functions, i.e., given two permutations π and and τ , we define πτ by
(πτ)(x) := π(τ(x)) for x ∈ {1, . . . , n}. The identity element is the identity map, and inverses
are given by the usual inverse of functions. We already know this group from Section 4.2. Any
permutation can be written as a product of so-called transpositions x ↔ y. These are the
permutations that swap two elements x ≠ y, while leaving all other elements fixed. We say that
the symmetric group is generated by the transpositions.

Example 5.1. The symmetric group S3 has 3! = 6 elements: the identity map, three transposi-
tions (1↔ 2, 1↔ 3, 2↔ 3), and two cyclic permutations (“3-cycles”), which send 1→ 2→ 3→ 1
and 1→ 3→ 2→ 1, respectively. The latter can be written as products of two transpositions.

Another well-known example is the unitary group U(d), which consists of all unitary d× d-
matrices. The multiplication operation is matrix multiplication, the identity matrix serves as the
identity element, and inverses are given by the matrix inverses. The unitary group contains a
useful subgroup, the special unitary group, which consists of the matrices with unit determinant:

SU(d) = {U ∈ U(d)| det(U) = 1}

Note that any unitary matrix U ∈ U(d) can be written as the product of a complex number with
absolute value (which we can think of as a multiple of an identity matrix) and a matrix in SU(d):

U = det(U)1/d︸ ︷︷ ︸
∈U(1)

U

det(U)1/d︸ ︷︷ ︸
∈SU(d)

, (5.3)

We can summarize this as U(d) = U(1) SU(d).
We can use groups to describe symmetries by letting them act on mathematical objects. For

example, we can let groups operate on vector spaces and ask that the action of each group element
is described by a linear map. This is called a representation. Formally, a (unitary) representation
of a group G consists of a Hilbert space H (which for us will always be finite-dimensional), along
with unitary operators {Rg}g∈G on H, such that

Rgh = RgRh (∀g, h ∈ G).

This requirement also implies that R1 = I (the identity element acts as the identity operator)
and that R†

g = R−1
g = Rg−1 for all g ∈ G. In other words, a unitary representation is nothing but

a group homomorphism G→ U(H). We will typically omit the term “unitary” because those are
the only representations that we will meet in this course. In fact, we will usually speak of “the
representation H”, omitting both the operators Rg, as long as they are clear from the context.
We also say that G “acts” on H.

Example 5.2. As discussed in Chapter 4, the n qudit Hilbert space H = (Cd)⊗n is a represen-
tation of the symmetric group Sn, with operators (Eq. (4.4))

Rπ : (C
d)⊗n → (Cd)⊗n, Rπ |ψ1⟩ ⊗ . . .⊗ |ψn⟩ = |ψπ−1(1)⟩ ⊗ . . .⊗ |ψπ−1(n)⟩ (π ∈ Sn).
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In fact, it is also a representation of the unitary group U(d), with operators

TU : (Cd)⊗n → (Cd)⊗n, TU = U⊗n (U ∈ U(d)).

Importantly, both actions commute: we have

[Rπ, TU ] = 0 (5.4)

for all π ∈ Sn and U ∈ U(d). While intuitively clear, we verify this by a short calculation:

U⊗nRπ(|ψ1⟩ ⊗ . . .⊗ |ψn⟩) =
(
U |ψπ−1(1)⟩

)
⊗ . . .⊗

(
U |ψπ−1(n)⟩

)
= Rπ (U |ψ1⟩)⊗ . . .⊗ (U |ψn⟩) = RπU

⊗n |ψ1⟩ ⊗ . . .⊗ |ψn⟩ .

The symmetrizer Πn commutes with both group actions. For the action of U(d), this is a direct
consequence of Eq. (5.4), while for the action of Sn it is even true that RπΠn = ΠnRπ = Πn for
all π ∈ Sn, as follows from Theorem 4.4.

The Hilbert space (Cd)⊗n is actually a rather complicated representation that we still need
to understand better. First we discuss some simpler examples which we can fully work out by
hand.

Example 5.3. Let us study some representations of the group S3, which discussed in Theorem 5.1.
Like any group, S3 has a one-dimensional trivial representation:

H = C, Rπ |0⟩ = |0⟩ (π ∈ Sn)

where |0⟩ denotes the standard basis vector of C. This is a maximally boring representation,
because every group element π ∈ Sn acts by the (1× 1) identity matrix.

The sign representation is also one-dimensional but more interesting:

H = C, Rπ |0⟩ = sign(π) |0⟩ (π ∈ Sn)

Here, we use the sign of a permutation, which is uniquely defined by the following two properties:
sign(x ↔ y) = −1 for any transposition x ← y, and sign(πτ) = sign(π) sign(τ) for any two
permutations π, τ ∈ Sn. Thus, sign(π) = +1 if π can be written as a product of an even number
of swaps, and otherwise sign(π) = −1. Thus, R1↔2 = −I, while R1→2→3→1 = I.

Finally, we will let S3 act on three-dimensional vectors imply by permuting the vectors’
coordinates. This is sometimes called the defining representation:

H = C3 = {α |1⟩+ β |2⟩+ β |3⟩ : α, β, γ ∈ C} = {

αβ
γ

}, Rπ |j⟩ = |π(j)⟩ . (5.5)

Here, unusually, we denote the standard basis by |1⟩ , |2⟩ , |3⟩ rather than |0⟩ , |1⟩ , |2⟩ to get cleaner
formulas. Note that Rπ is simply the permutation matrix associated with the permutation π ∈ Sn.
For example:

R2↔3

αβ
γ

 =

αγ
β

 or R2↔3 =

1 0 0
0 0 1
0 1 0


Note that this matrix has determinant −1. It is not hard to see that the sign of a permutation is
always equal to the determinant of its representation matrix.

All three representations discussed in the example naturally generalize to Sn.
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5.2 Decomposing representations

A useful way to analyze a representation is to decompose it into smaller building blocks. To
this end we call K ⊆ H an invariant subspace of a representation H if it is a linear subspace
such that for every vector |ψ⟩ ∈ K and for every group element g ∈ G, it holds that Rg |ψ⟩ ∈ K.
In short: K is an invariant subspace if RgK ⊆ K for all g ∈ G. Every representation has two
invariant subspaces which are not particularly interesting: {0} and H itself. We say that K is
nontrivial if it is neither of the two. An irreducible representation or irrep is one that has no
nontrivial invariant subspaces.

If an representation is not irreducible, then it can be decomposed into smaller building blocks.
To see this, note that if K ⊆ H is an invariant subspace, so is its orthogonal complement K⊥.
Indeed, if |ϕ⟩ ∈ K⊥ then, for all |ψ⟩ ∈ K,

⟨ψ|Rg|ϕ⟩ = ⟨R†
gψ|ϕ⟩ = ⟨Rg−1ψ|ϕ⟩ = 0,

since Rg−1 |ψ⟩ ∈ K. This shows that Rg |ϕ⟩ ∈ K⊥. As a consequence, the operators Rg are block
diagonal with respect to the orthogonal direct sum H = K ⊕K⊥:

Rg = RK
g ⊕RK⊥

g =

[
RK
g 0

0 RK⊥
g

]
, (5.6)

where RH
g denotes the restriction of Rg to the subspace K and RK⊥

g the restriction to K⊥. Note
that the operators {R̃g} turn K into a representation of G; likewise for {R̂g} and K⊥. Thus
we have successfully decomposed the given representation H into “smaller” representations K
and K⊥. If K is a nontrivial invariant subspace then these are indeed of lower dimension. In this
case, we can separately apply the same reasoning to K and K⊥ and continue this process until
we arrive at a decomposition

H = H1 ⊕H2 ⊕ . . .⊕Hm (5.7)

that cannot be refined further, so we must have that each Hk is irreducible. Note that in our
construction the summands are orthogonal to each other. We conclude that every representation
can be written as an orthogonal direct sum of irreducible representations. Moreover, we observe
that a representation is irreducible if and only if it is indecomposable.

Example 5.4. Any one-dimensional representation is irreducible. In particular, the trivial
and the sign representation in Theorem 5.3 are irreducible. However, the three-dimensional
representation defined in (5.5) is not irreducible, since

K = {α |1⟩+ β |2⟩+ β |3⟩ : α+ β + γ = 0} = {

αβ
γ

 |α+ β + γ = 0}, (5.8)

is a two-dimensional (and hence nontrivial) invariant subspace. In Exercise 5.1 you can show
that it is irreducible. Its orthogonal complement is given by

K⊥ = C(|1⟩+ |2⟩+ |3⟩) = {

αα
α

}.
As it is one-dimensional, it must be irreducible. Note that Rπ acts just like in (is “equivalent” to)
the trivial representation: we have Rπ(|1⟩+ |2⟩+ |3⟩) = |1⟩+ |2⟩+ |3⟩ for all π ∈ S3.
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Example 5.5 (Symmetric subspace). As discussed in Theorem 5.2, we can think of (Cd)⊗n as a
representation of both Sn and U(d).

From the perspective of the symmetric group Sn, Symn(Cd) is clearly an invariant subspace.
However, any subspace W ⊆ Symn(Cd) is also a invariant, since Rπ |ϕ⟩ = |ϕ⟩ holds for every
vector |ϕ⟩ ∈ Symn(Cd). Thus, Symn(Cd) is not irreducible as a representation of Sn.

From the perspective of the unitary group U(d), the symmetric subspace is also an invariant
subspace. This follows from Eq. (5.4). Indeed, for every |Φ⟩ ∈ Symn(Cd) and U ∈ U(d), we have

Rπ(U
⊗n |Φ⟩) = U⊗n(Rπ |Φ⟩) = U⊗n |Φ⟩ ,

and thus U⊗n |Φ⟩ ∈ Symn(Cd). In fact, Symn(Cd) is an irreducible representation of U(d)! We
will prove this carefully in Chapter 6.

Composing representations

So far we decomposed representations, but we can also assemble larger representations from
smaller building blocks. For example, given two representations K and L of the same group G,
with operators {RK

g }g∈G and {RL
g }g∈G, their direct sum is naturally a representation of G. Simply

define

H := K ⊕ L, Rg := RK
g ⊕RL

g (g ∈ G)

We can also turn their tensor product into a representation:

H := K ⊗ L, Rg := RK
g ⊗RL

g (g ∈ G)

In particular we may apply this in the case that L = Cm is a trivial representation of dimension m
(i.e., RL

g = Im). It is instructive to observe that

K ⊗Cm ∼= K ⊕ . . .⊕K︸ ︷︷ ︸
m times

, RK
g ⊗ Im ∼=


RK
g

RK
g

. . .

RK
g

 .
Thus, K ⊗Cm is a convenient way of denoting a direct sum of m copies of K.

5.3 Intertwiners and Schur’s lemma

An important part of representation theory is to classify all representations of a given group G.
But how can we compare different representations? In particular, when can we say that two
representations are “the same”?

Suppose that H and H′ are two representations of a group G, with operators {Rg}g∈G
and {R′

g}g∈G, respectively. A linear map J : H → H′ is called an intertwiner if it holds that

JRg = R′
gJ (∀g ∈ G).

In other words, it “intertwines” the group action, hence the name. Such maps are also called
equivariant. When the intertwiner is invertible, we can write the above as

JRgJ
−1 = R′

g (∀g ∈ G).
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Thus, a single isomorphism (change of coordinates) J relates all the representation opera-
tors (matrices). An invertible intertwiner is called an equivalence, and we say that the two
representations H and H′ are equivalent. We denote this by H ∼= H′ or {Rg} ∼= {R′

g}.
An important tool in this context is known as Schur’s Lemma. Roughly speaking, it states

that there no nontrivial intertwiners between inequivalent irreps, while for equivalent ones they
are unique (up to a scalar). The formal statement is as follows:

Lemma 5.6 (Schur). Let J : H → H′ be an intertwiner between irreducible representations.

(a) Either J is invertible (and hence H ∼= H′) or J = 0.
(b) If the two representations are the same (i.e., H = H′ and Rg = R′

g for all g ∈ G), then J
is proportional to the identity operator: J = λI for some λ ∈ C.

Proof. (a) Suppose that J ≠ 0, so we want to show that J is invertible. Both ker(J) and
ran(J) are invariant subspaces, as is readily verified. Since H is irreducible, this means
that either ker(J) = {0} or ker(J) = H. We must have the former, since otherwise J = 0
– so J is injective. Similarly, since H′ is irreducible, either ran(J) = {0} or ran(J) = H′.
We must have the latter, since otherwise J = 0 – thus, J is also surjective. We conclude
that J is invertible.

(b) Any operator J : H → H on a complex vector space has an eigenvalue λ ∈ C. Thus,
ker(J − λI) ̸= {0}. But if J is an intertwiner then so is J − λI (here we use that Rg = R′

g).
Thus ker(J − λI) is an invariant subspace other than {0}. Since H is irreducible, we must
therefore have that ker(J − λI) = H. We conclude that J = λI.

In part (a) of Schur’s lemma, J is in fact proportional to a unitary. You can show this in
Exercise 5.3. As a consequence, if H ∼= H′ then there always exists a unitary intertwiner. This is
true even if the representations are not irreducible.

5.4 Proof of the integral formula

We can use Schur’s lemma to prove the integral formula for the symmetrizer. The key idea
is the following: the right-hand side of Eq. (5.1) is an operator on the symmetric subspace.
and Eq. (5.2) shows that it is an intertwiner with respect to the action of U(d). Because the
symmetric subspace is irreducible (as we claimed in Theorem 5.5 and will prove in Chapter 6),
part (b) of Schur’s Lemma implies at once that the operator must be proportional to Πn. Finally
one can verify proportionality constant is one by comparing the trace.

We now give the formal statement and a more detailed proof.

Theorem 5.7. The symmetrizer Πn = 1
n!

∑
π∈Sn

Rπ is equal to

Πn =

(
n+ d− 1

n

)∫
dϕ |ϕ⟩⊗n ⟨ϕ|⊗n ,

where dϕ denotes the uniform probability measure on the space of pure states {ϕ} = {|ϕ⟩⟨ϕ|}.

Proof. As in Eq. (5.1), we denote

Π′
n :=

(
n+ d− 1

n

)∫
dϕ |ϕ⟩⊗n ⟨ϕ|⊗n .

Thus our goal is to prove that Πn = Π′
n. Both the left-hand side are operators on (Cd)⊗n. Let

us abbreviate the symmetric subspace by H = Symn(Cd), so that (Cd)⊗n = H ⊕ H⊥. If we
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decompose the operators accordingly, we see that they are block diagonal:

Πn =

[
I 0
0 0

]
and Π′

n =

[
J 0
0 0

]
,

where I is the identity operator on H and J is some operator on H that we still need to
characterize. The former holds because Πn is the orthogonal projection onto the symmetric
subspace (Theorem 4.4), so it acts as the identity on H and sends all orthogonal vectors to zero.
The latter holds because every |ϕ⟩⊗n is in the symmetric subspace, so Π′

n maps any vector into
the symmetric subspace and it maps vectors orthogonal to the symmetric subspace to zero. We
can also decompose the group action. Since H is an invariant subspace for the action of U(d), so
is H⊥, and hence

U⊗n =

[
TH
U 0

0 TH⊥
U

]
,

with TH
U the restriction of U⊗n to the symmetric subspace and TH⊥

U the restriction to the
orthogonal complement. In Eq. (5.2) we proved that the unitary invariance of the measure dϕ
implies that

U⊗nΠ′
n = Π′

nU
⊗n.

Using the block diagonal form of the operators, it follows that

TH
U J = JTH

U .

In other words, J is an intertwiner with respect to the action of U(d) on the symmetric
subspace H = Symn(Cd)! Because the latter is irreducible, part (b) of Schur’s lemma shows that
J must be proportional to I, i.e., there exists λ ∈ C such that J = λIH and therefore

Π′
n = λΠn.

It remains to prove that λ = 1. To this end, we compute the trace of the two operators:

trΠn = dimSymn(Cd) =

(
n+ d− 1

n

)
trΠ′

n =

(
n+ d− 1

n

)∫
dϕ tr

[
|ϕ⟩⊗n ⟨ϕ|⊗n

]︸ ︷︷ ︸
=⟨ϕ⊗n|ϕ⊗n⟩=1

=

(
n+ d− 1

n

)
.

The former is Eq. (4.8), and in the latter we used that dϕ is a probability measure, so that
∫
dϕ = 1.

Thus, trΠ′
n = trΠn ̸= 0 and hence we must have λ = 1, concluding the proof.

Remark 5.8. Above we used Schur’s lemma for the action of U(d), but the symmetric subspace
is also an invariant subspace for the action of Sn. This means that we have both

U⊗n =

[
TH
U 0

0 TH⊥
U

]
and Rπ =

[
RH
π 0

0 RH⊥
π

]
.

Since [TU , Rπ] = 0, it follows that [TH
U , R

H
π ] = 0 for every U ∈ U(d) and π ∈ Sn, that is,

TH
U R

H
π = RH

π T
H
U .
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In other words, the operators RH
π are intertwiners with respect to the action of U(d), and the

operators TH
U are intertwiners with respect to the action of Sn. What can we learn by applying

Schur’s lemma in this situation?
Because the symmetric subspace is an irreducible U(d)-representation, part (b) of Schur’s

lemma implies that each Rπ ∝ I. But indeed, each Rπ acts trivially on the symmetric subspace
(by its very definition), so Rπ = I and the preceding is in complete agreement with what we
already know.

What if we consider the symmetric subspace as an Sn-representation? It is clearly not the case
that the operators TH

U are proportional to the identity. For example, we have X⊗2 |0, 0⟩ = |1, 1⟩,
which is not proportional to |0, 0⟩. Fortunately this is no contradiction: Schur’s lemma is
simply not applicable in this case, because the symmetric subspace is not irreducible as an Sn-
representation. In fact, as just discussed, Sn acts trivially on the symmetric subspace and
hence H decomposes into

(
n+d−1
n

)
many one-dimensional trivial representations of Sn.

Exercises

5.1 Irreps of S3: Show that the representation defined in Eq. (5.8) is irreducible.

5.2 Defining representation of SU(2): The group U(2) acts on H = C2 by matrix-vector-
multiplication. This is called the defining representation of U(2). Show that it is irreducible,
even if we only act by SU(2).

5.3 Schur’s lemma and unitarity: Here you can strengthen part (a) of Schur’s lemma.

(a) Show that if J is an intertwiner then so is J†.
(b) Conclude that any intertwiner between irreducible representation must be proportional

to a unitary operator.

5.4 Schur’s lemma: Let G be a commutative group (i.e., gh = hg for all g, h ∈ G). Show that
any irreducible representation of G is necessarily one-dimensional.

5.5 Spectral theorem: Let M be a Hermitian operator acting on a Hilbert space H.

(a) Show that Rt := eıMt defines a unitary representation of the group G = R (with the
addition of real numbers as the group “multiplication”) on H.

(b) Decompose H into irreducible representations.
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Chapter 6

Irreducibility of the symmetric subspace

In last lecture’s introduction to representation theory, we states that the symmetric sub-
space Symn(Cd) is an irreducible representation of U(d). We used this irreducibility, together
with Schur’s lemma, to prove the important integral formula in Eq. (4.9) for the projector onto the
symmetric subspace. This week we will show that the symmetric subspace is indeed irreducible.

In the lecture we will only discuss the case of qubits (d = 2), but the proof strategy generalizes
directly and you can prove the general case in Exercise 6.1. To start, recall from Eq. (4.7) that
Symn(C2) has the following occupation number basis:

∥n, 0⟩⟩ = |0 . . . 0︸ ︷︷ ︸
n times

⟩ = |0⟩⊗n

∥n− 1, 1⟩⟩ = 1√
n

| 0 . . . 0︸ ︷︷ ︸
n− 1 times

1⟩+ | 0 . . . 0︸ ︷︷ ︸
n− 2 times

1 0⟩+ · · ·+ |1 0 . . . 0︸ ︷︷ ︸
n− 1 times

⟩


...

∥m,n−m⟩⟩ =

√
n!

m!(n−m)!

|0 . . . 0︸ ︷︷ ︸
m times

1 . . . 1︸ ︷︷ ︸
n−m times

⟩ + permutations


...

∥0, n⟩⟩ = |1 . . . 1︸ ︷︷ ︸
n times

⟩ = |1⟩⊗n

(6.1)

Thus, the m-th basis vector ∥m,n−m⟩⟩ is given by the uniform superposition of all bitstrings
with m zeros and n−m ones. Because m ∈ {0, . . . , n}, there are n+ 1 such basis vectors.

To prove that Symn(C2) is irreducible, we will show that the following holds for any invariant
subspace K ⊆ Symn(C2):

(a) if K ̸= {0}, then K must contain at least one of the basis vectors ∥m,n−m⟩⟩, and
(b) if K contains one such basis vector, then it must in fact contain all these basis vectors.

Clearly, (a) and (b) together imply that either K = {0} or K = Symn(C2). In other words,
Symn(C2) has no nontrivial invariant subspaces and hence it is irreducible.
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6.1 Lie algebra and representation

To realize the above strategy, we need to get a better handle on invariant subspaces. Recall that
an invariant subspace K ⊆ Symn(C2) is one such that

TUK ⊆ K (6.2)

for every U ∈ U(2), where TU = U⊗n is the action of U(2). This is a nonlinear condition in U ,
which makes it rather difficult to work with.

We will now learn a powerful technique that can be used to linearize it. We will discuss this
next for general U(d). The basic idea is that the exponential map sums to products. Because we
deal with matrices, we need the matrix exponential, which for an arbitrary complex matrix A is
defined, e.g., via the usual power series eA :=

∑∞
k=0

Ak

k! . The matrix exponential has a number
of useful properties:

Lemma 6.1. For any d× d-matrix A, it holds that

(a) (eA)† = e(A
†).

(b) eA⊗I = eA ⊗ I.
(c) If [A,B] = 0 commute, then eAeB = eA+B.
(d) UeAU † = eUAU

†.
(e) det(eA) = etr[A].

All but the last can be directly verified from the power series. If M is Hermitian, with
spectral decomposition M =

∑
imi |ϕi⟩⟨ϕi|, then we can compute its exponential simply by

exponentiating each eigenvalue, i.e., eM =
∑

i e
ai |ϕi⟩⟨ϕi|. So at least in this case, the last

property is also easy to see. This observation also shows that any unitary matrix can be written
as the matrix exponential of an anti -Hermitian matrix:

U(d) =
{
eM |M † = −M

}
=
{
eıH | H† = H

}
.

This generalizes the fact that any complex number of absolute value one can be written in the
form eıθ for some θ ∈ R. To understand what this means geometrically, let M = −M † and
consider Us = esM , which is a curve of unitaries parameterized by s ∈ R. If we take the derivative
at s = 0, we get

U̇0 = ∂s=0 Us = ∂s=0 e
sM =M, (6.3)

so we can think of M as the tangent vector of the curve at U0 = I, as in the following picture:

Mathematically, we have used the fact that the group U(d) is a Lie group, which means that it
is not just a set but a smooth manifold and all group operations are smooth. The tangent space
of a Lie group at the identity is a Lie algebra, meaning that it is closed under commutators [·, ·].
The Lie algebra of G = U(d) consists of the anti-Hermitian matrices (Eq. (6.3)). Indeed, if M
and N are anti-Hermitian then so is [M,N ], because

[M,N ]† = (MN −NM)† = N †M † −M †N † = NM −MN = −[M,N ].
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If we have an representation {RU} of U(d) on some Hilbert space H then (assuming it is
smooth), we can also consider the corresponding curve RUs . Then the “infinitesimal action” in
direction M is by definition

rM := ∂s=0RUs = ∂s=0ResM .

Because derivatives depend linearly on the tangent vector, the mapping M 7→ rM is a linear
map from the anti-Hermitian d× d-matrices to the anti-Hermitian operators on H. It is called
the Lie algebra representation on H, or the action of the Lie algebra. We will always use upper
case letters for Lie group actions and the corresponding lower case letters for the associated Lie
algebra actions. In fact, because the group action is on a complex vector space, the map M 7→ rM
is well-defined not just for anti-Hermitian matrices but for general complex d× d-matrices M .

Example 6.2. To convince you of these facts, let us specialize to the action TU = U⊗n of U(d)
on H = (Cd)⊗n. Here, the Lie algebra action is

tM = ∂s=0

(
esM

)⊗n
= ∂s=0

(
esM ⊗ · · · ⊗ esM

)
=M ⊗ I ⊗ · · · ⊗ I + · · ·+ I ⊗ · · · ⊗ I ⊗M,

using the product rule. It is plain that M 7→ tM is well-defined for arbitrary complex d × d
matrices, and a complex linear map to the space of linear operators on H. This can also be seen
as follows: the formula for the group action makes sense not just for the unitary group but for
the entire the general linear group GL(d), which consists of all invertible n× n-matrices, and the
Lie algebra of the latter consists of all complex d× d-matrices.

In fact, one can also recover the Lie group action from the Lie algebra action. We will not
need this in today’s lecture, but it is still useful to know.

Lemma 6.3. It holds that ReM = erM for every M = −M †.

Proof. The curve Vs := esrM is the unique solution to the first-order ordinary differential
equation V̇s = VsrM with initial condition V0 = I. It suffices to show that Ws := ResM solves the
same ODE. Indeed, observe that W0 = RI = I and for any s we have

Ẇs = ∂ε=0Ws+ε = ∂ε=0Re(s+ε)M

= ∂ε=0ResMeεM

= ∂ε=0ResMReεM

= ResM∂ε=0ReεM =WsrM ,

where the second line follows from (c) of Theorem 6.1, the third uses the fact that RUU ′ = RURU ′

for any representation, and the fourth line holds because ResM is a linear operator and hence
commutes with the derivative. This concludes the proof.

We can now state the key observation that “linearizes” Eq. (6.2).

Lemma 6.4. Let H be a representation of U(d) and let K ⊆ H be a subspace. Then the following
are equivalent:

(a) K is an invariant subspace for the action of U(d). That is, RUK ⊆ K for all U ∈ U(d).
(b) K is an invariant subspace for the action of the Lie algebra of U(d). That is, rMK ⊆ K for

all anti-Hermitian d× d-matrices M .
(c) K is an invariant subspace for the action of the Lie algebra of GL(d). That is, rMK ⊆ K

for all complex d× d-matrices M .
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Proof. To prove that (a) implies (b), let M = −M †. Then, for every |ϕ⟩ ∈ K we have that

rM |ϕ⟩ = ∂s=0ResM |ϕ⟩︸ ︷︷ ︸
∈K

.

The underbraced expression is in K because esM ∈ U(d) and we assumed that K is an invariant
subspace for the U(d)-action. Since any (finite-dimensional) vector subspace is closed, the limit of
a sequence of vectors in K must again be in K. As the derivative is a limit of difference quotients,
each of which is in K, the claim follows.

Next, we note that (b) implies (c) by linearity. Indeed, we can write any matrix M in the
form M = A+ ıB, with A and B anti-Hermitian. Then it holds that rM = rA + ırB and the
claim follows.

Finally we claim that (c) implies (a). Take any U ∈ U(d) and write it as U = eM for some
anti-Hermitian M . Using Theorem 6.3, we find that, for every |ϕ⟩ ∈ K,

RU |ϕ⟩ = ReM |ϕ⟩ = erM |ϕ⟩ =
∞∑
k=0

rkM
k!
|ϕ⟩︸ ︷︷ ︸

∈K

.

The underbraced expression is in K because rMK ⊆ K by assumption. As above it follows that
the limit RU |ϕ⟩ ∈ K is also in K.

Note that it suffices to check conditions (b) and (c) for operators M in a basis of the Lie
algebra.

6.2 Proof of irreducibility of the symmetric subspace

We now use the above techniques to prove that the symmetric subspace Symn(C2) is an irreducible
representation of U(2). To implement the plan outlined at the beginning of the lecture, we will
use the Lie algebra action, which in the present setting is given by

tM =M ⊗ I ⊗ · · · ⊗ I + . . .+ I ⊗ · · · ⊗ I ⊗M,

as discussed in Theorem 6.2. The following examples show that this is a useful idea:

• If M = Z =
(
1 0
0 −1

)
is the Pauli Z matrix, then tZ acts as follows on the computational

basis of (C2)⊗n:

tZ |i1, . . . , in⟩ =
n∑
k=1

(−1)ik |i1, . . . , in⟩ =
(
#0’s−#1’s

)
|i1, . . . , in⟩ ,

where #0’s denotes the number of zeros in i1, . . . , in ∈ {0, 1} and #1’s the number of ones.
As a consequence:

tZ∥m,n−m⟩⟩ = (m− (n−m))∥m,n−m⟩⟩ = (2m− n)∥m,n−m⟩⟩. (6.4)

Thus, tZ preserves the symmetric subspace and the occuption number basis vectors are
precisely the eigenvectors of tZ on that space. As m ∈ {0, 1, . . . , n}, the corresponding
eigenvalues are {−n,−n+ 2, . . . , n− 2, n}. Since these eigenvalues are all distinct, we can
recover ∥m,n−m⟩⟩ as the unique (up to phase) eigenvector of tZ .
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• If M+ = |0⟩⟨1| = ( 0 1
0 0 ), then tM+ acts on a computational basis vector |i1, . . . , in⟩ by

inspecting each bit ik: if ik = 1, then it is replaced by 0, and otherwise the term does not
contribute. For example,

tM+ |011⟩ = (M+ ⊗ I ⊗ I) |011⟩+ (I ⊗M+ ⊗ I) |011⟩+ (I ⊗ I ⊗M+) |011⟩
= |001⟩+ |010⟩ .

As a consequence, it is not hard to verify that, for m < n,

tM+∥m,n−m⟩⟩ =
√
(n−m)(m+ 1) ∥m+ 1, n− (m+ 1)⟩⟩.

The precise proportionality constant is not important. What matters is that the propor-
tionality constant is nonzero unless m = n, in which case the basis vector is annihilated.

• If M− = |1⟩⟨0| = ( 0 0
1 0 ) then, similarly, one can see that

tM−∥m,n−m⟩⟩ =
√
m(n−m+ 1) ∥m− 1, n−m+ 1⟩⟩. (6.5)

The proportionality constant is nonzero unless m = 0, in which case the basis vector is
annihilated.

Thus we have found three operators, tZ , tM+ , and tM− , that allow us to identify and transition
between the basis vectors ∥m,n−m⟩⟩ for m ∈ {0, 1, . . . , n}. Because these operators also preserve
invariant subspaces (Theorem 6.4), this allows us to implement the proof strategy outlined above.

Theorem 6.5. The symmetric subspace Symn(C2) is an irreducible representation of U(2).

Proof. Let K ⊆ Symn(C2) be an arbitrary invariant subspace. We first use that tZK ⊆ K by
Theorem 6.4. Because tZ is a Hermitian operator (also when restricted to the subspace), it follows
that K must be spanned by eigenvectors of tZ . Now, K ⊆ Symn(C2), and we saw in Eq. (6.4)
that the eigenspaces of tZ are all one-dimensional and spanned by the occupation number basis
vectors. Thus, if K ̸= {0}, then K must contain at least one of the basis vectors ∥m,n−m⟩⟩ for
some m ∈ {0, 1, . . . , n}. On the other hand, we also know that tM±K ⊆ K, again by Theorem 6.4.
It follows that if K ̸= {0} then in fact all basis vectors ∥m,n −m⟩⟩ are contained in K, and
hence K = Symn(C2). This concludes the proof that the symmetric subspace is irreducible when
regarded as a representation of the group U(2).

Corollary 6.6. A subspace H ⊆ (C2)⊗n is an irreducible representation of SU(2) if and only if it
is an irreducible representation of U(2). In particular, Symn(C2) is an irreducible representation
of SU(2).

Proof. Any unitary U ∈ U(2) can be writen in the form U = λU ′, where λ ∈ U(1) and U ′ ∈ SU(2)
(Eq. (5.3)). Because TU = λnTU ′ , it is clear that a subspace of (C2)⊗n is invariant for the action
of U(2) if and only if is invariant for the action of SU(2).

Example 6.7. One particular consequence is that the decomposition from Theorem 4.5,

C
2 ⊗C2 = Sym2(C2)⊕

∧2
(C2)

is a decomposition into irreducible representations of U(2). Indeed, we just proved that Sym2(C2)
is irreducible, and because

∧2(C2) is one-dimensional (it is spanned by singlet state) the latter
must also be irreducible. More generally, it holds that

C
d ⊗Cd = Sym2(Cd)⊕

∧d
(Cd)

is a decomposition into irreducible subspaces.
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Exercises

6.1 Irreducibility: Show that Symn(Cd) is an irreducible representation of U(d) and of SU(d),
by generalizing the argument given above.

6.2 Dual representations: This problem introduces the concept of a dual representation. To
start, consider a representation H of some group G, with operators {Rg}. Let H∗ denote
the dual Hilbert space, whose elements are “bras” ⟨ϕ|, and define operators R∗

g on H∗ by
R∗
g ⟨ϕ| := ⟨ϕ|Rg−1 .

(a) Verify that the operators {R∗
g} turn H∗ into a representation of G. This representation

is called the dual representation of H.

(b) Show that H is irreducible if and only if H∗ is irreducible.

A representation H is called self-dual if H∗ ∼= H.

(c) Show that Symk(C2) is a self-dual representation of SU(2). We will see next week that
this implies that any representation of SU(2) is self-dual.

(d) Is Symk(C2) self-dual as a representation of U(2)?
(e) Show that any representation of S3 is self-dual.

More generally, all representations of Sn are self-dual. However, for d > 2, most representa-
tions of SU(d) are not self-dual.
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Chapter 7

Mixed states, partial traces,
purifications

This week we will introduce another bit of formalism to our toolbox by generalizing from “pure”
states, which are described by unit vectors in a Hilbert space, to so-called “mixed” quantum
states, which are mathematically described by certain operators called “density operators”. This
allows us to describe classical randomness and ensembles of quantum states, as well as the state
of subsystems when the global quantum state is entangled (cf. the footnote on p. 31).

7.1 Mixed states and density operators

Suppose that we have a device – a quantum information source – that emits certain different
quantum states |ψi⟩ with probabilities pi each, where i ranges in some index set I:

We call {pi, |ψi⟩}i∈I an ensemble of quantum states. Note that the states |ψi⟩ need not be
orthogonal. If we measure the (random) state emitted by the source by some POVM {Qx}x∈Ω,
the probability of outcomes is given by

Pr(outcome x) =
∑
i

pi Prψi
(outcome x)

=
∑
i

pi ⟨ψi|Qx|ψi⟩

=
∑
i

pi tr
[
|ψi⟩⟨ψi|Qx

]
= tr

[(∑
i

pi |ψx⟩⟨ψx|︸ ︷︷ ︸
=:ρ

)
Qx

]
,

where we first used the fact that state |ψi⟩ is emitted with probability pi and then the Born
rule. Thus a single operator ρ captures all information that is needed to compute probabilities
of outcomes! We can interpret ρ as the average state of the ensemble, or as the average state
emitted by the source. Observe that

(a) ρ ≥ 0, i.e., it is positive semidefinite, and
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(b) tr ρ = 1.

We call an operator satisfying these two properties a density operator or density matrix – or
simply a quantum state on H. From here onwards we will always use the term “quantum state”
in to mean density operators. As we just computed, the Born rule for density operators reads

Prρ(outcome x) = tr[ρQx].

Likewise, the expectation value of an observable O can be computed in terms of the density
operator:

Eρ[outcome] = tr[ρO].

In Exercise 7.1 you can also verify that if we perform a projective measurement {Px}x∈Ω on a
quantum system in state ρ and we obtain some outcome x, then the post-measurement state
should be described by the density operator

ρ′ =
PxρPx
tr[ρPx]

If the ensemble consists of a only one state |ψ⟩ then ρ = |ψ⟩⟨ψ|. In this case we call ρ (or |ψ⟩)
a pure state; it is also common to write ψ = |ψ⟩⟨ψ|. We already know this terminology and
notation from the previous lectures. We record some useful characterizations of pure states:

Lemma 7.1. For a quantum state ρ, the following are equivalent:

(a) ρ is pure,
(b) rk ρ = 1,
(c) the eigenvalues of ρ are {1, 0, . . . , 0},
(d) ρ2 = ρ
(e) the so-called purity tr[ρ2] is equal to one.

All but the last are easy to see; for the last see Exercise 7.2.
If ρ is not pure, it is called a mixed state (but this term is also used to mean “not necessarily

pure”). In particular, every quantum system has a maximally mixed state, which is defined by

τH :=
I

dimH
.

It is the analog of a uniform distribution in probability theory.
Every density operator arises from some ensemble of pure quantum states. For example,

we can always write ρ =
∑d

j=1 pj |ϕj⟩⟨ϕj |, where d = dim(H), {|ϕj⟩} is an eigenbasis, and {pj}
are the corresponding eigenvalues. However, there are infinitely many other ways of writing a
mixed state in terms of an ensemble. For example, take any two non-orthogonal states of a qubit,
say |0⟩ and |+⟩, and consider their uniform mixture:

ρ =
1

2

(
|0⟩⟨0|+ |+⟩⟨+|

)
=

(
3/4 1/4
1/4 1/4

)
.

Observe that neither are |0⟩ and |+⟩ eigenvectors of ρ, nor are {1/2, 1/2} the eigenvalues (for
otherwise ρ would be equal to the maximally mixed state).

Density operators are not only useful to describe quantum information sources, but they
arise in many other situations. In physics, they are used to describe statistical ensembles (e.g.,
Gibbs states). Density operators also allow us to embed probability theory into quantum theory.
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The idea is simple: if {px}dx=1 is the probability distribution of a random variable X, we can
associate with it the ensemble {p,x |x⟩} on Cd and hence the density operator

ρX =
∑
x

px |x⟩ ⟨x| =

( p1
p2

. . .
pd

)
. (7.1)

More generally, if p(x1, . . . , xn) is the joint probability distribution of random variablesX1, . . . , Xn,
the corresponding density operator is

ρX1...Xn =
∑

x1,...,xn

p(x1, . . . , xn) |x1⟩ ⟨x1| ⊗ . . .⊗ |xn⟩ ⟨xn| . (7.2)

We call states of the form Eqs. (7.1) and (7.2) classical states. Observe that if all probabilities
are the same then we obtain the maximally mixed state defined earlier.

7.2 Reduced density operators and partial trace

Density operators are also useful in another situation which appears to have nothing to do with
ensembles. Namely, they allow us to describe the state of subsystems if the global state is known.
To see this, suppose that ρAB is a quantum state on HA ⊗HB, as illustrated below:

We could like to find a mathematical object (hopefully, a density operator) that describes the state
of subsystem A. To this end we consider an arbitrary POVM {QA,x}x∈Ω on HA. According to
Axiom E, we need to consider the POVM {QA,x⊗IB} when we want to perform this measurement
on the joint system AB. Thus, the probability of measurement outcomes can be computed as
follows:

PrρAB (outcome x) = tr[ρAB (QA,x ⊗ IB)]

=
∑
a,b

⟨ab| ρAB (QA,x ⊗ IB) |ab⟩

=
∑
a,b

⟨a| (IA ⊗ ⟨b|)ρAB (QA,x ⊗ IB)(IB ⊗ |b⟩) |a⟩

=
∑
a,b

⟨a| (IA ⊗ ⟨b|)ρAB(IB ⊗ |b⟩)QA,x |a⟩

=
∑
a

⟨a|

(∑
b

(IA ⊗ ⟨b|)ρAB(IB ⊗ |b⟩)

)
QA,x |a⟩

= tr
[(∑

b

(IA ⊗ ⟨b|)ρAB(IB ⊗ |b⟩)

)
︸ ︷︷ ︸

=:ρA

QA,x

]

The operator ρA just introduced is called the reduced state or the reduced density operator of ρAB
on subsystem A. We also call ρAB an extension of ρA. The computation above works not just
for POVM elements: for every operator NA on HA, we have

tr[ρAB(NA ⊗ IB)] = tr[ρANA]. (7.3)
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It is not hard to conclude from this that ρA is again density operator. As we derived above, for
every POVM measurement {QA,x} on HA we have

PrρAB (outcome x) = tr[ρAQA,x] = PrρA(outcome x)

Similarly, for every observable OA on HA, we can compute its expectation value as

EρAB [outcome] = tr[ρAOA] = EρA [outcome]

Thus, the reduced state ρA is the appropriate object for describing the state of subsystem A if
the overall state is ρAB.

To systematize the above, we define the partial trace of an operator MAB on HA ⊗HB by
the same formulas as above:

trB[MAB] =
∑
b

(IA ⊗ ⟨b|)MAB(IA ⊗ |b⟩).

In particular, ρA = trB[ρAB]. We can also compute partial traces of operators that are not
quantum states (but in this case we will never write MA). The following rule tells us how to
compute partial traces of tensor product operators, MAB = NA ⊗OB:

trB[NA ⊗OB] = NA tr[OB] (7.4)

This formula justifies the term “partial trace”.1 It follows directly from the definition,

trB[MA ⊗NB] =
∑
b

(IA ⊗ ⟨b|) (MA ⊗NB) (IA ⊗ |b⟩) =MA

∑
b

⟨b|NB|b⟩ =MA tr[NB].

and is quite useful to compute partial traces in practice. We demonstrate this in the following
example, which shows that even if ρAB is a pure state, ρA can be mixed! This fact is an important
motivation for the introduction of the density operator formalism.

Example 7.2. Consider two qubits that are in the maximally entangled ebit state

|Φ+
AB⟩ =

1√
2
(|00⟩+ |11⟩).

To compute the reduced states of the individual qubits, first note that the corresponding two-qubit
density operator is

ρAB = |Φ+
AB⟩⟨Φ

+
AB| =

1

2

(
|00⟩+ |11⟩

)(
⟨00|+ ⟨11|

)
=

1

2

(
|00⟩⟨00|+ |11⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨11|

)
=

1

2

(
|0⟩⟨0| ⊗ |0⟩⟨0|+ |1⟩⟨0| ⊗ |1⟩⟨0|+ |0⟩⟨1| ⊗ |0⟩⟨1|+ |1⟩⟨1| ⊗ |1⟩⟨1|

)
.

We can compute the reduced state ρA using Eq. (7.4):

ρA = trB[ρAB] =
1

2

(
|0⟩⟨0|+ |1⟩⟨1|

)
=

(
1
2 0
0 1

2

)
=
I

2
,

noting that tr[|0⟩⟨0| 0] = tr[|1⟩⟨1| 1] = 1, while tr[|0⟩⟨1|] = tr[|1⟩⟨0|] = 0. Thus, the reduced state
of A is the maximally mixed state, and similarly for B. Note that this matches precisely the
result of our calculation in Eq. (2.1) in Chapter 2.

1It also characterizes the partial trace uniquely, because trB is a linear map from the space of operators
on HA ⊗HB to the space of operators on HA, and the former is is spanned by the tensor product operators.
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We mention some other useful properties of the partial trace. The partial trace is cyclic on B:

trB[(I ⊗OB)MAB] = trB[MAB(I ⊗OB)]

We can pull operators on A through the partial trace:

trB[(NA ⊗ IB)MAB(N
′
A ⊗ IB)] = NA trB[MAB]N

′
B.

If we first perform a partial trace over one subsystem and then over the other, this is the same
as performing a partial trace over both. In particular: tr ◦ trB = tr. By combining the last two
properties, we obtain the following identity, which generalizes Eq. (7.3):

tr[MAB(NA ⊗ IB)] = tr[trB[MAB] NA],

Remark 7.3. A convention that you will find in the literature is that tensor products with
the identity operator are omitted. E.g., instead of XA ⊗ IB one writes XA, since the subscript
already conveys the necessary information. Using this convention, Eqs. (7.3) and (7.4) become

tr[ρABNA] = tr[ρANA],

trB[NAOB] = NA tr[OB],

which is possibly easier to read.

7.3 Purification and Schmidt decomposition

Above we saw that the pure ebit state has mixed reduced states. This is is not an accident.

Lemma 7.4 (Schmidt decomposition). Every pure state |ΨAB⟩ ∈ HA ⊗ HB has a so-called
Schmidt decomposition:

|ΨAB⟩ =
r∑
i=1

si |ei⟩A ⊗ |fi⟩B ,

where r ∈ N is called the Schmidt rank, the numbers si > 0 are called Schmidt coefficients, the
{|ei⟩A} are orthonormal vectors in HA, and the {|fi⟩B} are orthonormal vecrtors in HB.

This is just a restatement of the singular value decomposition. A similar calculation as in
Theorem 7.2 shows that the reduced states of |ΨAB⟩ are given by

ρA =

r∑
i=1

s2i |ei⟩⟨ei| , ρB =

r∑
i=1

s2i |fi⟩⟨fi| . (7.5)

Thus, the reduced states have rank r and their nonzero eigenvalues are the squares s2i of the
Schmidt coefficients. In particular: ρA and ρB have the same nonzero eigenvalues. We also see
from the above that most reduced states are mixed: ρA and ρB are pure if and only if |ΨAB⟩ is a
product state.

We can also go the other way around. Iff ρA is an arbitrary density operator HA, then there
always exists an additional Hilbert space HB and a pure state |ΨAB⟩ ∈ HA ⊗HB such that

trB[|ΨAB⟩ ⟨ΨAB|] = ρA.
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We call such a state |ΨAB⟩ a purification of ρA. In other words, purifications are pure states
that extend the given density operator. To see that purifications always exist, consider a spectral
decomposition of the density operator: ρA =

∑r
i=1 pi |ϕi⟩⟨ϕi|. Then,

|ΨAB⟩ :=
r∑
i=1

√
pi |ϕi⟩A ⊗ |i⟩B ∈ HA ⊗HB (7.6)

is a purification, where HB = Cr.
The existence of purifications, while not hard to prove, is an important result, as it shows that

we can always replace mixed states by pure states, at the expense of adding an auxiliary Hilbert
space. This is analogous to Exercise 2.3, where you showed that generalized measurements can
always be implemented by ordinary measurements on a larger Hilbert space. For example, this
justifies why in Chapter 3 we were allowed to only consider quantum strategies involving pure
states (and observable measurements).

Purifications are not unique. We can see this already from Eq. (7.6): if we replace |iB⟩ by
any other orthonormal basis, then we get another purification. However, this is essentially the
only freedom that we have: any two purifications are related by a unitary or isometry:

Lemma 7.5. Let |ΨAB⟩ ∈ HA ⊗HB and |Ψ′
AB′⟩ ∈ HA ⊗HB′ be two purifications of the same

state ρA. If dimHB ≤ dimHB′, then there exists an isometry VB→B′ : HB → HB′ such that

(IA ⊗ VB→B′) |ΨAB⟩ = |Ψ′
AB′⟩ .

If HB = HB′ then V is a unitary.

You can prove this in Exercise 7.5 by using the Schmidt decomposition.

7.4 The trace distance between quantum states

In Exercise 2.4 we introduced a natural distance measure between pure states, called the trace
distance. It can be extended to mixed states in the following way. Let ρ and σ be two density
operators on some Hilbert space H. We define their trace distance to be

T (ρ, σ) := max
0≤Q≤IH

tr[Q(ρ− σ)] = max
0≤Q≤IH

|tr[Q(ρ− σ)]|.

This formula generalizes the one for pure states. The equality holds because tr[(I −Q)(ρ− σ)] =
− tr[Q(ρ− σ)] and 0 ≤ I −Q ≤ I. The trace distance is a metric, and so in particular satisfies
the triangle inequality. It has the following alternative expression,

T (ρ, σ) =
1

2
∥ρ− σ∥1,

in terms of the trace norm, which for general Hermitian operators ∆ with spectral decomposition
∆ =

∑
i λi |ei⟩ ⟨ei| is defined by ∥∆∥1 =

∑
i|λi|. The trace distance has a natural operational

interpretation in terms of the optimal probability of distinguishing ρ and σ by a POVM measure-
ment. We discussed this in Exercise 2.2 in the case of pure states, but the result described there
holds in general.

The trace distance can only decrease when we trace out a system: for any two density
operators ρAB and σAB, we have

T (ρA, σA) ≤ T (ρAB, σAB)
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This is quite intuitive – it should not be easier to distinguish two states if one is only given access
to a subsystem. You can prove this in Exercise 7.7. In Exercise 2.2, you also proved that for pure
states ρ = |ϕ⟩⟨ϕ| and σ = |ψ⟩⟨ψ|, the trace distance can be expressed in terms of the overlap:

T (ρ, σ) =
√
1− |⟨ϕ|ψ⟩|2 (7.7)

In Section 14.1 we will generalize the overlap to mixed states and state an analogous relation.
The trace distance also has another operational interpretation: it bounds the the difference

in expectation values for any observable measurement. You can show this in Exercise 7.6.

Exercises

7.1 Post-measurement state for density operators: Consider a quantum system described
by an ensemble of pure states {pi, |ψi⟩}, with associated density operator ρ. Suppose that
we perform a projective measurement {Px}x∈Ω.

(a) Verify that the probability of any measurement outcome is x is given by tr[ρPx].
(b) Now suppose you observe measurement outcome x. Given this outcome, compute the

probability that the original state was in some specific state |ψi⟩. Hint: Bayes’ theorem.
(c) Given that the outcome was x, determine the ensemble of post-measurement states,

and verify that the corresponding density operator is PxρPx/ tr[ρPx].

7.2 Purity: Let ρ be a density operator on Cd and consider its purity tr(ρ2).

(a) Show that tr[ρ2] ∈ [1/d, 1].
(b) Show that tr[ρ2] = 1 if and only if ρ is a pure state.

7.3 Bloch sphere: This exercise gives a geometric picture of the state space of a qubit. Recall
that the matrices I,X, Y, Z form a basis of the real vector space of Hermitian 2× 2-matrices.

(a) Show that an operator ρ on C2 is a density operator if and only if it can be written in the
form ρ = 1

2(I + rXX + rY Y + rZZ) for a vector r = (rX , rY , rZ) ∈ R3 of norm ∥r∥ ≤ 1.

Thus, set of quantum states of a qubit is a three-dimensional ball. In particular, it is convex
(this is true in any dimension). The set of pure states is its surface, called the Bloch sphere:

(b) To see this, show that ρ is a pure state if and only if ∥r∥ = 1. More generally, how is
∥r∥ related to the eigenvalues of ρ?

(c) Show that if U is a unitary then the density matrix UρU † is parameterized by a vector r′

of the same norm: ∥r′∥ = ∥r∥. Conclude that for every unitary U ∈ U(2) there exists a
rotation matrix O ∈ SO(3) such that ρ 7→ UρU † corresponds to r 7→ r′ = Or.

The final subproblem only relies on part (a):

(d) Re-prove Theorem 1.1 (the uncertainty relation) and show that it also holds for mixed states.

7.4 Symmetries imply normal forms: In this problem, you will show that quantum states
that commute with U or U⊗2 are tightly constrained by these symmetries. Recall that the
single-qubit Hilbert space C2 is an irreducible representation of U(2).

(a) Show that if ρ is a density operator on C2 such that [ρ, U ] = 0 for every unitary
U ∈ U(2), then ρ = I/2.
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While the two-qubit Hilbert space C2 ⊗C2 is not irreducible, you know that it decomposes
into two irreducible representations of U(2). Let τtriplet = Π2/3 and τsinglet = |Ψ−⟩ ⟨Ψ−|. As
always, Π2 denotes the projector onto the symmetric subspace, and |Ψ−⟩ = 1√

2
(|10⟩ − |01⟩)

denotes the singlet state.

(b) Show that if ρ is a density operator on C2⊗C2 such that [ρ, U⊗2] = 0 for every U ∈ U(2),
then there exists p ∈ [0, 1] such that ρ = p τtriplet + (1− p)τsinglet.

Hint: Use Schur’s lemma.

7.5 Purifications: In this problem, you will establish some useful facts concerning purifications
that will also be helpful in the remainder of this problem set.

(a) Prove Theorem 7.5. Hint: Use the Schmidt decomposition.

Next, you will construct a particular purification and see how symmetries can be lifted.
Let ρA be a density operator on a Hilbert space HA. For simplicity, assume that HA = Cd.

(b) Show that |ΨAB⟩ := (
√
ρA ⊗ IB)

∑d
i=1 |ii⟩ is a purification of ρA (often called the

standard purification). Here, HB = Cd, and √ρA is the positive semidefinite square
root, defined by taking the square root of each eigenvalue while keeping the same
eigenspaces.

(c) Show that this purification has the following symmetry: For every unitary UA with [UA, ρA] =
0, we have (UA ⊗ ŪB) |ΨAB⟩ = |ΨAB⟩. Here, ŪB denotes the complex conjugate of UA.

7.6 Trace distance and observables: In this problem, you can show that density operators ρ
and σ with small trace distance T (ρ, σ) have similar expectation values.

(a) Show that, for every two Hermitian operators M and N , |tr[MN ]| ≤ ∥M∥1∥N∥∞.
Here, ∥M∥1 is the trace norm defined in class (i.e., the sum of absolute values of the
eigenvalues of M) and ∥N∥∞ := max∥ϕ∥=1|∥N |ϕ⟩∥ is the operator norm (which can
also be defined as the maximum of the absolute values of the eigenvalues of N).

(b) Conclude that, for every observable O, |tr[ρO]− tr[σO]| ≤ 2 ∥O∥∞ T (ρ, σ).
(c) Find a (nonzero) observable for which the bound in part (b) is an equality.

7.7 Monotonicity of the trace distance: Show that T (ρA, σA) ≤ T (ρAB, σAB) for any two
states ρAB and σAB.

7.8 Gentle measurement: In this problem, you will derive a useful technical result known as
the gentle measurement lemma. Let ρ be a quantum state and 0 ≤ Q ≤ I a POVM element.

(a) Show that if tr[ρQ] ≥ 1− ε then T (ρ,
√
Qρ

√
Q

tr[ρQ] ) ≤
√
ε.

Hint: First prove the result for pure states.
(b) Explain in one sentence why this result is called the gentle measurement lemma.
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Chapter 8

Entanglement of pure and mixed states,
monogamy of entanglement

Yesterday, in Chapter 7 we introduced density operators, partial traces, and purifications. In
particular, we learned that any bipartite pure state has a Schmidt decomposiiton. This has a
number of important consequences.

8.1 Pure state entanglement

For one, it helps us to understand entanglement in pure states. For example, it shows that if
|Ψ⟩AB = |ψ⟩A ⊗ |ψ⟩B is a product state then its reduced density operators are pure. Conversely,
if either of the reduced density operators of a pure state |Ψ⟩AB is pure then |ΨAB⟩ must be a
product state. In other words, if ρA or ρB are mixed then this is a signature of entanglement
(for pure states)! This suggests that quantities built from the eigenvalues of the reduced density
operators such as the entanglement entropy that some of you might already know should be good
entanglement measures. You will explore this further in Exercise 8.1 and we will discuss the
entanglement entropy in Chapter 10.

How about if ρAB is a general density operator (not necessarily pure)? Then it is still true
that

ρA pure ⇒ ρAB = ρA ⊗ ρB (8.1)

(but ρB can now be mixed). To see this, choose an arbitrary purification |ΨABC⟩ of ρAB. Since
ρA = trBC [|ΨABC⟩ ⟨ΨABC |] is pure, we know from the preceding discussion that we must have

ΨABC = |ψA⟩ ⊗ |ϕBC⟩ ,

where ρA = |ψA⟩ ⟨ψA|. But then

ρAB = trC [|ΨABC⟩ ⟨ΨABC |] = trC [|ψA⟩ ⟨ψA| ⊗ |ϕBC⟩ ⟨ϕBC |] = |ψA⟩ ⟨ψA| ⊗ trC [|ϕBC⟩ ⟨ϕBC |] = ρA ⊗ ρB,

since necessarily ρB = trC [|ϕBC⟩ ⟨ϕBC |]. This is what we wanted to show.

Monogamy of entanglement is the idea that if two systems are strongly entangled then each
of them cannot be entangled very much with other systems. We can get some intuition why this
should be true as consequence of Eq. (8.1). For example, suppose that

ρAB = |Ψ⟩ ⟨Ψ|AB
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Figure 8.1: Illustration of monogamy of entanglement.

where |Ψ⟩AB is in a pure state – say, a maximally entangled state. Since ρAB is pure, any
extension ρABC must factorize,

ρABC = ρAB ⊗ ρC ,

as implied by Eq. (8.1) (with A = AB and B = C). Thus, A and B are both completely
uncorrelated with C (Fig. 8.1). In particular, ρAC = ρA ⊗ ρC and ρBC = ρB ⊗ ρC are product
states.

Remark 8.1. The above analysis should perhaps be taken with a grain of salt. Since it only
relied on ρAB being in a pure state, it is also applicable to, say, ψAB = |0⟩A ⊗ |0⟩B – which is
a product state, not an entangled state! Nevertheless, the conclusion remains that also in this
case ρAC and ρBC have to product states. However, this is a consequence of ρA = |0⟩ ⟨0|A and
ρB = |0⟩ ⟨0|B being pure, not of entanglement between A and B.

Does monogamy hold more generally for mixed states and can it be made quantitative?
Indeed this is possible – and we will see that symmetry is the key.

8.2 Mixed state entanglement

First, though, we have to define what it means for a general quantum state to be entangled. For
pure states |ΨAB⟩, we already know that a state is entangled if and only if it is not a tensor
product,

|ψ⟩AB ̸= |ψ⟩A ⊗ |ψ⟩B .

For mixed states, however, there are non-product quantum states that should nevertheless not
be considered entangled.

Example 8.2 (Classical joint distributions). Let p(x, y) be a probability distribution of two
random variables. Following (7.2), we construct a corresponding density operator

ρAB =
∑
x,y

p(x, y) |x⟩ ⟨x|A ⊗ |y⟩ ⟨y|B .

In general, ρAB is not a product state (indeed, ρAB is a product state precisely when the two
random variables are independent). For example, if Alice and Bob know the outcome of a fair
coin flip, their state would be described by the density operator

ρAB =
1

2
(|00⟩ ⟨00|AB + |11⟩ ⟨11|AB) ,

that is not of product form. However, the “non-productness” in ρAB corresponds to classical
correlations, so we do not want to think of ρAB as being entangled.
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Figure 8.2: The set of separable states SEP is a convex subset of the set of all quantum states
Q. Hyperplanes (such as the pink one) that contain all separable states on one side give rise to
entanglement witnesses.

This suggests the following general definition: We say that a quantum state ρAB is entangled
if and only if it is not a mixture of product states:

ρAB ̸=
∑
i

piρ
(i)
A ⊗ ρ

(i)
B . (8.2)

Here, {pi} is an arbitrary probability distribution and the ρ(i)A and ρ(i)B . States of the right-hand
side form are called separable or simply unentangled. If ρAB = |ψ⟩ ⟨ψ|AB is a pure state then
ρAB it is separable exactly if it is a tensor product, |ψ⟩AB = |ψ⟩A ⊗ |ψ⟩B , so this generalizes our
definition of entanglement for pure states.

Remark 8.3. There are separable states other than the classical states in Theorem 8.2. This is
because we do not demand the operators {ρ(i)A } and {ρ(i)B } in Eq. (8.2) are orthogonal.

Remark 8.4. Separable states have a pleasant operational interpretation. They are the largest
class of quantum states σAB that can be created by Alice and Bob in their laboratories if allow
Alice and Bob to perform arbitrary quantum operations in their laboratory but restrict their
communication with each other to be classical.

Let us denote the set of all density operators on HA ⊗HB by

QAB = {ρAB : ρAB ≥ 0, tr ρAB = 1}

and the subset of separable states by

SEPAB = {ρAB separable}.

Both sets are convex. As a consequence of SEPAB being convex, it can be faithfully defined by
a collection of separating hyperplanes, i.e., hyperplanes that contain all separable state on one
side (Fig. 8.2). Any such hyperplane gives rise to an entanglement witness – a one-sided test
that can be used to certify that a state is entangled. Formally, an entanglement witness for a
quantum state ρAB is an observable OAB such that tr[OAB ρAB] > 0, while tr[OAB σAB] ≤ 0 for
every separable state σAB. You will explore this in Exercise 8.5.

On the other hand, testing whether an arbitrary quantum state ρAB is separable or entangled
is unfortunately a very difficult problem. In fact, deciding if a given density operator (given in
terms of all its matrix elements) is separable is an NP-hard problem [Gur03]! This means that we
are unlikely to ever find an efficient (as in, polynomial-time) algorithm. In practice, the situation
is less bleak since we have ways of testing whe a quantum state is approximately separable (see
below).
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Figure 8.3: (a) In a permutation symmetric state, any pair of particles is entangled in the same
way and should therefore not be entangled very much. (b) Similarly, if Alice is entangled with
many Bobs in the same way then she is not entangled very much with each of them.

8.3 Monogamy and symmetry

We are now ready to study the monogamy of entanglement in more detail. We will consider two
situations where we would expect monogamy to play a role:

De Finetti theorem

First, consider a permutation-symmetric state

|Ψ⟩A1...AN
∈ SymN (Cd).

Note that all the reduced density matrices ρAiAj are the same. Thus, any particle is equally
entangled with any other particle, and so we would expect that by monogamy each pair is
therefore not “very much” entangled at all (Fig. 8.3, (a)).

The quantum de Finetti theorem asserts that our expectation is indeed correct:

ρA1...Ak
≈
∫
dψ p(ψ) |ψ⟩⊗k ⟨ψ|⊗k (8.3)

as long as k ≪ n/d, where k+n = N . Here, p(ψ) is some probability density over the set of pure
states that depends on the state ρ. In particular, ρA1A2 is approximately a mixture of product
states for large n. To make “≈” precise, we can use the trace distance as a distance measure
(Section 7.4).

Example 8.5 (Warning). The GHZ state |γ⟩A1A2A3
= (|000⟩ + |111⟩)/

√
2 is a state in the

symmetric subspace Sym3(C2). Note that, e.g., the first particle is maximally entangled with
the other two – so clearly it is not true that permutation symmetric states are unentangled.
However, if we look at the reduced state of two particles then we find

ρA1A2 =
1

2
(|00⟩ ⟨00|+ |11⟩ ⟨11|) = 1

2
|0⟩⊗2 ⟨0|⊗2 +

1

2
|1⟩⊗2 ⟨1|⊗2 ,

which is a mixture (not a superposition) of product states. This example shows that the partial
trace is indeed necessary.

Permutation symmetric states arise naturally in mean-field systems. The ground state |E0⟩ of
a mean-field Hamiltonian H =

∑
1≤i<j≤n hij is necessarily in the symmetric subspace – provided

that the ground space is nondegenerate and that n is larger than the single-particle Hilbert space.
Thus, the de Finetti theorem shows that, locally, ground states of mean field systems look like
mixtures of product states – a property that is highly useful for their analysis. You will explore
this in more detail in Exercise 8.3.
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Figure 8.4: The extendibility hierarchy: If a state is n extendible then it is O(1/n)-close to being
separable.

Extendibility hierarchy

A closely related situation is the following: Suppose that ρAB is a quantum state that has an
extension ρAB1...Bn such that

ρABi = ρAB (∀i, j)

(Fig. 8.3, (b)). We say that ρAB has an n-extension. Thus A is equally entangled with all Bi and
so we would expect that ρAB is not entangled “very much”. Indeed, it is true that, for large n,

ρAB ≈
∑
i

piρ
(i)
A ⊗ ρ

(i)
B ,

i.e., ρAB is again approximately a mixture of product states.
In contrast to situation (1), however, there is no longer a symmetry requirement between A

and B, i.e., this reasoning applies to general states ρAB . It turns out that one in this way obtains
a hierarchy of efficient approximates test for separability [DPS02, DPS04] (cf. [NOP09, HNW17]).
Indeed, as you can discuss in Exercise 8.6, if a state ρAB is n-extendible then it is O(1/n)-close
to being a separable state (Fig. 8.4).

8.4 The quantum de Finetti theorem

We will now prove the finite quantum de Finetti theorem [KR05], which establishes (8.3) in the
following precise form:

Theorem 8.6 (Quantum de Finetti theorem for states on symmetric subspace). Let |Φ⟩A1...AN
∈

SymN (Cd) be a state on the symmetric subspace, ρ = |Φ⟩ ⟨Φ|, and N = k + n. Then

T (ρA1...Ak
,

∫
dψ p(ψ) |ψ⟩⊗k ⟨ψ|⊗k) ≤

√
dk

n
,

where p(ψ) is a probability density on the space of pure states on Cd (which depends on |Φ⟩).

Proof. We follow the proof strategy in [BCHW16]. Let

|Φ⟩A1...AN
∈ SymN (Cd),

where N is the number of particles and d the dimension of the single-particle Hilbert space.
The basic idea is the following: Suppose that we measure with the uniform POVM (4.10) on

the last n := N − k systems of ρ = |Φ⟩ ⟨Φ|. Then, if the measurement outcome is some |ψ⟩, we
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would expect that the first k systems are likewise in the state |ψ⟩⊗k, at least on average, since
the overall state is permutation symmetric among all n subsystems.

Let us try to implement this idea. Since |Φ⟩ ∈ SymN (Cd), it is in particular symmetric under
permutations of the last n = N − k subsystems. Hence, |Φ⟩ = (Ik ⊗Πn) |Φ⟩, and so

ρA1...Ak
= trAk+1...AN

[|Φ⟩ ⟨Φ|] = trAk+1...AN
[(Ik ⊗Πn) |Φ⟩ ⟨Φ|]

=

(
n+ d− 1

n

)∫
dψ (Ik ⊗ ⟨ψ|⊗n) |Φ⟩ ⟨Φ| (Ik ⊗ |ψ⟩⊗n) =

∫
dψ p(ψ) |Vψ⟩ ⟨Vψ| .

In the second to last step, we have inserted the resolution of identity (4.9), and in the last step,
we have introduced introduced unit vectors |Vψ⟩ and numbers p(ψ) ≥ 0 such that

√
p(ψ) |Vψ⟩ =

(
n+ d− 1

n

)1/2

(Ik ⊗ ⟨ψ|⊗n) |Φ⟩ . (8.4)

Note that p(ψ) is a probability density. Indeed,
∫
dψ p(ψ) = tr ρ = 1, since the overall state is

normalized. We would now like to prove that

ρA1...Ak
=

∫
dψ p(ψ) |Vψ⟩ ⟨Vψ| ≈

∫
dψ p(ψ) |ψ⟩⊗k ⟨ψ|⊗k =: ρ̃A1...Ak

, (8.5)

based on the intuition expressed above that on average the post-measurement states |Vψ⟩ are
close to |ψ⟩⊗k. Let us first consider the average squared overlap:∫

dψ p(ψ) |⟨Vψ|ψ⊗k⟩|2 =
∫
dψ p(ψ) ⟨Vψ|ψ⊗k⟩ ⟨ψ⊗k|Vψ⟩

=

(
n+ d− 1

n

)∫
dψ ⟨Φ|ψ⊗(n+k)⟩ ⟨ψ⊗(n+k)| |Φ⟩⟩

=

(
n+ d− 1

n

)(
n+ k + d− 1

n+ k

)−1

⟨Φ|Πn+k|Φ⟩︸ ︷︷ ︸
=1

=

(
n+ d− 1

n

)(
n+ k + d− 1

n+ k

)−1

≥ 1− kd

n
.

In the second step, we inserted the definition of |Vψ⟩ from Eq. (8.4). Then we applied formula (4.9)
to remove the integral, and the last inequality is precisely part (a) of Exercise 4.1. This is (almost)
the desired result – the average squared overlap is close to one as long as n≫ kd.

It remains to show that the two states ρ and ρ̃ in Eq. (8.5) are also close in trace distance.
Indeed,

T (ρA1...Ak
, ρ̃A1...Ak

) =
1

2
∥ρA1...Ak

− ρ̃A1...Ak
∥

≤
∫

dψ p(ψ)
1

2
∥ρA1...Ak

− ρ̃A1...Ak
∥

=

∫
dψ p(ψ)T

(
|Vψ⟩ ⟨Vψ| , |ψ⟩⊗k ⟨ψ|⊗k

)
=

∫
dψ p(ψ)

√
1− |⟨Vψ|ψ⊗k⟩|2

≤

√∫
dψ p(ψ) (1− |⟨Vψ|ψ⊗k⟩|2)
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=

√
1−

∫
dψ p(ψ) |⟨Vψ|ψ⊗k⟩|2 ≤

√
kd

n
.

Here, we first applied the triangle inequality, then we used the relationship between trace distance
and fidelity for pure states from Eq. (7.7), and the next inequality is Jensen’s inequality (for the
square root function, which is concave). (Jensen’s inequality for a concave function f asserts
that E[f(X)] ≤ f(E[X]) for any random variable X.) Thus we have proved the quantum de
Finetti theorem.

In Exercises 8.3 and 8.4 you will explore some applications of the theorem.

Remark 8.7. From our proof we also obtain an explicit form for the density p(ψ), namely
p(ψ) = ⟨Φ|Ik ⊗Qψ|Φ⟩, where {Qψ} is the uniform POVM (4.10).

Beyond the symmetric subspace

Our intuition behind the de Finetti theorem only relied on the fact that the reduced density
matrices were all the same. But this is a feature that states on the symmetric subspace share
with arbitrary permutation-invariant states, i.e., states that satisfy

[Rπ, ρA1...AN
] = 0, or RπρA1...AN

= ρA1...AN
Rπ

for all π ∈ SN . Examples of permutation-invariant states are states on the antisymmetric
subspace, or tensor powers of mixed states, such as ρ⊗N , which we will study in more detail in
Chapter 13.

To obtain a de Finetti theorem for this situation, it is useful to prove that any permutation-
invariant state ρA1...AN

has a purification on a symmetric subspace: That is, there exists a
pure state |Φ⟩(A1B1)...(ANBN ) ∈ Symn(HA ⊗HB), where HB is some auxiliary space, such that
ρ(A1B1)...(ANBN ) = |Φ⟩ ⟨Φ| is an extension of ρA1...AN

. The auxiliary space HB can be chosen of
the same dimension as HA. (You see an easy example of this in Exercise 8.4.) The point is that
we can now apply the quantum de Finetti theorem proved above to the purification!

Following this strategy, you will prove in Exercise 8.2 the following version of the quantum
de Finetti theorem:

Theorem 8.8 (Quantum de Finetti theorem for permutation-invariant states). Let ρA1...AN
be a

permutation-invariant quantum state on (Cd)⊗N and N = k + n. Then

T (ρA1...Ak
,

∫
dµ(σ) σ⊗k) ≤

√
d2k

n
,

where dµ(σ) is a probability measure on the space of density operators on Cd (which depends
on ρ).

Nowadays, there are many further variants of the de Finetti theorem that quantify the
monogamy of entanglement in interesting and useful ways.

Exercises

8.1 Pure state entanglement: In class we observed that a pure state |ΨAB⟩ ∈ HA ⊗HB is
unentangled if and only if its reduced density operators ρA and ρB are pure states. Here you
will generalize this observation and show that the maximal fidelity squared between |ΨAB⟩
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and any product state is given by the largest eigenvalue of ρA, denoted λmax(ρA). That is,
show that

max
∥ϕA∥=∥ψB∥=1

|⟨ΨAB|ϕA ⊗ ψB⟩|2 = λmax(ρA).

Hint: Use the Schmidt decomposition discussed.

8.2 De Finetti theorem for permutation-invariant quantum states: In this problem,
you will extend the quantum de Finetti theorem from states on the symmetric subspace
to arbitrary permutation-invariant states. A quantum state ρA1...AN

is called permutation-
invariant if [Rπ, ρA1...AN

] = 0 for all π ∈ SN .

(a) Give two examples of permutation-invariant quantum states that are not just states on
the symmetric subspace.

Now let ρA1...AN
be an arbitrary permutation-invariant quantum state on (Cd)⊗N .

(b) Show that the reduced density operators for any fixed number of subsystems are all the
same. That is, show that ρAi1

...Aik
= ρA1...Ak

for all 1 ≤ k ≤ N and pairwise distinct
indices i1, . . . , ik.

By monogomy, we would therefore expect that a de Finetti theorem should also hold in this
situation. You will prove this in the remainder of this exercise:

(c) Show that there exists a pure state ρ(A1B1)...(ANBN ) on SymN (Cd⊗Cd) ⊆ (Cd⊗Cd)⊗N
such that ρA1...AN

= trB1...BN
[ρ(A1B1)...(ANBN )].

(d) Conclude that, for every 1 ≤ k ≤ N , there exists a probability measure dµ on the
set of density operators on Cd such that T (ρA1...Ak

,
∫
dµ(ρ) ρ⊗k) ≤

√
d2k/n, where

n = N − k.

8.3 De Finetti and mean field theory [BCHW16]: In this exercise you will explore the
consequences of the quantum de Finetti theorem for mean field theory. Consider a Hermitian
operator h on Cd ⊗Cd and the corresponding mean-field Hamiltonian, i.e., the operator

H =
1

n− 1

∑
i̸=j

hi,j

on (Cd)⊗n, where each term hi,j acts by the operator h on subsystems i and j and by the
identity operator on the remaining subsystems (e.g., h1,2 = h⊗ I⊗(n−2)).

(a) Show that the eigenspaces of H are invariant subspaces for the action of the symmetric
group.

Now assume that the eigenspace with minimal eigenvalue (the so-called ground space) is
nondegenerate and spanned by some |E0⟩, with corresponding eigenvalue E0. Then part (a)
implies that Rπ |E0⟩ = χ(π) |E0⟩ for some function χ. This function necessarily satisfies
χ(πτ) = χ(π)χ(τ).

(b) Show that χ(i↔ j) = χ(1↔ 2) for all i ≠ j. Conclude that |E0⟩ is either a symmetric
tensor or an antisymmetric tensor.
Hint: First show that χ(πτπ−1) = χ(τ).

If n > d, then there exist no nonzero antisymmetric tensors. Thus, in the so-called thermody-
namic limit of large n, the ground state |E0⟩ is in the symmetric subspace Symn(Cd) and so
the quantum de Finetti theorem is applicable.
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(c) Show that, for large n, the energy density in the ground state can be well approximated
by minimizing over tensor power states. That is, show that

E0

n
≈ min

|ψ⟩
⟨ψ⊗2|h|ψ⊗2⟩ = 1

n
min
|ψ⟩
⟨ψ⊗n|H|ψ⊗n⟩ .

Hint: Exercise 7.6.

This justifies the folklore that “in the mean field limit the ground state has the form |ψ⟩⊗∞”.

8.4 The antisymmetric state: In class, we discussed the quantum de Finetti theorem for
the symmetric subspace. It asserts that the reduced density operators ρA1...Ak

of a state on
Symk+n(CD) are

√
kD/n close in trace distance to a separable state (in fact, to a mixture

of tensor power states).

The goal of this exercise is to show that some kind of dependence on the dimension D is
unavoidable in the statement of the theorem. To start, consider the Slater determinant

|S⟩A1...Ad
= |1⟩ ∧ · · · ∧ |d⟩ :=

√
1

d!

∑
π∈Sd

sign(π) |π(1)⟩ ⊗ . . .⊗ |π(d)⟩ ∈ (Cd)⊗d.

We define the antisymmetric state on Cd ⊗Cd by tracing out all but two subsystems,

ρA1A2 = trA3...Ad
[|S⟩ ⟨S|] .

(a) Let F = R1↔2 denote the swap operator on (Cd)⊗2. Prove the following identity, which
is known as the swap trick :

tr[F (σ ⊗ γ)] = tr[σγ]

(b) Show that T (ρA1A2 , σA1A2) ≥ 1
2 for all separable states σA1A2 .

Hint: Consider the POVM element Q = Π2 (i.e., the projector onto the symmetric
subspace).

Thus you have shown that the antisymmetric state is far from any separable state. However,
note that |S⟩ is not in the symmetric subspace.

(c) Show that |S⟩⊗2 ∈ Symd(Cd⊗Cd), while ρ⊗2
A1A2

is likewise far away from any separable
state. Conclude that the quantum de Finetti theorem must have some dimension
dependence.
Hint: |S⟩⊗2 is a state of 2d quantum systems that we might label A1 . . . AdA

′
1 . . . A

′
d (the

unprimed systems refer to the first copy of |S⟩ and the primed to the second). Let the
permutation group Sd act by simultaneously permuting unprimed and primed systems
and show that |S⟩⊗2 is in the corresponding symmetric subspace. Similarly, ρ⊗2 is an
operator on A1A2A

′
1A

′
2. How do you need to partition the systems so that ρ⊗2 is far

from being separable?

8.5 Entanglement witness for the ebit: Construct an entanglement witness for the ebit state
|Φ+
AB⟩ =

1√
2
(|00⟩+ |11⟩).

Hint: Exercise 8.1.

8.6 The extendibility hierarchy: In this problem, you will show that any quantum state that
has an n-extension is close to a separable state if n is large, as discussed in class.
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(a) Imitate the proof of the quantum de Finetti theorem given in class to show that, for
any pure state |Φ⟩AB1...Bn

∈ HA ⊗ Symn(HB),

trB2...Bn [|Φ⟩ ⟨Φ|] ≈
∫
dψ p(ψ) |Wψ⟩ ⟨Wψ|A ⊗ |ψ⟩ ⟨ψ|B1

for large n. Here, the integral is over the set of pure states on HB , p(ψ) is a probability
density, and the |Wψ⟩ are pure states in HA.

Now suppose that ρAB is an arbitrary quantum state that has an n-extension (i.e., that there
exists some σAB1...Bn such that σABk

= ρAB for all k).

(b) Show that ρAB also has an n-extension ρAB1...Bn that is permutation-invariant on the
B-systems, i.e., [IA ⊗Rπ, ρ] = 0 for all π ∈ Sn.

Any n-extension as in (b) admits a purification in (HA ⊗HA′)⊗ Symn(HB ⊗HB′), where
HA′ = HA and HB′ = HB.

(c) Conclude that any n-extendible ρAB is close to a separable state for large n.
Hint: Exercise 7.7.

8.7 PPT criterion: In this exercise, you will study a simple yet very useful entanglement
criterion. Given an operator MAB on HA ⊗ HB, we define its partial transpose as the
operator MTB

AB with matrix elements

⟨a, b|MTB
AB|a

′, b′⟩ = ⟨a, b′|MAB|a′, b⟩ .

Note that this definition depends on the choice of basis for HB (but not of the basis for HA).

(a) Show that trMTB
AB = trMAB.

(b) Observe that if MAB = XA ⊗ YB then MTB
AB = XA ⊗ Y T

B and argue that this uniquely
determines the partial transpose.

In particular, we can consider the partial transpose of a density operator ρAB.

(c) Show that if ρAB is separable then ρTBAB ≥ 0.

You thus obtain the so-called PPT criterion, short for positive partial transpose criterion: If
the partial transpose ρTBAB is not positive semidefinite then ρAB must be entangled.

(d) Verify using the PPT criterion that the ebit |Ψ+
2 ⟩ is entangled.

(e) Consider the family of isotropic two-qubit states,

ρAB(p) := p τsym + (1− p)τanti,

where τsym denotes the maximally mixed state on the symmetric subspace of two qubits
and τanti = |ψ−⟩ ⟨ψ−| the singlet state. For which values of p ∈ [0, 1] does the PPT
criterion establish entanglement?

In general, the PPT criterion is only a sufficient, but not a necessary criterion for entanglement.
If dimHA ⊗HB > 6, then there exist entangled states with a positive semidefinite partial
transpose.
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Chapter 9

Classical and quantum data compression

Today we will discuss one of the very well-known objectives of information theory: the compression
of data sources. We will start with classical data compression (i.e., the compression of bitstrings),
which was solved by Shannon in the late 40s. The results obtained for classical bit strings will
turn out to be directly useful for solving our main problem of interest – namely, the compression
of quantum data (i.e., strings of qubits).

9.1 Classical data compression

Imagine that Alice has acquired a biased coin, with heads coming up with p = 75% probability.
She is excited about her purchase and wants to let Bob know about the result of her coin flips. If
the flips the coin once, how many bits does she need to communicate the result to Bob? Clearly,
sheshould send over one bit. Otherwise, since both outcomes are possible, she would make an
error 25% of the time! See Fig. 9.1 for an illustration of the situation.

Now suppose that Alice flips her coin not only once, but a large number of times – say n times.
She would still like to communicate the results of her coin flips to Bob. Clearly, Alice could send
over one bit immediately after each coin flip. Can she do better by waiting and looking at the
whole sequence of coin flips? In other words, what is the minimal compression rate, i.e., the
minimal rate of bits per coin flip that Alice needs to send to Bob in order to communicate the
outcomes of her coin flips (with an arbitrarily small probability of error)?

A sequence of coin flips will in general be an arbitrary string of the form

HHTHHHTHHHHHHHHHHHHHHHHHHTHHHHHHHHHHHTHH

Let us denote by k the number of heads (H) in such a sequence, so that n− k is the number of
tails (T). The probability of any such sequence is given by pk(1− p)n−k.

What do “typical” sequences look like? If we assume that Alice’ coin flips are independent
then we would expect that heads will come up k ≈ pn times for large enough n. Indeed, a version
of the (weak) law of large numbers states that, for any fixed ε > 0,

Pr(|k
n
− p| > ε) = O(

1

n
)→ 0 (9.1)

as n→∞. Let us thus define a typical sequence as a sequence of n coin flips such that | kn −p| ≤ ε.
(Note that this definition depends on a choice of ε, so it might make sense to speak of an ε-typical
sequence instead.) In this language, Eq. (9.1) asserts that the probability that Alice receives a
typical sequence goes to one in the limit of many coin flips.
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Figure 9.1: Alice wants to communicate the result of her coin flips to Bob by sending over
a minimal number of bits. This an instance of a compression problem of classical data (the
outcomes of Alice’ coin flips).

Remark 9.1. This also gives a good way of estimating the bias of the coin if Alice does not know
the values of p and 1− p beforehand. Simply flip the coin many times and output p̂ := k

n as an
estimate of p, where k is the number of heads. We will later learn how to similarly characterize a
quantum data source.

This suggests the following compression scheme:

Classical data compression protocol: Let ε > 0 be fixed.

• If the number of coin flips k is not within (p± ε)n, Alice gives up and signals failure.

• Otherwise, Alice sends k over to Bob, and she also sends the index i of her particular
sequence of coin flips in a list Lk that contains all possible coin flips with k heads and
n− k tails.

If our two protagonists agree beforehand on the lists Lk (you might say that they form the
codebook), then Bob will have no trouble decoding the sequence of coin flips – he merely
looks up the i-th entry in the list Lk.

What is the probability of failure in the first step of this protocol? As a direct consequence
of the law of large numbers this becomes arbitrarily small for large enough n, as we discussed
above.

Remark 9.2. If failure is not an option, Alice may instead send the uncompressed sequence
of coin flips instead of giving up. This leads to a similar analysis (in terms of the average
compression rate) and will be left as an exercise.

Is this protocol useful for compression? To send k ∈ {0, . . . , n}, we need no more than
log(n+ 1) bits. Since log(n+ 1)/n→ 0, this does not impact the compression rate in the limit
of large n. How many bits to we need to send the index i? The number of bits required depends
on the number of sequences with k heads and n− k tails, where k/n ≈ p. Let us first count the
number of sequences with k heads and n − k tails for an arbitrary value of k. This is simply
given by the binomial coefficnet

(
n
k

)
. To estimate this number, we use the following trick: For

every x ∈ [0, 1], we have

1 = (x+ (1− x))n =

n∑
l=0

(
n

l

)
xl(1− x)n−l ≥

(
n

k

)
xk(1− x)n−k.

Choosing x = k/n, we obtain the upper bound(
n

k

)
≤ x−k(1− x)−(n−k) =

(
k

n

)−k (
1− k

n

)−(n−k)
= 2−k log(

k
n
)−(n−k)(1− k

n
) = 2nh(

k
n
), (9.2)
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Figure 9.2: The binary entropy function h(p) defined in Eq. (9.3).

where we defined the binary (Shannon) entropy function

h(p) := −p log p− (1− p) log(1− p). (9.3)

Here and throughout the rest of these lecture notes, log will always denote the logarithm to the
base two. We also define 0 log 0 := 0 so that h(p) is a continuous function defined for all p ∈ [0, 1].
See Fig. 9.2 for a plot of the binary entropy function.

Thus, there are no more than 2nh(k/n) many sequences with k heads and n− k tails. Now, for
typical sequences, |k/n− p| ≤ ε and so there are no more than roughly 2n(h(p)+ε

′) many typical
sequences for some constant ε′ > 0 (which depends on our choice of ε and the continuity of the
entropy function at p). Thus, we need no more than n(h(p) + ε′) bits to send over the index. In
total, the compression rate of our protocol is no larger than

R =
# bits

# coin flips
≤ log(n+ 1)

n
+ h(p) + ε′. (9.4)

Both the first and the third term can be made arbitrarily small – the former by choosing n
sufficiently large, and the latter by choosing ε sufficiently small.

In summary, the protocol sketched above will achieve a compression rate arbitrarily close
to h(p) ≤ 1 bits per coin flip. You will show in Exercise 9.2 that this compression rate h(p) is
optimal. The result that we proved is known as Shannon’s noiseless coding theorem – it is called
“noiseless” since we assume that the communication line from Alice to Bob is perfect. It is also
known as Shannon’s source coding theorem.

In our case, h(75%) = 0.81 as displayed in Fig. 9.2 – so Alice achieves savings of roughly of
19% in the case of her biased coin.

Since this is a course about symmetries and information theory: What are the symmetries in
the classical data compression scenario? One such symmetry is that the binary entropy function
satisfies h(p) = h(1− p), corresponding to relabeling H ↔ T. This is certainly expected, since
merely relabeling the symbols cannot impact the optimal compression rate. However, note our
compression protocol breaks this symmetry, since we explicitly compare the relative number of
heads k/n to the probability p! Thus if Alice and Bob apply their compression scheme (that was
designed for p = 75%) to another biased coin with p = 25% then the protocol will fail with high
probability in the first step. In this case there is a simple fix: We simply modify the first step of
the protocol to fail only if k/n is far away from both p and 1− p. It is clear that this does not
impact the compression rate (we are still sending over the same information!). In Exercise 9.3
you will extend this to construct a universal classical data compression protocol at rate R that
works for all data sources where h(p) < R.

When we discuss quantum data compression we will come back to this point and see that
designing a universal quantum data compression protocol is less straightforward and requires a
more careful analysis of the relevant symmetries.
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Figure 9.3: Illustration of the compression of a quantum information source.

The coin flip example illustrates the traditional core principles of information theory, or
Shannon theory : We are interested in finding optimal asymptotic rates for information processing
tasks such as compression (the task that we have just solved), information transmission over
noisy channels, etc. Quantum information theory has very analogous goals – except that now we
are dealing with quantum information rather than classical information.

Remark 9.3. In recent years, there has been an increased interest in understanding optimal
information processing rates in non-asymptotic scenarios. This is largely beyond the scope of
these lectures.

9.2 Quantum data compression

We will now discuss quantum data compression in more precise terms. Thus, we consider a
quantum information source that emits pure states |ψx⟩ ∈ C2 of a qubit with probabilities px
upon the press of a button (just like previously we obtained a random bit H/T by flipping a coin
flip). We will assume that the qubit states emitted by the source are independent from each
other (i.e., the source has no memory), which means that it emits sequences

|ψ(x)⟩ = |ψx1⟩ ⊗ . . .⊗ |ψxn⟩ ∈ (C2)⊗n

with probabilities
p(x) = px1 . . . pxn .

Similarly to before, our goal in quantum data compression is to design a compression protocol.
This protocol consists of a compressor, which encodes a sequence |ψ(x)⟩ ∈ (C2)⊗n into some
state of Rn qubits, and a corresponding decompressor. As before, we can think of R as the
compression rate, but now we are sending over qubits instead of bits! Unlike in the example of the
coin, we cannot in general hope to precisely recover the original state. Instead, the decompressor
should produce a state |ψ̃(x)⟩ that has high overlap with the original state (say, on average):∑

x

p(x)E
[
|⟨ψ(x)|ψ̃(x)⟩|2

]
≈ 1. (9.5)

The average value E[. . . ] refers to the fact that the decompressed state |ψ̃(x)⟩ for a given |ψ(x)⟩
is not necessarily deterministic (since compression and decompression might involve quantum
measurements, which generally have random outcomes). See Fig. 9.3 for an illustration. How
could we go about solving this problem?

Let’s first discuss some salient points of this setup. As discussed in Chapter 7, any ensemble
such as {px, |ψx⟩} has a corresponding density operator ρ =

∑
x px |ψx⟩ ⟨ψx|. In our case, it

describes the average output of our quantum source. It is not hard to see that the density operator
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corresponding to the ensemble {p(x), |ψ(x)⟩}, which describes n outputs of our quantum source,
is given by

ρ⊗n =

(∑
x

px |ψx⟩ ⟨ψx|

)⊗n

=
∑
x

p(x) |ψ(x)⟩ ⟨ψ(x)| (9.6)

It is useful to think of ρ⊗n as the quantum version of an i.i.d. probability distribution (i.e., a
probability distribution of n random variables that are independent and identically distributed).
At a fundamental level, quantum information theory often reduces to questions about the
asymptotic behavior of a large number of independent copies of a density operator ρ, i.e., in ρ⊗n

for large n (the so-called i.i.d. limit), similarly to what we saw for the classical coin above.
Like any density operator of a single qubit, ρ has two eigenvalues which we might denote by

{p, 1− p}. We stress that the states |ψx⟩ emitted by the source need not be orthogonal. This
means that we cannot simply perform a measurement to figure out the sequence of quantum
states emitted by the source, but also that the eigenvalues {p, 1− p} of ρ need not have anything
to do with the probabilities {px} of the different states in the ensemble. For example, the density
operator 1

2 (|0⟩ ⟨0|+ |+⟩ ⟨+|) has eigenvalues around {85%, 15%}. From this perspective, it is not
clear that ρ should have any significance for the compression task!

To make progress, remember that the central idea to solve classical data compression was
that there was a relatively small number of typical sequences that occurred most of the time. In
the quantum case, bits get replaced by qubits, so this suggests that we should try to look for
a “small” subspace Hn ⊆ (C2)⊗n such that “typical” states |ψ(x)⟩ have high overlap with this
subspace. Let us identify on more formal level what properties this subspace should satisfy by
studying the following proposal for a compression protocol:

Quantum data compression protocol: Let Hn ⊆ (C2)⊗n, with projector Pn.

• Alice performs the projective measurement {Pn, I − Pn}. If the outcome is the latter,
she sends over an arbitrary state |ψ̃(x)⟩.

• Otherwise, the post-measurement state in Alice’ laboratory is

|ψ̃(x)⟩ = Pn |ψ(x)⟩
∥Pn |ψ(x)⟩∥

∈ Hn.

• Since this state lives in subspace Hn only, Alice can send it over to Bob by sending
roughly ⌈log(dimHn)⌉ qubits.

• Bob receives the state |ψ̃(x)⟩ and uses it as the decompressed state.

Remark 9.4. In step one, we send over an arbitrary state when the measurement does not
“succeed” – this is not a problem since we will anyways need to inspect the average overlap
squared (9.5) with the desired state. Instead, Alice could also simply fail and stop the protocol
when the measurement does not succeed, just as in our classical compression protocol. Can you
see how the analysis below needs to be adjusted in this case? (Exercise 7.1 could be useful.)

Remark 9.5. It might not be directly obvious how Alice and Bob can actually send over the
state in the last part of the protocol. Clearly, dim(Hn) ≤ dim(C2)⊗⌈log(dimH)⌉, so certainly
m := ⌈log(dimH)⌉ qubits provide enough degrees of freedom. In practice, our two protagonists
would decide on a unitary

U : (C2)⊗n → (C2)⊗n = (C2)⊗m ⊗ (C2)⊗(n−m)
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such that any state in Hn gets mapped to a state into the subspace (C2)⊗m ⊗ |0 . . . 0⟩.
In order to send over the post-measurement state, Alice would first apply U and send over

the first m qubits to Bob. Upon receiving the state, Bob adds the |0 . . . 0⟩ back in and applies U †.
It is clear that in this way he ends up with the state |ψ̃(x)⟩ in his laboratory.

Let us analyze the compression protocol to determine the properties that the subspace Hn
should satisfy. Clearly, the compression rate that it achieves is

log(dimHn)
n

≤ 1,

so we would like to minimize the dimension of Hn. We will now analyze when the average overlap
squared is close to one, as in (9.5): First, let us denote by

q(x) := Prψ(x)(outcome Pn) = ⟨ψ(x)|Pn|ψ(x)⟩ = tr [|ψ(x)⟩ ⟨ψ(x)|Pn] (9.7)

the probability of passing the first step of the protocol if the state emitted by the source is |ψ(x)⟩
(we used Born’s rule). Then,∑

x

p(x)E
[
|⟨ψ(x)|ψ̃(x)⟩|2

]
=
∑
x

p(x)

[
q(x)|⟨ψ(x)| Pn |ψ(x)⟩

∥Pn |ψ(x)⟩∥
|2 + . . .

]
≥
∑
x

p(x)

[
q(x)|⟨ψ(x)| Pn |ψ(x)⟩

∥Pn |ψ(x)⟩∥
|2
]

=
∑
x

p(x)

[
q(x)

|⟨ψ(x)|Pn|ψ(x)⟩2|
∥Pn |ψ(x)⟩∥2

]

=
∑
x

p(x)

[
q(x)

q2(x)

q(x)

]
=
∑
x

p(x)q2(x)

≥

(∑
x

p(x)q(x)

)2

.

In the second line, “...” stands for the term that corresponds to the case where we abort after
the first step; we simply lower bound this term by zero. The last step is Jensen’s inequality for
the (convex) square function. But note that∑

x

p(x)q(x) =
∑
x

p(x) tr [|ψ(x)⟩ ⟨ψ(x)|Pn] = tr
[
ρ⊗nPn

]
where we used Eqs. (9.6) and (9.7). Thus, we need that tr [ρ⊗nPN ] ≈ 1 in order for the
compression protocol to achieve high fidelity in the sense of Eq. (9.5).

We thus obtain the following important result: Quantum compression is possible at rate R if
we can find a sequence of subspaces Hn ⊆ (C2)⊗n, with projectors Pn, such that

(a) tr [ρ⊗nPn]→ 1,
(b) 1

n log(dimHn) ≤ R.
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Such subspaces are called typical subspaces, in analogy with the typical sequences in the classical
case. Note that this condition only depends on the quantum data source in a weak way, namely
through the density operator ρ. In particular, our compression protocol will work for every
ensemble described by this density operator.

Tomorrow we will discuss how to construct typical subspaces that allow us to compress
arbitrarily close to the optimal asymptotic rate. This rate will again be an entropy – namely, the
so-called von Neumann entropy of the density operator ρ.

Exercises

9.1 Fannes inequality:

(a) Consider the function η(x) = −x log x. Show that, for |p− q| ≤ 1
2 ,

|η(p)− η(q)| ≤ η(|p− q|), (9.8)

(b) Conclude that the binary entropy function h(p) = −p log p− (1− p) log(1− p) satisfies
the following inequality, which is a special case of the so-called Fannes’ inequality :

|h(p)− h(q)| ≤ h(|p− q|)

9.2 Classical data compression: In this exercise you will show that the Shannon entropy
h(p) = −p log p− (1− p) log(1− p) is the optimal compression rate for the coin flip problem
discussed in class. Assume that Alice compresses her random sequence of n coin flips
by applying a function En : {H,T}n → {0, 1}⌊nR⌋, and Bob decompresses by applying a
corresponding function Dn : {0, 1}⌊nR⌋ → {H,T}n.

(a) Which are the coin flip sequences that are transmitted correctly? Find an upper bound
on their cardinality in terms of R.

(b) Show that, if R < h(p), then the probability of success tends to zero for large n.
Hint: Distinguish between typical and atypical sequences of coin flips.

9.3 Universal classical data compression: Given R > 0, construct a data compression
protocol at asymptotic rate R that works for every classical data source that emits bits with
probabilities {p, 1− p} such that h(p) < R.
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Chapter 10

Construction of typical subspace,
compression and entanglement

Yesterday, we discussed the compression of classical and quantum data sources. Let us briefly
revisit the results. We first studied classical data sources that emits bits (coin flips) with
probabilities p and 1− p and found that the optimal compression rate is given by the Shannon
entropy h(p) = −p log p− (1− p) log(1− p). To achieve this, we restricted our consideration to
typical sequences b = b1 . . . bn ∈ {0, 1}n, with k = n(p ± ε) zeros (heads) for some fixed ε > 0.
By the law of large numbers,

Pr(b typical)→ 1, (10.1)

and we found that there were at most∑
k:| k

n
−p|≤ε

2nh(k/n) ≤ (n+ 1)2n(h(p)+ε
′) (10.2)

typical sequences, and this is what led to a compression rate arbitrarily close to h(p) for sufficiently
small ε and large n.

We then considered quantum data sources, specified in terms of some ensemble with cor-
responding density operator ρ =

∑
x px |ψx⟩ ⟨ψx|. Our main result here was that in order to

compress at rate R, we wanted typical subspaces Hn ⊆ (C2)⊗n, with projectors Pn, such that

(a) tr [ρ⊗nPn]→ 1,
(b) 1

n log(dimHn) ≤ R for large enough n.

The first condition can be interpreted as requiring that typical states emitted by the source have
high overlap with the subspace Pn, and the second condition states that the compression protocol
will use no more than nR qubits to compress n samples of the source.

10.1 Construction of typical subspaces

How should we go about constructing such typical subspaces? A natural approach is to take the
spectrum decomposition of ρ,

ρ = p |ϕ0⟩ ⟨ϕ0|+ (1− p) |ϕ1⟩ ⟨ϕ1| ,

and define

Hn := span {|ϕb1⟩ ⊗ . . .⊗ |ϕbn⟩ : b ∈ {0, 1}n a typical sequence}
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where we include only basis vectors corresponding to typical bitstrings for a classical data source
with probabilities {p, 1− p}.

This is a natural definition, since the vectors |ϕb1⟩⊗ . . .⊗|ϕbn⟩ is the eigenbasis of ρ⊗n, which
makes it easy to evaluate the trace tr[ρ⊗nPn]:

tr[ρ⊗nPn] =
∑

b typical

⟨ϕb1 ⊗ . . .⊗ ϕbn |ρ⊗n|ϕb1 ⊗ . . .⊗ ϕbn⟩ =
∑

b typical

p#0’s(1− p)#1’s

= Pr(b is typical)→ 1.

In the third step, we recognized the probability of the classical data source emitting a typical
sequence, which goes to one according Eq. (10.1)!

We still need to bound the dimension of these subspaces. But clearly dim(Hn) is just the
number of typical sequences, so it follows from Eq. (10.2) that

1

n
log(dimHn) ≤ R :=

log(n+ 1)

n
+ h(p) + ε′.

As discussed below Eq. (9.4), the first term goes to zero for large n and we can make the third
term arbitrarily small by choosing ε small enough. Thus we have construct typical subspaces that
allow us to compress a quantum data source at a rate R arbitrarily close to h(p). In Exercise 10.1
you will show that this is the optimal rate.

To summarize: Quantum data compression is possible at an asymptotic qubit rate arbitrarily
close to the von Neumann entropy

S(ρ) := h(p)

which is simply the Shannon entropy of the eigenvalues of the density operator. We can also
write

S(ρ) = − tr[ρ log ρ]

using the matrix logarithm. The rate S(ρ) is also optimal. This important result is due to
Schumacher (as well as the result in the next section). As mentione last time, the quantum data
compression protocol that we described last lecture works for all quantum sources described by
the density operator ρ.

Again, we may ask about the symmetries of the quantum data compression problem. Instead
of relabeling zeros and ones, we could perform an arbitrary unitary transformation U on the
states emitted by the source. Such a transformation is reversible and hence should not impact
the compression rate. Indeed, S(ρ) = S(UρU †), since the von Neumann entropy only depends
on the eigenvalues of the density operator. But, again, our compression protocol breaks these
symmetries because the subspaces Hn refer explicitly to the eigenbasis of ρ. This means that
we cannot we apply a protocol constructed for a source described by ρ to a source described
by UρU † and expect that it works with high fidelity. We had a similar issue in the classical case
and found an easy fix. In the quantum case, it is less obvious what to do.

Next week, we will undertake a more careful study of the symmetries of (C2)⊗n and of ρ⊗n

and overcome this challenge. This will not only allow us to construct a universal compression
protocol, but also solve other problems of interest. Specifically, it will allows us to estimate
the estimate the eigenvalues of an unknown density operator, the corresponding von Neumann
entropy, and, finally, the entire density operator.

80



Figure 10.1: Alice wants to send half of her entangled states |ΨAE⟩⊗n over to Bob at qubit rate
R.

10.2 Compression and entanglement

At a high level, compression is about minimizing communication. There are other situations
in which we would like to minimize communication, such as in the following task: Suppose we
start out with a large number of copies of a bipartite pure state |ΨAE⟩ ∈ HA ⊗HE . Alice would
like to transfer her A-systems (which we assume are qubits) over to Bob by sending a minimal
number of qubits. Importantly, they would like to preserve all correlations with the E-systems,
but neither Alice nor Bob have access to the E-systems, but they belong to another party (or
the “environment”) that we will call Eve. See Fig. 10.1 for an illustration.

We will call this task quantum state transfer (sadly, this term is usually used with a different
connotation). It is often referred to as Schumacher compression. Thus, if |ψ̃⟩AnEn is the state
after compression and decompression, we would like that

|ψ̃⟩AnEn ≈ |ΨAE⟩⊗n

(say, on average).
Since our goal is to preserve the correlations, we might intuitively expect that the more

entangled the states |ΨAE⟩ are, the more communication will be required. Indeed, suppose that
|ΨAE⟩ = |Ψ⟩A ⊗ |Ψ⟩E is a product state. In this case, Alice needs not send over any quantum
information at all, since Bob can simply prepare the pure state |Ψ⟩ on his side. However, if
|ΨAE⟩ is entangled then it is not hard to see that communication will be required. (Any state
that Bob prepares on his end alone will necessarily be in a tensor product with Eve’s state.)

Interestingly, quantum state transfer can be implemented by a protocol that is very similar to
our quantum data compression protocol. The key idea is to use typical subspaces for the reduced
density operator

ρA = trE [|ΨAE⟩ ⟨ΨAE |]

and we describe the protocol next:

Protocol for quantum state transfer: Let HA,n ⊆ (C2)⊗n be typical subspace, with
projectors PA,n.

• Alice performs the projective measurement {PA,n, IAn − PA,n}. If the outcome is the
latter, she signals failure.

• Otherwise, the post-measurement state is

|ψ̃AnEn⟩ =
(PA,n ⊗ IEn) |ΨAE⟩⊗n

∥(PA,n ⊗ IEn) |ΨAE⟩⊗n∥
∈ HA,n ⊗H⊗n

E .
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• Alice sends over her subsystem HA,n using approximately nS(ρA) qubits (see Theo-
rem 9.5 for ).

It is straightforward to analyze this protocol. Using Born’s rule, the probability of passing
the first step of the protocol only depends on the reduced density operator and is given by

Pr(success) = ⟨Ψ⊗n
AE |PA,n ⊗ IEn |Ψ⊗n

AE⟩ = tr[ρ⊗nA PA,n]→ 1, (10.3)

since the PA,n are projectors onto typical subspaces for ρ⊗nA . And assuming we did not fail in
the first step, the overlap between the post-measurement state and the target state is given by

|⟨Ψ⊗n
AE |ψ̃AnEn⟩|2 = |⟨ΨAE |⊗n

(PA,n ⊗ IEn) |ΨAE⟩⊗n

∥(PA,n ⊗ IEn) |ΨAE⟩⊗n∥
|2 =

|⟨Ψ⊗n
AE |PA,n ⊗ IEn |Ψ⊗n

AE⟩|2

∥(PA,n ⊗ IEn) |Ψ⊗n
AE⟩∥2

= ⟨Ψ⊗n
AE |PA,n ⊗ IEn |ΨAE⟩

⊗n
= tr[ρ⊗nA PA,n]→ 1

where the last step is the same calculation as in Eq. (10.3)!
To summarize: Alice can transfer her system to Bob at an asymptotic qubit rate that can

be arbirarily close to S(ρA). This quantity is often called the entanglement entropy of the pure
state |ΨAE⟩, denoted

SE(Ψ) := S(ρA) = S(ρE).

Here we used that S(ρA) = S(ρE) as a consequence of the Schmidt decomposition (see Eq. (7.5)).

Remark 10.1. The notation here is very unfortunate – the E in SE is short for “entanglement”
and not for Eve’s system. E.g., for a state |ΦAB⟩ we would write SE(Φ) = S(ρA) = S(ρB).

Example 10.2. If |ΨAE⟩ = |0⟩A ⊗ |0⟩E then SE(Ψ) = 0 – as it should be, given our discussion
above. If |ΨAB⟩ = 1√

2
(|00⟩AB + |11⟩AB) is the ebit state, however, then SE = 1, which means

that Alice has to send qubits at a trivial rate of 1 qubit/qubit – in agreement with our intuition
that the ebit is a maximally entangled state.

We thus obtain a second operational interpretation of the von Neumann entropy: It not
only characterizes the optimal quantum compression rate for a quantum data source, but it
also characterizes the minimal rate of qubits that we need to send when transferring part of a
bipartite pure state.

The state transfer problem is a special case of the more general (and more difficult) problem
of quantum state merging, where the receiver already possesses part of the state. We might have
a peek at this in the last week of class.

Remark 10.3. It is possible to show that any protocol for the state transfer task can be used to
compress arbitrary quantum sources described by the density operator ρA.

10.3 Entanglement transformations

At the end of this lecture, we briefly talked some more about entanglement more generally. For
pure states, |ΨAB⟩ ≠ |ψA⟩ ⊗ |ψB⟩ means that the state is entangled. But how can be compare
and quantify different states in their entanglement? One approach is to assign to each state
some arbitrary numbers that we believe reflect aspects of their entanglement properties – e.g.,
the entanglement entropy SE from above, the largest eigenvalue of the reduced density matrix
from Exercise 8.1, or simply the collection of all eigenvalues of ρA or ρB (sometimes called the
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entanglemen spectrum). Yet, this approach might perhaps seem somewhat ad hoc and so is (a
priori) not completely satisfactory.

A more operational approach would be to compare two states |ΦAB⟩ and |ΨAB⟩ by studying
whether one can be transformed into the other: What family of operations should we consider
in such a transformation? Since our goal is compare entanglement, we should only allow
for operations that cannot create entanglement from unentangled states. We already briefly
mentioned such a class of operations in Theorem 8.4. It is LOCC, short for Local Operations
and Classical Communication. Here, we imagine that Alice and Bob each have their separate
laboratory and we allow the following operations:

• Local operations, i.e., arbitrary quantum operations that can be done on Alice’ and Bob’s
subsystems. We allow any combination of unitaries, adding auxiliary systems, performing
partial traces, and measurements.

• Classical communication, i.e., Alice and Bob are allowed to exchange measurement outcomes.
Thus, Bob’s local operations can depend on Alice’s previous measurement outcomes, and
vice versa.

Thus we are interested in whether

|ΨAB⟩
LOCC−→ |ΦAB⟩ .

If yes, then we could say that |ΨAB⟩ is at least as entangled as |ΦAB⟩ – indeed, the former is as
useful as the latter for any nonlocal quantum information processing task, since we can always
convert first |ΨAB⟩ into |ΦAB⟩ when required.

Remark 10.4. Note that the setup here is very different from quantum data compression –
there, we wanted to minimize the amount of quantum communication sent. Here, we do not
allow any quantum communication, and classical communication comes for free.

The exact interconversion problem for pure states was solved by Nielsen. However, there are
many parameters – namely all the eigenvalues of ρA and of ρB matter. It turns out that the
asymptotic theory simplifies tremendously, and we will very briefly discuss the main results.

The key idea is to reduce the problem to studying the conversion between a given state |ΨAB⟩
and a single resource state (a “universal currency” of entanglement of sorts). This resource state
is the ebit state |Φ+⟩ = 1√

2
(|00⟩+ |11⟩)!

Thus we are interested in the following two problems: First, given n copies of a state |ΨAB⟩,
convert them by LOCC into as many ebits as possible:

|ΨAB⟩⊗n
LOCC−→ ≈ |Φ+⟩⊗Rn

Just as in the case of data compression, we are interested in the maximal rate R that can be
achieved with error going to zero for n→∞. This is called the distillable entanglement ED(Ψ)
of the state |ΨAB⟩.

Second, given as few ebits as possible, convert them by LOCC into n copies of |ΨAB⟩:

|Φ+⟩⊗Rn LOCC−→ ≈ |ΨAB⟩⊗n

Here we are interested are interested in the minimal rate R that can be achieved with error going
to zero for n→∞. This is called the entanglement cost EC(Ψ) of the state |ΨAB⟩.

It is intuitively plausible that EC(Ψ) ≥ ED(Ψ), i.e., that we cannot “create entanglement
out of nothing”. The main result of the theory is the following: The entanglement cost and the
distillable entanglement are equal, and given by the entanglement entropy discussed above!

EC(Ψ) = ED(Ψ) = SE(Ψ)
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Remark 10.5. You might wonder how the above story generalizes to mixed states ρAB. It
turns out that in this case the entanglement theory is much more complicated. We already saw
hints of this in Section 8.2 where we mentioned that even deciding whether a given state ρAB is
separable or entangled is in general an NP-hard problem. In addition, while the same definitions
can be made as above, there are many new phenomena. For example, in general we have that
EC(ρ) > ED(ρ), meaning that the conversion via ebits is in general asymptotically irreversible!
In fact, there are entangled mixed states states such that EC(ρ) > 0 while ED(ρ) = 0. We call
them bound entangled states – these are states that are entangled but no ebits can be distilled
from them!

Exercises

10.1 Quantum data compression: In this problem you will show that there cannot exist typical
subspaces with rates smaller than the von Neumann entropy. Thus, let ρ be a density operator
onC2 andHn ⊆ (C2)⊗n an arbitrary sequence of subspaces, with corresponding projectors Pn,
such that dim(Hn) ≤ 2nR for all n. Show that either R ≥ S(ρ) or tr[ρ⊗nPn]→ 0.
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Chapter 11

Representation theory of U(2) and SU(2)

MW: Move this chapter to Chapter 12? MW: Let’s give a proof that any irrep is of
the indicated type. MW: Let’s also discuss the action of U(2), not just of SU(2).

Last week, we learned the basic concepts of group representation theory (Chapter 5) and
we proved that the symmetric subspaces are irreducible representations of SU(2) (Chapter 6).
Today, we will discuss how the symmetric subspaces fit in the representation theory of SU(2)
more generally, and we will discuss how to decompose an arbitrary representation of SU(2) into
irreducibles.

11.1 Representation theory of SU(2)

We start by introducing some notation. For reasons that will become clear soon, it will be
convenient to use k instead of n. So we will write Symk(C2) for the symmetric subspace of the
k-th tensor power. Let us also denote by T

(k)
U the restriction of TU = U⊗k to the symmetric

subspace. That is, T (k)
U is given by the same formula U⊗k, but we only plug in vectors in

the symmetric subspace and remember that the result will automatically by in the symmetric
subspace. For k = 0, we define Sym0(C2) = C as the trivial representation, with T (0)

U = I. Thus,
the Hilbert space Symk(C2) together with the operators {T (k)

U }U∈SU(2) defines a representation
of SU(2), and it is this representation that we proved to be irreducible in Chapter 6.

A basic question in the representation theory of any group is to ask about the possible
irreducible representations, up to equivalence. For the group SU(2), one can show that every
irreducible representation is equivalent to a symmetric subspace (we will not prove this fact).
MW: It would be nice if we did! That is, if H is an arbitrary irreducible representation of
SU(2), with corresponding operators {RU}, then there exists k ≥ 0 and a unitary intertwiner
J : H → Symk(C2) such that

JRUJ
† = T

(k)
U ∀U ∈ SU(2).

We will abbreviate this situation by the notation H ∼= Symk(C2) and RU ∼= T
(k)
U introduced last

lecture. Moreover, the symmetric subspaces are inequivalent for k ̸= l, i.e., Symk(C2) ̸∼= Syml(C2).
This follows directly from the fact that dimSymk(C2) = k+1, so there cannot be a unitary map
between different symmetric subspaces.

To summarize, any irreducible representation H of SU(2) is equivalent to exactly one of the
symmetric subspaces Symk(C2), up to equivalence, and can therefore by labeled by an integer k.
We can determine k directly from the dimension formula as k = dimH − 1. You may know from
your quantum mechanics class that the irreducible representations can also be labeled by their
spin j, which is a half-integer. As you might expect, the connection is precisely that j = k/2.
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Let us discuss some examples. A good source of SU(2)-representations are the various tensor
powers of C2, i.e., (C2)⊗n, so this is what we shall consider. For n = 0, we have the trivial
representation

(C2)⊗0 = Sym0(C2),

and for n = 1, we have

(C2)⊗1 = Sym1(C2) = C2

so this is again irreducible (and not very interesting). The first interesting examples is n = 2,
since here we know that (C2)⊗2 is not irreducible. In fact:

(C2)⊗2 = C⊗C = Sym2(C2)
⊥
⊕ C |Ψ−⟩ ,

where |Ψ−⟩ =
√

1
2 (|10⟩ − |01⟩) is the singlet state. Both summands are the irreducible – the

former because it is a symmetric subspace, and the latter since it is a one-dimensional invariant
subspace. Which symmetric subspace is the latter isomorphic to? Clearly, this must be the
one-dimensional Sym0(C2). To see this more concretely, recall that in Exercise 3.5 you showed
that

(U ⊗ U) |Ψ−⟩ = det(U) |Ψ−⟩

for all unitaries U . If U ∈ SU(2) then det(U) = 1, so |Ψ−⟩ spans indeed a trivial representation.
We can summarize this as follows: As representations of SU(2),

C
2 ⊗C2 ∼= Sym2(C2)⊕ Sym0(C2). (11.1)

Is there a systematic way of decomposing higher tensor powers (C2)⊗n for n > 2? We will discuss
this next.

11.2 Decomposing representations of SU(2)

In fact, let us consider a more general question: Suppose we are given an arbitrary SU(2)-
representation H, with operators {RU}U∈SU(2). We know that we can always decompose a
representation into irreducibles, so that

H ∼= Symk1(C2)⊕ Symk2(C2)⊕ . . .⊕ Symkm(C2),

but how can we determine the numbers k1, . . . , km that appear? In other words, how can we
figure out how many times a certain irreducible representation Symk(C2) appears in H? We can
solve this by a similar procedure as we used last time in class. Start by defining the operator

rZ := −i∂s=0 [ReısZ ] . (11.2)

Note that eısZ =
(
eıs 0
0 e−is

)
∈ SU(2), so this definition makes sense assuming RU is differentiable

as a function of U . In general, the operator rZ will always be Hermitian. (As mentioned in the
previous lecture, this definition can be understood more conceptually in terms of the action of
the Lie algebra of SU(2).)

For example, ifH = (C2)⊗n with RU = U⊗n, then rZ = Z̃ = Z⊗I⊗. . .⊗I+· · ·+I⊗. . .⊗I⊗Z
in the notation of yesterday’s lecture, which was one of the ingredients for proving that the
symmetric subspaces are irreducible. In particular, we proved that the operator Z̃ preserves the
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symmetric subspace. Let us denote its restriction by t
(k)
Z . Yesterday, we proved that each of

the basis vectors |ωm,k−m⟩ for m = 0, . . . , k are eigenvectors of t(k)Z , with associated eigenvalue
2m− k. Thus, the operator t(k)Z has eigenvalues {−k,−k+2, . . . , k− 2, k}, each with multiplicity
one.

Now assume that H is irreducible and equivalent to some Symk(C2) by a unitary intertwiner
J : H → Symk(C2). Then,

JrZJ
† = −i∂s=0

[
JReısZJ

†
]
= −i∂s=0

[
T
(k)

eısZ

]
= t

(k)
Z ,

and so we see that rZ has likewise eigenvalues {−k,−k + 2, . . . , k − 2, k}, each with multiplicity
one.

How about the general case, where

H ∼= Symk1(C2)⊕ Symk2(C2)⊕ . . .⊕ Symkm(C2)

? Here we have a unitary intertwiner J such that

JRUJ
† =


T
(k1)
U

T
(k2)
U

. . .

T
(km)
U


and hence

JrZJ
† =


t
(k1)
Z

t
(k2)
Z

. . .

t
(km)
Z


for the same reason as above. It follows that the eigenvalue spectrum of rZ is given by the
multiset

{−k1,−k1 + 2, . . . , k1 − 2, k1} ⊔ {−k2,−k2 + 2, . . . , k2 − 2, k2} ⊔ · · · ⊔ {−km,−km + 2, . . . , km − 2, km}.

It is not hard to see that one can inductively reverse-engineer the numbers k1, k2, . . . , km from
this multiset: Start by taking the largest number; it must be one of the ki’s. Remove the
corresponding {−ki,−ki+2, . . . , ki−2, ki} from the set, and repeat the procedure. Let us discuss
some examples.

First, we can use this to reprove the decomposition in Eq. (11.1). Here, H = C2 ⊗C2 and
rZ = Z̃ = Z ⊗ I + I ⊗ Z as explained above. Thus, rZ is diagonal in the computational basis
and the eigenvalues of rZ are

{2, 0, 0,−2} = {2, 0,−2} ⊔ {0}.

This decomposition makes it clear that

(C2)⊗2 = C2 ⊗C2 ∼= Sym2(C2)⊕ Sym0(C2), (11.3)

which confirms our previous decomposition.
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Next, let us consider H = C2⊗C2⊗C2, where rZ = Z̃ = Z ⊗ I ⊗ I + I ⊗Z ⊗ I + I ⊗ I ⊗Z.
Here the eigenvalues are

{3, 1, 1, 1,−1,−1,−1,−3} = {3, 1,−1,−3} ⊔ {1,−1} ⊔ {1,−1},

which implies that

(C2)⊗3 = C2 ⊗C2 ⊗C2 ∼= Sym3(C2)⊕ Sym1(C2)⊕ Sym1(C2). (11.4)

At least in principle it is now clear how to proceed for arbitrary tensor powers (C2)⊗n.
However, the counting gets more involved the larger n, so it is desirable to figure out an inductive
way of computing this decomposition. The basic problem that we have to solve is the following.
Suppose that we have an irreducible representation Symk(C2) and we tensor it with an additional
qubit C2, i.e., we consider the representation

H = Symk(C2)⊗C2, RU = T
(k)
U ⊗ U.

How does it decompose into irreducibles? The answer is the following:

H = Symk(C2)⊗C2 ∼=

{
Symk+1(C2)⊕ Symk−1(C2) if k > 0

C2 if k = 0.
(11.5)

To confirm this formula, note that rZ = t
(k)
Z ⊗ I + I ⊗ Z, so that the eigenvalues are

{−k ± 1,−k + 2± 1, . . . , k − 2± 1, k ± 1} = {−(k + 1),−(k − 1), . . . , k − 1, k + 1} ⊔ {−(k − 1), . . . , k − 1};

the second set is empty if k = 0. See Fig. 15.3 for an illustration.
Equation (11.5) is as special case of the so-called Clebsch-Gordan rule that you might know

from a quantum mechanics class. It tells you more generally how to decompose Symk(C2) ⊗
Syml(C2). We will not need the general result but it can be proved just like above.

Let’s quickly check that Eq. (11.5) reproduces the same results that we derived above. We
start by

(C2)⊗2 = Sym1(C2)⊗C2 ∼= Sym2(C2)⊕ Sym0(C2).

The last step is using the Clebsch-Gordan rule and the result is in agreement with Eqs. (11.1)
and (11.3). Next, we decompose the third tensor power by tensoring with an additional qubit:

(C2)⊗3 = (C2)⊗2 ⊗C2 ∼=
(
Sym2(C2)⊕ Sym0(C2)

)
⊗C2

∼=
(
Sym2(C2)⊗C2

)
⊕
(
Sym0(C2)⊗C2

)
∼=
(
Sym3(C2)⊕ Sym1(C2)

)
⊕
(
Sym1(C2)

)
= Sym3(C2)⊕ Sym1(C2)⊕ Sym1(C2),

which confirms Eq. (11.4). Here we first used the two-qubit result, then the distributivity law,
and finally the Clebsch-Gordan rule. Similarly,

(C2)⊗4 ∼=
(
Sym3(C2)⊕ Sym1(C2)⊕ Sym1(C2)

)
⊗C2

∼= Sym4(C2)⊕ Sym2(C2)⊕ Sym2(C2)⊕ Sym2(C2)⊕ Sym0(C2)⊕ Sym0(C2).

It is now clear how to decompose (C2)⊗n for arbitrary n in an inductive fashion. We will use
this to great effect in two weeks in Chapters 12 and 13. There, we will also learn how to extend
our considerations from SU(2) to U(2).
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Chapter 12

Spectrum estimation, i.i.d. quantum
information

Today, we will start developing some new machinery for working with i.i.d. copies of a quantum
state, i.e.,

ρ⊗n on (Cd)⊗n

where ρ is an arbitrary density operator.

12.1 Spectrum estimation

Our motivation throughout today’s lecture will be the following estimation problem: We would
like to estimate the eigenvalues of an unknown density operator ρ, given n copies ρ⊗n. That is,
if p1 ≥ · · · ≥ pd denote the eigenvalues of ρ then we would like to define a measurement {Qp̂}
such that, when we measure on ρ⊗n, we obtain outcomes p̂1 ≥ · · · ≥ p̂d that are a good estimate
for the true eigenvalues, as illustrated below:

This task is known as the spectrum estimation problem and it was first solved by Keyl and
Werner [KW01] (cf. [CM06]). It is an easier problem than estimating the full density operator ρ,
and it allows us to focus on the key difference between pure and mixed states – their eigenvalue
spectrum. As a direct corollary, we will be able to estimate the von Neumann entropy S(ρ) of an
unknown quantum source (since this is a function of the eigenvalues only). We will spend the
rest of today’s lecture solving the spectrum estimation problem.

The tools that we will develop in the course of solving this problem will be prove useful for
working with asymptotic quantum information more generally. In Chapter 13, we will use them to
construct universal typical subspaces, which work for any density operator ρ with given spectrum.
This will allow us to derive universal protocols for quantum data compression and quantum state
transfer – the two problems discussed last week in Chapters 9 and 10. In Chapter 14, we will
also see how one can estimate an arbitrary unknown quantum state ρ from ρ⊗n, thereby solving
a task that is also known as quantum state tomography.
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Symmetries of the spectrum estimation problem

If ρ is a quantum state on Cd then the state ρ⊗n is a quantum state on (Cd)⊗n. As discussed
in Theorem 5.2, this space is a representation for two groups: (i) the permutation group Sn,
with representation operators Rπ, and (ii) the unitary group U(d), with representation operators
TU = U⊗n.

Now, the operator ρ⊗n is permutation-invariant as defined last time, i.e., it commutes with
permutations:

[Rπ, ρ
⊗n] = 0

for all π ∈ Sn. We can verify this explicitly on a product basis:

Rπρ
⊗n |x1, . . . , xn⟩ = Rπ (ρ |x1⟩ ⊗ . . .⊗ ρ |xn⟩) = ρ |xπ−1⟩ ⊗ . . .⊗ ρ |xπ−1⟩

= ρ⊗n(|xπ−1⟩ ⊗ . . .⊗ |xπ−1⟩) = ρ⊗nRπ |x1, . . . , xn⟩ .

Remark 12.1 (Warning). Only when ρ = |ψ⟩ ⟨ψ| is a pure state is ρ⊗n = |ψ⟩⊗n ⟨ψ|⊗n an
operator on the symmetric subspace. We explored this at lengths in Chapters 4 to 6, 8 and 11.
However, as soon as ρ is a mixed state, this is no longer the case! A simple example is the
maximally mixed state τ = I/d. Clearly, τ⊗n = I/dn is supported on all of (Cd)⊗n.

On the other hand, ρ⊗n in general does not commute with the action of the unitary group:

U⊗nρ⊗nU †,⊗n = (UρU †)⊗n

which amounts to replacing ρ 7→ UρU †. This operation changes the eigenbasis, but leaves the
eigenvalues the same. In other words, while the permutation symmetry is a symmetry of the
state ρ⊗n, the unitary symmetry is a symmetry of the problem that we are trying to solve! This
suggests that both symmetries should play an important role, and it prompts us to investigate
the representation (Cd)⊗n more closely.

12.2 Warmup: The swap test

Suppose we are just given two copies of the unknown quantum state, i.e., ρ⊗2. This is a density
operator on

(Cd)⊗2 = Sym2(Cd)⊕
∧2

(Cd).

Both the symmetric and the antisymmetric subspace are irreducible representations. (for the
symmetric subspace, we discussed this in Chapter 6; the antisymmetric subspace can be treated
completely analogously).

The permutation group S2 has just two elements: the identity permutation and the nontrivial
permutation π = 1↔ 2. The operator corresponding to the latter is known as the swap operator

F = R1↔2 =
∑
a,b

|a, b⟩ ⟨b, a| .

which you will recognize from Exercise 8.4. It commutes both with the action of U(d) (since
we know that [U⊗n, Rπ] = 0 for all U and π) as well as with the action of S2 (any operator
commutes with itself and with the identity matrix). Since the projector onto the symmetric
subspace can be written as Π2 =

1
2(I + F ), it follows that the projective measurement

{P1 := Π2, P0 := I −Π2}
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Figure 12.1: By measuring {P1, P0} on N = n/2 independent copies of ρ⊗2, we can estimate the
purity of the quantum state via Eq. (12.1).

likewise commutes with the actions of U(d) and S2 – so we have identified a projective measurement
with the desired symmetries!

Note that F = P1−P0 is just the spectral decomposition of the swap operator. Using Schur’s
lemma as in Exercise 7.4, you can verify that there is no more fine-grained measurement with
these symmetries.

Is the measurement {P1, P0} at all informative? To see this, we calculate the probability of
the “1” outcome:

Prρ⊗2(outcome 1) = tr
[
ρ⊗2Π2

]
= tr

[
ρ⊗2 1

2
(I + F )

]
=

1

2

(
1 + tr

[
ρ⊗2F

])
=

1

2

(
1 + tr ρ2

)
,

where we used the “swap trick” tr[F (σ ⊗ γ)] = tr[σγ] from Exercise 8.4 in the last step. The
quantity tr ρ2 is called the purity of ρ, since it is equal to 1 only if the state ρ is a pure state
(Exercise 7.2).

The important point, however, is that since ρ has eigenvalues p1, . . . , pd then tr ρ2 =
∑d

i=1 p
2
i ,

so

Prρ⊗2(outcome 1) =
1

2

(
1 +

d∑
i=1

p2i

)

and we conclude that this simple measurement already allows us to learn something nontrivial
about the eigenvalues of ρ. It is also known as the swap test. Note that for qubits (d = 2) the
swap test provides a complete solution (since p1 + p2 = 1 we can determine p1 and p2 = 1− p1
from tr ρ2 = p21 + p22)!

Just to be perfectly clear about the interpretation of this result: When performing the
projective measurement {P1, P0}, the measurement outcome is either 1 or 0. Only when repeated
N times on independent copies of ρ⊗2 will we find that

#{outcome=1}
N

≈ Prρ⊗2(outcome 1) =
1

2

(
1 +

d∑
i=1

p2i

)
(12.1)

up to error O(1/
√
N). Thus we only obtain a good estimate when we apply the swap test to a

number N of pairs ρ⊗2, i.e., when given ρ⊗n for large n = 2N (Fig. 12.1).

While the swap test is perfectly fine for the purposes of estimating the purity, it is somewhat
unsatisfactory in two regards: (i) it only works for d > 2 and (ii) measuring on “blocks of ρ⊗2”
breaks the permutation symmetry of the problem.

In the following, we will discuss a different solution which fully exploits the symmetries of the
problem and generalizes readily to any d. Along the way we will discover some important tools
that will have further application in the remainder of this course. For simplicity, we restrict to the
case of qubits (d = 2) since we studied the representation theory of SU(2) before in Chapter 11.
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12.3 Decomposing the n-qubit Hilbert space

We start by decomposing the Hilbert space of n qubits into irreducible representations of SU(2).
From Section 11.2 we know that(

C
2
)⊗n ∼= Symk1(C2)⊕ Symk2(C2)⊕ . . .⊕ Symkm(C2)

for certain integers k1, . . . , km ≥ 0 that we still need to determine (one of them should be ki = n,
corresponding to the symmetric subspace Symn(C2) ⊆ (C2)⊗n). It is convenient to repackage
this in the following way:

(
C

2
)⊗n ∼=⊕

k

Symk(C2)⊕ . . .⊕ Symk(C2)︸ ︷︷ ︸
m(n, k) times

 ∼=⊕
k

Symk(C2)⊗Cm(n,k)

In the first step, we reordered the symmetric subspaces according to their type (k), and in the
second step we used that, for any representation H, H⊗Cm ∼= H⊕ . . .⊕H (m copies). Just to
be sure that you remember: The above notation means that there exist unitary intertwiners that
map the representation operators as follows:

U⊗n ∼=
⊕
k

(
T
(k)
U ⊕ . . .⊕ T (k)

U

)
∼=
⊕
k

T
(k)
U ⊗Cm(n,k) =


T
(0)
U ⊗ I

Cm(n,0)

T
(1)
U ⊗ I

Cm(n,1)

. . .

 .
Importantly, the above considerations only hold for U ∈ SU(2). How about a general unitary

U ∈ U(2)? In this case, U/
√
detU ∈ SU(2), so it is easy to deduce the action. We find that

U⊗n = (detU)n/2
(

U√
detU

)⊗n

∼= (detU)n/2
⊕
k

T
(k)

U√
detU

⊗ Im(n,k) = (detU)n/2
⊕
k

(detU)−k/2 T
(k)
U ⊗ Im(n,k)

=
⊕
k

(detU)(n−k)/2 T
(k)
U︸ ︷︷ ︸

=:T
(n,k)
U

⊗Im(n,k).

Here we used that, since T (k)
U is given by the restriction of U⊗k to the symmetric subspace, it is

homogeneous of degree k in U .
Let us write Vn,k := Symk(C2) for the symmetric subspace equipped with the operators

{T (n,k)
U }. This defines a representation of U(2) which is irreducible (since it is even irreducible

if we restrict to SU(2)). Importantly, Vn,k ̸∼= Vn′,k if n ≠ n′ (since in this case operators with
nonzero determinant will in general act in a different way).

Example 12.2. For n = 2, we have that(
C

2
)⊗2

= Sym2(C2)⊕C |Ψ−⟩ ∼= V2,2 ⊕ V2,0.

Indeed, V2,2 = Sym2(C2) as a U(2)-representation, while you showed in Exercise 3.5 that
(U ⊗ U) |Ψ−⟩ = det(U) |Ψ−⟩; the latter is just the way that T (2,0)

U acts on V2,0.
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We thus obtain the following decomposition of the n-qubit Hilbert space as a representations
of U(2): (

C
2
)⊗n ∼=⊕

k

Vn,k ⊗Cm(n,k),

U⊗n ∼=
⊕
k

T
(n,k)
U ⊗ Im(n,k). (12.2)

Note that both the left-hand and the right-hand side of Eq. (12.2) make syntactical sense for
arbitrary operators, not just for unitaries U . In fact, the equality is true for arbitrary operators!
We summarize this important fact: For every operator A on C2,

A⊗n ∼=
⊕
k

T
(n,k)
A ⊗ Im(n,k), (12.3)

where

T
(n,k)
A := (detA)(n−k)/2 T

(k)
A . (12.4)

We will briefly sketch how Eq. (12.3) follows from Eq. (12.2). First, since the set of invertible
matrices is dense and both sides of the equation are continuous, we may assume without
loss of generality that X is invertible, so we can write A = eıM . Now parametrize M =
z1I + z2X + z3Y + z4Z by a complex vectors z ∈ C4. Then both the left-hand side and the
right-hand side of Eq. (12.3) are holomorphic functions of z ∈ C4. Note note that, for z ∈ R4,
M is Hermitian, so eıM is unitary, and hene Eq. (12.3) reduces to Eq. (12.2). But any two
multivariate holomorphic functions that agree on the reals must be equal – this concludes the
proof of Eq. (12.3). (Another approach would be to work with the groups SL(2) and GL(2)
throughout.)

In particular, we can apply Eq. (12.3) to density operators. We restate the resulting formula,
since provides us with a very useful normal form of an i.i.d. quantum state ρ⊗n:

ρ⊗n ∼=
⊕
k

T (n,k)
ρ ⊗ Im(n,k), (12.5)

We will use this momentarily.

12.4 Solution of the spectrum estimation problem

How does this help us to solve the spectrum estimation problem? Recall that we are looking for
a measurement that commutes with both the action of SU(2) and Sn. Let us write Pn,k for the
orthogonal projection onto the k-th direct summand in Eq. (12.2). This seems like a plausible
candidate! Indeed, it is plain from Eq. (12.2) that Pn,k commutes with the action of the unitary
group. Does Pn,k also commute with the action of Sn? Yes, this in fact follows from Schur’s
lemma – we will discuss this next time in a more general context. Thus, we have found the
desired candidate measurement!

Remark 12.3. Note that this measurement generalizes the swap test discussed in Section 12.2,
since for n = 2 we have that P2,2 = Π2 and P2,0 = I −Π2 (see Theorem 12.2).

Remark 12.4. In physics terminology, the measurement {Pn,k} measures the total spin j = k/2.
In your quantum mechanics class you might have discussed the quadratic Casimir operator of
SU(2) – this is an observable with eigenvalues proportional to j(j + 1/2), so it can also be used
to measure j.
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In the remainder of today’s lecture, we will analyze the projective measurement {Pn,k} on
ρ⊗n. That is, we would like to compute the probabilities

Prρ⊗n(outcome k) = tr
[
ρ⊗nPn,k

]
. (12.6)

Note that these probabilities remain unchanged if we substitute ρ 7→ UρU † – this holds
because Pn,k commutes with U⊗n. Since we can always diagonalize ρ by a unitary, we may
therefore assume that ρ already a diagonal matrix,

ρ =

(
p

1− p

)
(12.7)

with p ≥ 1− p, i.e., p ∈ [12 , 1]. Our goal will be to show that (12.6) is exponentially small in n
for most outcomes k – unless when we can obtain a good estimate of the spectrum from k. We
will later see that p̂ := 1

2

(
1 + k

n

)
will provide such an estimate.

In view of Eq. (12.5), we may compute the probability of measurement outcomes in the
following way:

tr
[
ρ⊗nPn,k

]
= tr

[
T (n,k)
ρ ⊗ Im(n,k)

]
= m(n, k) tr

[
T (n,k)
ρ

]
, (12.8)

where we used that by definition Pn,k projects onto the k-th direct summand. We will now
explain how to bound both factors in Eq. (12.8).

First we consider the number m(n, k), which we remember denote the multiplicity of Vn,k in
(C2)⊗n. Equivalently, we can work with SU(2); then m(n, k) denotes the number of times that
Symk(C2) appears in (C2)⊗n. We discussed this problem already in Chapter 11 and saw that we
could solve this in a recursive fashion. The key ingredient was the Clebsch-Gordan rule (11.5),
which states that

Symk(C2)⊗C2 ∼=

{
Symk+1(C2)⊕ Symk−1(C2) if k > 0

C2 = Sym1(C2) if k = 0,
(12.9)

and this allowed us to successively decompose (C2)⊗n:

(C2)⊗1 = C2 = Sym1(C2), so

(C2)⊗2 = Sym1(C2)⊗C2 ∼= Sym2(C2)⊕ Sym0(C2), so

(C2)⊗3 =
(
Sym2(C2)⊕ Sym0(C2)

)
⊗C2 = Sym3(C2)⊕ Sym1(C2)⊕ Sym1(C2), etc.

E.g., for n = 3, we find that m(3, 3) = 1 and m(3, 1) = 2, while all other m(3, k) = 0.
This process is visualized in Fig. 12.2 and the general result is as follows: The multiplicity

m(n, k) of Vn,k in (C2)⊗n is precisely equal to the number of paths from (0, 0) to (n, k) in Fig. 12.2.
In particular, we see that m(n, n) = 1 (there is only a single path). Moreover, m(n, k) > 0 iff
n− k is an nonnegative even number (so that the exponent of the determinant in Eq. (12.4) is
always a nonnegative integer).

How can we estimate the number of paths? Any path can be specified by a sequence of in
total n “ups” and “downs”. If u is the number of “ups” then n − u is the number of “downs”.
Therefore, we must have that u − (n − u) = k in order for the path to end at (n, k). Thus,
u = (n+ k)/2 is fixed and we see that there are at most

(
n

(n+k)/2

)
many paths. (This provides

only an upper bound, because paths that go below zero are invalid.) As a consequence, we find
that

m(n, k) ≤
(
n
n+k
2

)
≤ 2nh(

n+k
2n

) = 2nh(p̂), (12.10)
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Figure 12.2: By iterating the Clebsch-Gordan rule, we obtain a decomposition of (C2)⊗n into
irreducible representations of U(2). The multiplicity m(n, k) is equal to the number of paths
from (0, 0) to (n, k), where at each step we move to the right and either up or down (unless
k = 0).

where we introduced

p̂ :=
n+ k

2n
=

1

2

(
1 +

k

n

)
∈ [12 , 1].

The last inequality in Eq. (12.10) is precisley the upper bound (9.2) on the binomial coefficients
in terms of the binary Shannon entropy that we derived when compressing coin flips in Chapter 9.
Thus, the multiplicites m(n, k) grow at most exponentially, with exponent is given by precisely
by the binary Shannon entropy of p̂!

We still need to compute the right-hand side trace in Eq. (12.10). In view of Eq. (12.4), this
reduces to a trace over the symmetric subspace, which we can compute in our favorite basis (6.1):

tr
[
T (n,k)
ρ

]
= (det ρ)(n−k)/2 tr

[
T (k)
ρ

]
= p(n−k)/2(1− p)(n−k)/2

k∑
m=0

⟨ωm,k−m|ρ⊗k|ωm,k−m⟩︸ ︷︷ ︸
=pm(1−p)k−m≤pk

≤ (k + 1)p(n+k)/2(1− p)(n−k)/2 ≤ (n+ 1)p(n+k)/2(1− p)(n−k)/2

= (n+ 1)2n(p̂ log p+(1−p̂) log(1−p))

(12.11)

For the underbraced inequality, we used that ρ = diag(p, 1− p) with p ≥ 1− p (Eq. (12.7)).
If we plug Eqs. (12.10) and (12.11) back into Eq. (12.8) then we obtain the following bound

on the probability of outcomes:

Prρ⊗n(outcome k) = tr
[
ρ⊗nPn,k

]
≤ (n+ 1)2−nδ(p̂∥p), (12.12)

where we have introduced the binary relative entropy

δ(p̂∥p) = p̂ log
p̂

p
+ (1− p̂) log 1− p̂

1− p
. (12.13)

The relative entropy is an important quantity in information theory and statistics. The point
now is that the relative entropy is a distance measure between probability distributions: It is
nonnegative and δ(p̂∥p) = 0 if and only if p = p̂. (Note however that it is not a metric – e.g., it
is not symmetric under exchanging p↔ p̂.) More quantitatively, you will show in Exercise 12.1
that the relative entropy satisfies the following inequality, a special case of the so-called Pinsker’s
inequality :

δ(p̂∥p) ≥ 2

ln 2
(p̂− p)2 (12.14)
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As a consequence, the probability in Eq. (12.12) is exponentially small unless p̂ ≈ p!
This allows us to solve the spectrum estimation problem for qubits: Given ρ⊗n, perform the

projective measurement {Pn,k}. Upon outcome k, output p̂ := 1
2

(
1 + k

n

)
as the estimate of the

maximal eigenvalue of ρ. Then:

Pr(|p̂− p| ≥ ε) =
∑

k:|p̂−p|≥ε

Prρ⊗n(outcome k) ≤
∑

k:|p̂−p|≥ε

(n+ 1)2−nδ(p̂∥p)

≤
∑

k:|p̂−p|≥ε

(n+ 1)2−n
2

ln 2
ε2 ≤ (n+ 1)22−n

2
ln 2

ε2 ,

where we used Eqs. (12.12) and (12.14) and the fact that there are certainly no more than n+ 1
possible values for k. The right-hand side decreases exponentially with n. This means that p̂ ≈ p
with very high probability. Success at last!

Remark 12.5. In Chapter 15, we will discuss how to implement the spectrum estimation
measurement concretely by a quantum circuit (see also Theorem 13.1).

Exercises

12.1 Pinsker inequality: Show that the binary relative entropy δ(p∥q) = p log p
q +(1−p) log 1−p

1−q
satisfies the following inequality, which is a special case of the so-called Pinsker inequality :

δ(p∥q) ≥ 2

ln 2
(p− q)2

Hint: Remember that log x = lnx/ ln 2 is the logarithm to the base two.
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Chapter 13

Universal typical subspaces, Schur-Weyl
duality

Yesterday we solved the quantum estimation task by studying the symmetries of the problem.
We found that the n-qubit Hilbert space can be decomposed as(

C
2
)⊗n ∼=⊕

k

Vn,k ⊗Cm(n,k) (13.1)

X⊗n ∼=
⊕
k

T
(n,k)
X ⊗ Im(n,k) (13.2)

not only for unitaries but in fact for arbitrary operators X on C2. We then considered the
orthogonal projections Pn,k onto the summands in Eq. (13.1). For large n, we found that if we
perform the projective measurement {Pn,k} on ρ⊗n then

p̂ :=
1

2

(
1 +

k

n

)
(13.3)

provides a good estimate of p, the largest eigenvalue of the unknown density operator ρ. In
quantitative terms,

Pr(|p̂− p| ≥ ε) ≤ (n+ 1)22−nδ(p̂∥p) ≤ (n+ 1)22−n
2

ln 2
ε2 , (13.4)

where δ(p̂∥p) denotes the relative entropy (12.13).

13.1 Universal typical subspaces and protocols

There is another interpretation of what we achieved above. For fixed ε > 0, consider the
orthogonal projection

Pn :=
∑

k:|p̂−p|<ε

Pn,k (13.5)

on all summands k in Eq. (13.1) for which |p̂− p| < ε (recall from Eq. (13.3) that we think of p̂
as a function of k). Then Eq. (13.4) implies that

tr
[
Pnρ

⊗n] = 1−Pr(|p̂− p| ≥ ε) ≥ 1− (n+ 1)22−n
2

ln 2
ε2 → 1

for large n. This means that the Hn are typical subspaces!
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What is the corresponding rate? On the other hand, Pn is a projector onto a subspace
Hn ⊆

(
C2
)⊗n of dimension

dimHn =
∑

k:|p̂−p|<ε

dim(Vn,k)m(n, k) ≤
∑

k:|p̂−p|<ε

(k + 1)2nh(p̂) ≤
∑

k:|p̂−p|<ε

(k + 1)2n(h(p)+ε
′)

≤ (n+ 1)22n(h(p)+ε
′).

The first inequality is Eq. (12.10) and in the second we used that |p̂ − p| < ε ensures that
|h(p̂)− h(p)| < ε′ for some ε′ that depends only on ε (and which can be made arbitrarily small
by choosing ε sufficiently small, by continuity of the binary entropy function). Thus, the rate
of the typical subspaces, 1

n log dimHn, is arbitrarily close to h(p) = S(ρ), the von Neumann
entropy of ρ. This is of course something that we already achieved in Chapter 10. But note
that the only input to the construction was p, as is plain from Eq. (13.5). This means that we
have constructed universal typical subspaces, which can be used for any quantum state whose
eigenvalues are {p, 1− p}!

As a direct consequence, we obtain universal protocols for quantum compression and quantum
state transfer that work for any quantum state with fixed spectrum. Simply take the protocols
in Chapters 9 and 10 and replace the typical subspaces used therein (which were constructed
in terms of the eigenbasis of ρ) by the universal typical subspaces constructed above! In fact,
one can even obtain compression protocols that, for a given target rate R, work for any qubit
source whose density operator satisfies S(ρ) < R (and similarly for quantum state transfer). You
discussed this in Exercise 9.3 for classical data compression, and you can work out the quantum
case in Exercise 13.1). This universality is one of the main advantages of the symmetries-based
approach.

13.2 Schur-Weyl duality

Let us discuss the mathematical machinery that we developed yesterday in some more detail.
Our start point is the decomposition (13.1) of the n-qubit Hilbert space as a U(2)-representation,
restated for your convenience: (

C
2
)⊗n ∼=⊕

k

Vn,k ⊗Cm(n,k) (13.6)

X⊗n ∼=
⊕
k

T
(n,k)
X ⊗ Im(n,k) (13.7)

So far, the Hilbert spaces Cm(n,k) were simply vectors spaces.

Remark 13.1. So far, we have simply argued on abstract grounds that the Hilbert space of n
qubits can be decomposed in the form (13.6). Here, the notation ∼= means that there exists a
unitary intertwiner from the left-hand side to the right-hand side. But if we want to implement,
e.g., spectrum estimation in practice, we need to know what this unitary operator looks like. In
other words, we need to find a unitary operator that implements the transformation from the
product basis

|x1, . . . , xn⟩ = |x1⟩ ⊗ . . .⊗ |xn⟩

to a new basis (the “Schur basis”)
|k, i, j⟩

where k ∈ {. . . , n− 2, n}, i ∈ {−k, . . . , k − 2, k}, j ∈ {1, . . . ,m(n, k)}. Note that the right-hand
side is not a tensor product of three spaces, because the allowed values for i and j depend on k.
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However, we can certainly embed it into a larger space where |k, i, j⟩ 7→ |k⟩⊗|i⟩⊗|j⟩ gets mapped
to a product basis vector. In Chapter 15 we will learn how to implement this transformation –
called the quantum Schur transform – by a quantum circuit (see also Theorem 13.4 below).

However, we can also consider (C2)⊗n as a representation of the symmetric group Sn. Since
[Rπ, U

⊗n] = 0, Schur’s lemma (Theorem 5.6) implies that

Rπ ∼=
⊕
k

IVn,k
⊗R(n,k)

π (13.8)

for some operators R(n,k)
π on Cm(n,k). This is a consequence of the following result, which

generalizes part (b) of Schur’s lemma:

Lemma 13.2. Let {Vλ}λ∈Λ a collection of pairwise inequivalent irreps of some group G, with Λ
an arbitrary index set, and m(λ) and n(µ) nonnegative integers for λ, µ ∈ Λ.

(a) Let M : Vλ ⊗Cm(λ) → Vµ ⊗Cn(µ) be an intertwiner. If λ ≠ µ, then M = 0. If λ = µ, then
M is of the form M = IVλ ⊗Mλ for some operator Mλ : C

m(λ) → Cn(λ).
(b) Any intertwiner M :

⊕
λ Vλ ⊗Cm(λ) →

⊕
µ Vµ ⊗Cn(µ) is of the form M =

⊕
λ IVλ ⊗Mλ,

with Mλ as above.

Proof. This is a somewhat painful exercise in applying Schur’s lemma.

(a) For every i = 1, . . . , n(µ) and j = 1, . . . ,m(λ), consider the “block”

Mij :=
(
IVµ ⊗ ⟨i|

)
M (IVλ ⊗ |j⟩) .

This is an operator (!), and in fact an intertwiner Vλ → Vµ. These are irreducible
representations, so Schur’s lemma applies. If λ ≠ µ then the irreps are inequivalent, hence
Mij = 0, hence M = 0. If λ = µ then part (b) of Schur’s lemma shows that Mij ∝ IVλ .
Define an operator Mλ : C

m(λ) → Cn(λ) by Mij = ⟨i|Mλ|j⟩ IVλ . Then

M =
∑
i,j

Mij ⊗ |i⟩ ⟨j| =
∑
i,j

IVλ ⊗ |i⟩ ⟨i|Mλ|j⟩ ⟨j| = IVλ ⊗Mλ.

(b) Apply part (a) to each “block” of M .

Remark 13.3. In class we only discussed the special case where m(λ) = n(λ) for all λ (but the
more general statement is proved identically, as you saw above).

If we apply part 13.2 of the lemma to G = U(2), H = (C2)⊗n then we obtain Eq. (13.8). In
particular, this verifies that the Rπ commute with the projections Pn,k onto the different sectors,
as we claimed in the last lecture. Moreover, since the {Rπ} form a representation, the operators
{R(n,k)

π } turn the spaces Cm(n,k) into representations of Sn. Let us denote these representations
by Wn,k. It turns out that the Wn,k are irreducible and pairwise inequivalent representations
of Sn! We will prove this at the end of this section.

Remark 13.4. Note that we gave no intrinsic definition of the Sn-representations Wn,k. While
the dimensions m(n, k) are uniquely determined, there is more than one intertwiner (13.6) (how
many? see the variant of Schur’s lemma that we derive in Theorem 13.2 below). However,
any choice of intertwiner will yield an equivalent Sn-representation. This is because once the
intertwiner was fixed, the operators R(n,k)

π were uniquely defined in terms of the permutation
action on (C2)⊗n. It is a useful exercise to work this out in some more detail. The representations
Wn,k can also be defined without reference to (C2)⊗n – they are called Specht modules.
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Note, however, that the way that we counted m(n, k) in Section 12.4 gives rise to a less
ambiguous definition of an intertwiner (13.6). Indeed, recall that m(n, k) counts the number of
paths in Fig. 12.2, and that each path corresponds to following the Clebsch-Gordan decomposi-
tion (11.5) such that we arrive at a copy of the irreducible representation Vn,k. For different paths,
these are orthogonal copies are orthogonal (as follows from the unitarity of the Clebsch-Gordan
decomposition). Moreover, note that the intertwiner in the Clebsch-Gordan decomposition is
unique up to phases (this again follows by Theorem 13.2 below). As a consequence, this procedure
identifies an intertwiner (13.6) which is uniquely determined up to a diagonal matrix. We will
explain this more clearly in Chapter 15 and use it to derive a quantum circuit for this intertwiner,
called the quantum Schur transform!

Thus, we obtain the following decomposition of the Hilbert space of n qubits:

(C2)⊗n ∼=
⊕
k

Vn,k ⊗Wn,k (13.9)

which holds as a representation of both U(2) and Sn. The spaces {Vn,k} and {Wn,k} are pairwise
inequivalent, irreducible representations of U(2) and of Sn, respectively. Equation (13.9) shows
that they are “paired up” perfectly in the n-qubit Hilbert space. This is a famous result known
as Schur-Weyl duality. In Exercise 13.2 you will see how to explicitly realize this isomorphism
and construct an intertwiner that implements (13.9) for n = 3.

Schur-Weyl duality has a number of important consequences. For one, it implies that any
operator that commutes with both the action of U(2) and the action of Sn is necessarily a linear
combination of the projections

Pn,k ∼=
⊕
k′

δk,k′IVn,k
⊗ IWn,k

.

You can see this by applying Theorem 13.2 to each of the two group actions and comparing
the result: Any operator that commutes with the U⊗n must have the form

⊕
k IVn,k

⊗ Yk,
while any operator that commutes with the Rπ must have the form

⊕
kXk ⊗ IWn, . But

Xk ⊗ IWn,k
= IVn,k

⊗ Yk holds if and only if Xk ∝ IVn,k
and Yk ∝ IWn,k

. It follows that an
operator that commutes with both group actions is necessarily a linear combination of the
Pn,k, as we claimed. In particular, this means that {Pn,k} is the most fine-grained projective
measurement that has both symmetries of the spectrum estimation problem!

Remark 13.5. We can also interpret Eq. (13.9) as the decomposition of (C2)⊗n with respect
to the product group G = U(2) × Sn. Each Vn,k ⊗Wn,k is an irreducible representation of G
(this follows from the argument just given). Conversely, any irreducible representation of the
product group is a tensor product of an irreducible U(2)-representation with an irreducible
Sn-representation (a pleasant exercise using Schur’s lemma).

Proof of Schur-Weyl duality

We still need to show that the Wn,k are irreducible and pairwise inequivalent. We first prove a
useful lemma (for general d, not just d = 2):

Lemma 13.6. Let Y be an operator on (Cd)⊗n that commutes with Rπ for every π ∈ Sn. Then
Y can be written as a linear combination of operators of the form X⊗n.

We will give two proofs – one concrete and one abstract proof.
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First proof. Since Y =
∑

π∈Sn
RπY R

†
π, it suffices to show that any operator of the form∑

π∈Sn

RπZR
†
π

can be writen as a linear combination of X⊗n’s. Since any operator Z can be written as a linear
combination of operators of the form Z1 ⊗ . . . ⊗ Zn, it suffices to prove the claim for a single
such Z = Z1 ⊗ . . .⊗ Zn. Now we can use the following trick

∂s1=0 . . . ∂sn=0

(
n∑
i=1

siZi

)⊗n

=
∑
π∈Sn

Rπ (Z1 ⊗ . . .⊗ Zn)R†
π, (13.10)

and the claim follows because the left-hand side is a limit of linear combinations of operators of
the form X⊗n, and hence also a linear combination of such operators (finite-dimensional vector
spaces are closed; we used a similar argument in Chapter 6).

Example 13.7. It might be instructive to consider an example to clarify why Eq. (13.10) holds.
For n = 2,

∂s1=0∂s2=0 (s1Z1 + s2Z2)
⊗2 = ∂s1=0

(
Z2 ⊗ (s1Z1 + s2Z2) + (s1Z1 + s2Z2)⊗ Z2

∣∣∣
s2=0

)
= ∂s1=0 (Z2 ⊗ (s1Z1) + (s1Z1)⊗ Z2) = Z2 ⊗ Z1 + Z1 ⊗ Z2

and now it is clear how to prove the general case.

Second proof. Write L(H) for the complex vector space of linear operators on some H. We
have a canonical isomorphism L(H)⊗k ∼= L(H⊗k). Permuting the tensor factors of L(H)⊗k
corresponds precisely to conjugating an operator Y ∈ L(H⊗k) with the corresponding permutation
operator Rπ! Therefore, Symk(L(H)) ∼= {Y : [Y,Rπ] = 0}. But we know that the vectors
(operators!) X⊗k form an overcomplete basis of the symmetric subspace (from Eq. (4.9)), so the
claim follows.

Theorem 13.6 gives us a way of producing contradictions by exhibiting operators that commute
with Sn but which are not linear combination of X⊗n’s, i.e., not of the form

∑
i

ziX
⊗n
i =

⊕
k

(∑
i

ziT
(n,k)
X

)
⊗ IWn,k

. (13.11)

We will use this to prove that the Wn,k are irreducible and pairwise equivalent.
First, assume for sake of finding a contradiction that Wn,k was not irreducible. Then we

could decompose

Wn,k =Wn,k,1 ⊕Wn,k,2

as an orthogonal direct sum of two nontrivial invariant subspaces. Let Q(n,k) denote the projector
onto the first summand. Then ⊕

k′

δk,k′IVn,k
⊗Q(n,k)

is an intertwiner for the Sn action which is clearly not of the form (13.11) – this is the desired
contradiction!
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We now show that no two Wn,k are equivalent. Again, we assume for sake of finding a
contradiction that Wn,k1 and Wn,k2 are equivalent, where k1 ̸= k2. This means that there exists a
nontrivial intertwiner J : Wn,k1 →Wn,k2 . We can lift this to obtain intertwiner for the Sn-action
on (C2)⊗n by sending a copy of Wn,k1 onto a copy of Wn,k2 , say

|0⟩Vn,k2
⟨0|Vn,k1

⊗ J.

Again this is not of the form (13.11) – in this case because the latter operators have no “off-diagonal
blocks” with respect to k. This is the desired contradiction.

It is also true that any operator that commutes with every U⊗n is necessarily a linear
combination of the operators Rπ (compare this with Theorem 13.6). Mathematically, we say
that the two representations span each other’s commutants. We will prove this momentarily after
a preparatory lemma.

Lemma 13.8. Let Y be an operator on (Cd)⊗n that commutes with U⊗n for every U ∈ U(d).
Then Y commutes with X⊗n for every operator X on Cd.

Proof. Let M be a Hermitian operator.

eısM̃Y e−isM̃ = (eısM )⊗nY (e−isM )⊗n = Y

for every s ∈ R. Taking the derivative at s = 0, it follows that iM̃Y − iY M̃ = 0, i.e., [M̃, Y ] = 0.
Clearly, this implies that [M̃, Y ] = 0 for arbitrary operator M , whether Hermitian or not. But
then

[(eM )⊗n, Y ] = [eM̃ , Y ] = 0

(write the matrix exponential eM̃ as a power series; it commutes term by term with Y ). Any
invertible operator can be written in the form X = eM , and we can extend the claim by continuity
to arbitrary X.

Lemma 13.9. Let Y be an operator on (Cd)⊗n that commutes with U⊗n for every U ∈ U(d).
Then Y can be written as linear combination of the operators Rπ for π ∈ Sn.

Proof. Let H := (Cd)⊗n and consider the maximally entangled state in the doubled Hilbert
space,

|Φ⟩ :=
∑
x

|x⟩ ⊗ |x⟩ ∈ H ⊗H,

where |x⟩ denotes some basis of H (perhaps the computational basis). It is enough to show that
(Y ⊗ I) |Φ⟩ can be written as a linear combination of the vectors (Rπ⊗ I) |Φ⟩, since we can always
recover Y from (Y ⊗ I) |Φ⟩ by using that (I ⊗ ⟨Φ|)(|Φ⟩ ⊗ I) = I, as in the proof of teleportation.

Why should the above be true? Let us consider H⊗H as a representation of Sn by Rπ ⊗ I.
Then

H0 := span{(Rπ ⊗ I) |Φ⟩ : π ∈ Sn}

is an invariant subspace, so the orthogonal projector onto H0 – let us denote it by P – commutes
with Rπ ⊗ I for every π ∈ Sn (a fact that we used many times throughout this course). As a
consequence, each block (I ⊗ ⟨x|)P (I ⊗ |y⟩) commutes with Rπ. By Theorem 13.6, this means
that

P =
∑
x,y

Pxy ⊗ |x⟩ ⟨y| for certain Pxy ∈ span{X⊗n}.
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At last, we can use the assumption. Since Y commutes with every U⊗n and hence, by The-
orem 13.8, with any X⊗n, it commutes with each Pxy, and so (Y ⊗ I)P = P (Y ⊗ I). As a
consequence,

(Y ⊗ I) |Φ⟩ = (Y ⊗ I)P |Φ⟩ = P (Y ⊗ I) |Φ⟩ ∈ H0,

which is what we wanted to show.

It is instructive to compare Theorem 13.9 with the situation that you analyzed in Exercise 7.4,
which was a very special case. Theorem 13.9 is highly useful to compute averages with respect
to the uniform probability distribution on pure states (Eq. (4.3)) or with respect to the Haar
measure of the unitary group, which we will introduce next week (Eq. (14.4)). For example,
for any operator Z on (Cd)⊗n, Y :=

∫
dU U⊗nZU †,⊗n has these symmetries and hence can be

written as a linear combination of the permutation operators Rπ.

Exercises

13.1 Universal quantum data compression: In class, we discussed a quantum compression
protocol that works for all qubit ensembles {px, |ψx⟩} for which the associated density
operator ρ =

∑
x px |ψx⟩ ⟨ψx| has given eigenvalues {p, 1− p}.

Your task in this exercise is to design a universal compression protocol that works for all
qubit ensembles with S(ρ) < S0, where S0 > 0 is a given target compression rate.

(a) Show that, for all S0 > 0, there exist projectors P̃n on subspaces H̃n of (C2)⊗n such
that:
(a) For all density operators ρ with S(ρ) < S0, tr

[
P̃nρ

⊗n
]
→ 1 as n→∞,

(b) The dimension of H̃n is at most 2n(S0+δ(n)) for some function δ with δ(n)→ 0 as
n→∞.

Hint: Use the spectrum estimation projectors Pj in a clever way.
(b) Use the projectors P̃n to construct a compression protocol with compression rate S0 that

works for all qubit ensembles with S(ρ) < S0 (i.e., show that in the limit of large block
length n, the average squared overlap between the original state and the decompressed
state goes to one).
Hint: Follow the same construction as in Chapter 9.

13.2 Schur-Weyl duality: Your goal in this exercise is to concretely identify irreducible rep-
resentations of U(2) and of Sn in the n-qubit Hilbert space, and to explicitly realize the
Schur-Weyl duality in a special case. Let k ∈ {0, 1, . . . , n} be an integer such that n− k is
even.

(a) Show that the invariant subspace

V ′
n,k :=

{
|ϕ⟩ ⊗ |Ψ−⟩⊗(n−k)/2

: |ϕ⟩ ∈ Symk(C2)
}
⊆ (C2)⊗n

is an irreducible U(2)-representation equivalent to Vn,k. As always, |Ψ−⟩ denotes
the singlet, and U(2) acts on (C2)⊗n by U⊗n. How can you obtain further U(2)-
representations in (C2)⊗n that are equivalent to Vn,k?
Hint: Recall the symmetry of the singlet state from Exercise 3.5.
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(b) Show that the invariant subspace

W ′
n,k := span

{
Rπ

(
|0⟩⊗k ⊗ |Ψ−⟩⊗(n−k)/2

)
: π ∈ Sn

}
⊆ (C2)⊗n

is an irreducible Sn-representation equivalent to Wn,k. How can you obtain further
Sn-representations in (C2)⊗n equivalent to Wn,k?
Hint: You are allowed to use the statement of Schur-Weyl duality.

Now consider the case of three qubits. Here, n = 3, so the only two options for k are k = 1, 3.

(c) Show that W3,3 is equivalent to the trivial representation C, while W3,1 is equivalent to
the two-dimensional irreducible representation H = {(α, β, γ) : α + β + γ = 0} from
Exercise 5.1.

(d) Construct a unitary operator (V3,3 ⊗C)⊕ (V3,1 ⊗H)→ (C2)⊗3 that is an intertwiner
for the actions of both U(2) and S3.

Hint: In (c), construct an explicit intertwiner H ∼=W ′
3,1 that you can re-use in (d).
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Chapter 14

Quantum state tomography

Today, we will solve the task of estimating an unknown quantum state given many copies –
a task that is also known as quantum state tomography. We previously solved this for pure
states (Chapter 4), but now we allow arbitrary density operator ρ, which is significantly more
challenging. Thus, given ρ⊗n, we would like to design a POVM measurement that yields an
estimate ρ̂ ≈ ρ with high probability,

ρ⊗n −→ ρ̂ ≈ ρ.

First, however, we will generalize the fidelity from pure states to arbitrary density operators. It
will be convenient in the analysis of our tomography measurement.

14.1 The fidelity between quantum states

In Section 7.4 we defined the trace distance

T (ρ, σ) = max
0≤Q≤IH

tr[Q(ρ− σ)]

as a distance measure between density operators (whether pure or mixed).
Another very useful measure was the fidelity, which we defined for pure states as the

overlap |⟨ϕ|ψ⟩| and used numerous times in our analyses. The fidelity also generalizes nicely to
mixed states. For arbitrary density operators ρ and σ on H =: HA, we define it by

F (ρ, σ) := sup
R,|ΨAR⟩,|ΦAR⟩

|⟨ΨAR|ΦAR⟩|, (14.1)

where we optimize over arbitrary Hilbert spaces HR such that there exist purifications ΨAR

of ρ as well as ΦAR of σ. The fidelity is well-defined since you know from Chapter 8 that such
purifications always exist for HR := H. Thus, 0 ≤ F (ρ, σ) ≤ 1, just as for pure states. Moreover,
F (ρ, σ) = 1 if and only if ρ = σ (the “only if” follows from the upper bound in Eq. (14.2) below).
Note that, by definition, the fidelity has a nice operational interpretation: It is close to one if
and only if there exist two purifications with overlap close to one.

When ρ = |ϕ⟩ ⟨ϕ| and σ = |ψ⟩ ⟨ψ| are themselves pure, then any purification is a tensor
product (Eq. (8.1)). Using this observation, it is not hard to see that in this case F (ρ, σ) = |⟨ϕ|ψ⟩|,
so we recover our definition for pure states.

The fidelity is monotonic with respect to partial traces:

F (ρA, σB) ≥ F (ρAB, σAB)
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This follows directly from the observation that any purification of ρAB can be interpreted as
a purification of ρA, and likewise for σAB and σA. (In Exercise 7.7 you proved that the trace
distance satisfies a similar monotonicity property, but with “≤”.)

When ρ or σ is mixed, it is not longer the case that there is a one-to-one relation between
fidelity and trace distance. In general, the trace distance and fidelity are related by the following
Fuchs-van de Graaf inequalities :

1− F (ρ, σ) ≤ T (ρ, σ) ≤
√
1− F 2(ρ, σ) (14.2)

The upper bound is easy to prove: For any two purifications |ΨAR⟩ of ρ and |ΦAR⟩ of σ, we have
T (ρσ) ≤ T (ΨAR,ΦAR) =

√
1− |⟨Ψ|Φ⟩|2 by the relationship between trace distance and fidelity

for pure states that you proved in (f) of Exercise 2.4. If we optimize over all purifications we
obtain the upper bound in Eq. (14.2). We will not prove (nor need) the lower bound.

A highly useful property that makes the fidelity more amenable to calculations is the fact
that in Eq. (14.1) we can in fact restrict to a single Hilbert space HR such that there exist
purificiations of both ρ and σ on HA ⊗HR. You can prove this using the results of Exercise 7.5,
from where you also know that HR = HA is a valid such choice. In particular, it follows that the
supremum is in fact a maximum! Using this fact, it is not too hard to establish the following
alternative formula for the fidelity:

F (ρ, σ) = tr
√√

ρσ
√
ρ = tr

√√
σρ
√
σ. (14.3)

As in Exercise 7.5,
√
M denotes the square root of a positive semidefinite operator M , defined

by taking the square root of all eigenvalues.

Remark 14.1. This can also be written as F (ρ, σ) = ∥√ρ
√
σ∥1, where ∥X∥1 := tr[

√
X†X] =

tr[
√
XX†] is the trace norm for arbitrary (not necessarily Hermitian) operators. It can be

calculated as the sum of the singular values of X (for a Hermitian operator, the singular values
are the absolute values of the eigenvalues, so this is a proper generalization).

14.2 The measurement

The spectrum estimation measurement {Pn,k} on (C2)⊗n had a single outcome k, corresponding
to the estimate p̂ := 1

2

(
1 + k

n

)
. The key idea is that we would like to refine this measurement

and design a POVM measurement {Qk,U} with two outcomes – k and U – such that our estimate
for the unknown density operator is

ρ̂ = U

(
p̂

1− p̂

)
U †.

Thus, the outcome U is a unitary operator that determines the eigenbasis of ρ̂. (We should
perhaps write Qn,k,U instead of Qk,U to indicate that these are operators on (C2)⊗n. But the
notation as is is already quite a mouthful so we will keep n implicit in the notation.)

The POVM {Qk,U} has both a discrete and a continuous outcome, so we know from Section 4.1
that we need to choose a reference measure on the space of outcomes. For k we will use the
counting measure (

∫
dk =

∑
k, see Theorem 4.2), but which measure should we choose on U(2)?

Guided by symmetry, we will choose the Haar probability measure dU , which is the unique
probability measure such that ∫

dUf(U) =

∫
dUf(V UW ) (14.4)
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for any two unitaries V,W ∈ U(2) (we say that the measure is “left-invariant” and “right-invariant”).
In other words, if U is a Haar-random unitary (i.e., a random unitary with distribution the Haar
measure dU) then so is V UW , which can be interpreted as saying that we do not privilege any
unitary over any other.

Remark 14.2. We asked a similar question in the case of the POVM for pure state estimation.
There, we chose the “uniform” probability distribution dψ on the set of pure states, which was
likewise natural. In mathematical terms, if ψ is a random pure state drawn from dψ and V an
arbitrary fixed unitary then V ψV † has the same distribution as ψ (see Equation (4.3)), and we
said that dψ is the uniquely probability measure with this property. It is not hard to verify that
if U is a Haar-random unitary then U |0⟩ ⟨0|U † is a random pure state with distribution dψ.

Thus, in order for {Qk,U} to be a POVM, we need that Qk,U ≥ 0 as well as∑
k

∫
dU Qk,U = I. (14.5)

Moreover, we would like for the POVM {Qk,U} to be a refinement of {Pn,k}, so that the
k have the same meaning as before. That is, if we forget about the outcome U then we
would like to get the same statistics for k as if we performed the measurement {Pn,k}. Since
Prσ(outcome k) =

∫
dU tr[Qk,Uσ], this means that we would like to demand that∫

dU Qk,U = Pn,k (14.6)

which clearly implies Eq. (14.5) (since we know that {Pn,k} is a measurement).

The ansatz

What could such a POVM look like? We will make the following ansatz:

Qk,U ∝ Pn,kρ̂⊗nPn,k = Pn,kU
⊗n
(
p̂

1− p̂

)⊗n
U †,⊗nPn,k (14.7)

for a proportionality constant that we still need to determine.
To see that this is natural, we observe that, for k = n, Pn,n = Πn, the projector onto the

symmetric subspace Symn(C2). Moreover, in this case p̂ = 1, so ρ̂ = U |0⟩ ⟨0|U † =: |ψ̂⟩ ⟨ψ̂| is a
pure state, so |ψ̂⟩⊗n is already contained in the symmetric subspace, hence

Qn,U ∝ Πnρ̂
⊗nΠn = |ψ̂⟩⊗n ⟨ψ̂|⊗n .

The right-hand side is exactly proportional to the uniform POVM (4.10) that we used for pure
state estimation in Chapter 4 – that’s already an encouraging sign!

Moreover, note that Qk,U has permutation symmetry (i.e., [Rπ, Qk,U ] = 0) and that it is
covariant with respect to the unitary group in the following sense: For all V ∈ U(2),

= tr
[
ρ⊗nQk,U

]
= tr

[
V ⊗nρ⊗nV †,⊗nV ⊗nQk,UV

†,⊗n
]
tr
[
(V ρV †)⊗nQk,V U

]
.

Note that if Qk,U corresponds to ρ̂ then Qk,V U corresponds to V ρ̂V †. What this means is that
the following two experiments produce the same result:

(a) Prepare (V ρV †)⊗n and measure the POVM {Qk,U}.
(b) Prepare ρ⊗n, measure the POVM {Qk,U}, with outcome ρ̂, and report V ρ̂V †.

We could summarize this as

ρ 7→ V ρV † ; ρ̂ 7→ V ρ̂V †.
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The proportionality constant

We now show that we can choose a suitable normalization constant in Eq. (14.7) so that Eq. (14.6)
holds true. The key observation is that with respect to the Schur-Weyl duality

(C2)⊗n ∼=
⊕
k

Vn,k ⊗Wn,k

we can use our usual equation Eq. (12.3) (with A = ρ̂) to write

Qk,U ∝ Pn,kρ̂⊗nPn,k ∼= T
(n,k)
ρ̂ ⊗ IWn,k

(we omit the
⊕

k′ δk,k′). We can thus calculate∫
dU Pn,kρ̂

⊗nPn,k ∼=
∫
dU T

(n,k)
ρ̂︸ ︷︷ ︸

∝IVn,k

⊗IWn,k
. (14.8)

The underbraced equation is a consequence of Schur’s lemma! Indeed, the indicated operator is
a self-intertwiner on the irreducible representation Vn,k, since

T
(n,k)
V

∫
dU T

(n,k)
ρ̂ = T

(n,k)
V

∫
dU T

(n,k)
U T

(n,k)(
p̂
1−p̂

)T (n,k)

U† =

∫
dU T

(n,k)
V U T

(n,k)(
p̂
1−p̂

)T (n,k)

U†

=

∫
dU T

(n,k)
U T

(n,k)(
p̂
1−p̂

)T (n,k)

U†V
=

∫
dU T

(n,k)
U T

(n,k)(
p̂
1−p̂

)T (n,k)

U† T
(n,k)
V =

∫
dU T

(n,k)
ρ̂ T

(n,k)
V

Here we used repeatedly that T (n,k)
XY = T

(n,k)
X T

(n,k)
Y , which is clear from Eq. (12.4). In the third

step we used that the integral is invariant under the substitution U 7→ V †U .
Equation (14.8) shows that ∫

dU Pn,kρ̂
⊗nPn,k ∝ Pn,k, (14.9)

so it remains to figure out the correct normalization constant to turn this into an equality. As
usual, we only need to compare traces. On the one hand, we have

tr
[
Pn,kρ̂

⊗nPn,k
]
= tr

[
T
(n,k)
ρ̂

]
dimWn,k

This trace not depend on U , so it is equal to the trace of the left-hand side operator in Eq. (14.9).
On the other hand, the trace of the right-hand side operator simply

tr [Pn,k] = dimVn,k dimWn,k = (k + 1) dimWn,k

We conclude that the appropriately normalized POVM elements are given by

Qk,U =
k + 1

tr
[
T
(n,k)
ρ̂

]Pn,kρ̂⊗nPn,k. (14.10)

108



14.3 Analysis of the measurement

We follow the approach of [HHJ+16] (cf. [Key06, OW16, OW17a] and the wonderful survey
[OW17b]). Similarly to when we analyzed the spectrum estimation measurement, we will show
that the probability density tr [Qk,Uρ

⊗n] is exponentially small unless ρ ≈ ρ̂. We will need to use
the full strength of the Schur-Weyl toolbox.

We start with

tr
[
Qk,Uρ

⊗n] = k + 1

tr
[
T
(n,k)
ρ̂

] tr [Pn,kρ̂⊗nPn,kρ⊗n] = k + 1

tr
[
T
(n,k)
ρ̂

] tr [T (n,k)
ρ̂ T (n,k)

ρ ⊗ IWn,k

]
=

(k + 1)m(n, k)

tr
[
T
(n,k)
ρ̂

] tr
[
T
(n,k)
ρ̂ T (n,k)

ρ

]
=

(k + 1)m(n, k)

tr
[
T
(n,k)
ρ̂

] tr
[
T
(n,k)√
ρρ

√
ρ

]

=
(k + 1)m(n, k)

tr
[
T
(n,k)
ρ̂

] tr

[
T
(n,k)√√

ρρ
√
ρ
2

]
≤ (k + 1)2nh(p̂)

tr
[
T
(n,k)
ρ̂

] tr

[
T
(n,k)√√

ρρ
√
ρ
2

]
(14.11)

We first used Eq. (14.10), then Eq. (12.3), then that T (n,k)
XY = T

(n,k)
X T

(n,k)
Y as well as the cyclicity

of the trace, and finally the upper bound m(n, k) ≤ 2nh(p̂) from Eq. (12.10).
We need to find a lower bound on tr

[
T
(n,k)
ρ̂

]
and an upper bound on tr

[
T
(n,k)
X2

]
, where

X :=
√√

ρρ
√
ρ is the operator whose trace is the fidelity (Eq. (14.3))! (We cannot use the upper

bound (12.11) since X2 is not necessarily a density operator.) To obtain these, we proceed as in
Eq. (12.11):

tr
[
T
(n,k)
ρ̂

]
= (det ρ̂)(n−k)/2 T

(k)
ρ̂ = (p̂(1− p̂))(n−k)/2 T (k)(

p̂
1−p̂

)

= p̂(n−k)/2(1− p̂)(n−k)/2
k∑

m=0

p̂m(1− p̂)k−m

≥ p̂(n−k)/2(1− p̂)(n−k)/2p̂k = p̂(n+k)/2(1− p̂)(n−k)/2 = 2−nh(p̂)

(14.12)

(In contrast to Eq. (12.11), we now evaluate the trace for ρ̂, and we now lower bound the sum by
a single term.) For the upper bound, let us write {q, 1− q} for the eigenvalues of X/ tr[X].

tr
[
T
(n,k)
X2

]
= tr

[
T
(n,k)
(X/ trX)2

]
(trX)2n =

(
q2(1− q)2

)(n−k)/2
T
(k)(
q2

(1−q)2

) (trX)2n

= qn−k(1− q)n−k
k∑

m=0

q2m(1− q)2(k−m) (trX)2n

≤ qn−k(1− q)n−k(k + 1)q2k (trX)2n ≤ (k + 1)qn+k(1− q)n−k (trX)2n

= (k + 1)2−2n(h(p̂)+δ(p̂∥q)) (trX)2n

≤ (k + 1)2−2nh(p̂)F (ρ̂, ρ)2n.

(14.13)

We now use Eqs. (14.12) and (14.13) in Eq. (14.11) and obtain:

tr
[
Qk,Uρ

⊗n] ≤ (k + 1)2nh(p̂)

2−nh(p̂)
(k + 1)2−2nh(p̂)F (ρ̂, ρ)2n ≤ (n+ 1)2F (ρ̂, ρ)2n

This is the desired upper bound! Indeed, it implies that, for ever yε > 0,

Prρ⊗n(F (ρ̂, ρ) ≤ 1− ε) =
∑
k

∫
dU 1[F (ρ̂,ρ)≤1−ε] tr

[
Qk,U ρ̂

⊗n]
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≤
∑
k

∫
dU 1[F (ρ̂,ρ)≤1−ε](n+ 1)2 (1− ε)2n ≤ (n+ 1)3 (1− ε)2n ,

(1[...] denotes the characteristic function, which is equal to one when the condition is satisfied,
and zero otherwise). This expression converges to zero exponentially with n!

We can also express this in terms of the trace distance. E.g.,

Prρ⊗n(T (ρ̂, ρ) ≥ ε) = Prρ⊗n(F (ρ̂, ρ) ≤ 1− ε2) ≤ (n+ 1)3
(
1− ε2

)2n
where we have used the (easy) upper bound in Eq. (14.2) and the result that we just proved.

14.4 The Schur-Weyl toolbox

Below we assemble all important facts and formulas about the representation theory of the
n-qubit Hilbert space that we obtained past week (the “Schur-Weyl toolbox”). It contains two
slight generalizations of formulas that we discussed today:

• The lower bound in Eq. (14.14), which is proved just like in Eq. (14.12) except for a general
density operator ρ.

• The upper bound in Eq. (14.15), which is proved just like Eq. (14.13) but for general κ.

Schur-Weyl duality:

(C2)⊗n ∼=
⊕

k=...,n−2,n

Vn,k ⊗Wn,k,

X⊗n ∼=
⊕
k

T
(n,k)
X ⊗ IWn,k

, where T
(n,k)
X := (detX)(n−k)/2 T

(k)
X ,

Rπ ∼=
⊕
k

IVn,k
⊗R(n,k)

π .

Vn,k and Wn,k are pairwise inequivalent, irreducible representations of U(2) and Sn, respec-
tively.

Dimensions:

dimVn,k = k + 1 ≤ n+ 1,

dimWn,k = m(n, k) ≤ 2nh(p̂), where p̂ =
1

2

(
1 +

k

n

)
.

There are ≤ n+ 1 possible values of k.

Estimates:

2−n
[
h(p̂)+δ(p̂∥p)

]
≤ tr

[
T (n,k)
ρ

]
≤ (k + 1)2−n

[
h(p̂)+δ(p̂∥p)

]
where ρ has eigenvalues {p, 1− p},

(14.14)
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More generally, if X ≥ 0 and κ > 0:

tr
[
T
(n,k)
Xκ

]
≤ (k + 1)2−nκ

[
h(p̂)+δ(p̂∥q)

]
(trX)κn , where

X

trX
has eigenvalues {q, 1− q}.

(14.15)

Spectrum estimation:

Pn,k ∼=
⊕
k′

δk,k′IVn,k
⊗ IWn,k

,

ρ⊗n ∼=
⊕
k

T (n,k)
ρ ⊗ IWn,k

=:
⊕
k

pk ρVn,k
⊗ τWn,k

,

and so

pk = tr
[
Pn,kρ

⊗n] ≤ (n+ 1)2−nδ(p̂∥p) ≤ (n+ 1)2−n
2

ln 2
(p̂−p)2

tr
[
Pnρ

⊗n] ≥ 1− (n+ 1)22−n
2

ln 2
ε2

where Pn :=
∑

k:|p̂−p|<ε Pn,k is the projector onto the universal typical subspace with
parameter ε.

Beyond qubits

How does the Schur-Weyl toolbox generalize beyond qubits? This is best explained by making a
simple coordinate change and instead of by (n, k) parametrizing all representations by

λ = (λ1, λ2) =

(
n+ k

2
,
n− k
2

)
∈ Z2.

We can identify λ with a so-called Young diagram with two rows, where we place λ1 boxes in the
first and λ2 boxes in the second row. E.g.,

λ = (7, 3) =

We always demand that λ1 ≥ λ2, corresponding to k ≥ 0. Note that the total number of boxes is
λ1 + λ2 = n, while k = λ1 − λ2 is the difference of row lengths.

If we write Vλ := Vn,k and Wλ :=Wn,k, then the Schur-Weyl duality (13.9) becomes

(C2)⊗n ∼=
⊕
λ

Vλ ⊗Wλ, (14.16)

where we sum over all Young diagrams with n boxes and at most two rows.

Remark 14.3. In Theorems 5.3 and 5.4 and Exercise 5.1 we already discussed the irreducible
representations of S3. In the Young diagram notation, W is the trivial representation and
W is the two-dimensional representation that you proved to be irreducible in Exercise 5.1.

You will verify this in Exercise 13.2. Note that these dimensions agree precisely with m(3, 3) = 1
and m(3, 1) = 2, as they should. Together with the sign representation, W , these are all the

irreducible representations of S3 (up to equivalence). Since its Young diagram has three rows,
the sign representation does not occur in (C2)⊗3. Indeed, it would correspond to antisymmetric
tensors – but the antisymmetric subspace

∧3
C2 = {0} is zero-dimensional.

111



The notation λ is quite suggestive. Indeed, let us define the normalization of a Young diagram
λ by λ̄ = λ/n = (λ1/n, λ2/n), where n = λ1 + λ2. This is a probability distribution, and

λ̄1 =
1

2

(
1 +

k

n

)
= p̂, λ̄2 =

1

2

(
1− k

n

)
= 1− p̂.

Thus, spectrum estimation can be rephrased as follows: When we measure {Pλ} on ρ⊗n and the
outcome is λ, then λ̄ is a good estimate for the spectrum of ρ. Similarly, we can describe our
POVM measurement by the POVM elements {Pλ,U := Pλρ̂

⊗nPλ}, where ρ̂ = U diag(λ̄)U †.

The key point now is the following: Eq. (14.16) generalizes quite directly from qubits to
arbitrary d. This is because the relevant irreducible representations of U(d) are labeled by Young
diagrams with now (at most) d rows, while the irreps of Sn are labeled by Young diagrams with
n boxes. We thus obtain:

(Cd)⊗n ∼=
⊕
λ

Vλ ⊗Wλ,

where we now sum over all Young diagrams with n boxes and at most d rows. All results obtained
in this course generalize appropriately. The technical ingredients required for this are, e.g., the
Weyl dimension formula (for dimVλ) and the hook length formula (for dimWλ). The trace
tr[T

(λ)
X ] is a so-called character which can be estimated in the same fashion as above (or evaluated

more precisely using the Weyl character formula).

Remark 14.4. In fact, note that the core statement of the duality – that pairwise inequivalent
irreducible representations of U(d) and of Sn are lined up in “diagonal” fashion – follows from
basically identical reasoning as for d = 2. Remember that the two main ingredients were that
(i) X⊗n acts block-diagonally with respect to λ and nontrivially on the tensor factors Vλ only
(whatever this action looks like), and (ii) that every operator that commutes with all permutations
is necessarily in the span of operators of the form X⊗n. Our proof of (i) generalizes readily and
both proofs that we gave for (ii) work for arbitrary d (see Theorem 13.6; the first proof does not
even rely on the fact that Symn(Cd) is irreducible).

See, e.g., [FH13, EGH+11, Har05, Chr06, Wal14] for further detail that expand on our very
heuristic discussion.
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Chapter 15

Quantum circuits, swap test, quantum
Schur transform

In the past two weeks we used Schur-Weyl duality as an important tool to solve various information
theoretic tasks (Chapters 12 to 14). In particular we often switched back and forth between

(C2)⊗n ∼=
⊕
k

Vn,k ⊗Wn,k, (15.1)

using a unitary intertwiner implied by the notation “∼=”. Mathematically, this is a straightforward
operation – but how can we actually realize this transformation in practice? (We posed this
question already in Theorems 13.1 and 13.4.)

For our purposes it will be sufficient to worry about the action of the unitary group and
ignore the action of permutation group. Indeed, the projections {Pn,k} that were relevant for
spectrum estimation and compression as well as the tomography POVM {Qk,U} each act by the
identity operator on the Sn-irreps Wn,k. Moreover, we may restrict to SU(2), since we always
know that scalars act by the n-th tensor power (indeed, we derived Eq. (15.1) in Chapter 12 by
reasoning about SU(2) alone). Thus what we would like to do is to construct a unitary operator

(C2)⊗n →
⊕
k

Symk(C2)⊗Cm(n,k) (15.2)

that is an intertwiner for SU(2). The n-qubit Hilbert space on the left-hand side has the
(computational) product basis

|b1, . . . , bn⟩ = |b1⟩ ⊗ . . .⊗ |bn⟩ ,

while the right-hand side likewise has a natural basis that we could label

|k,m,p⟩ := |ωk,m−n⟩ ⊗ |p⟩ ∈ Symk(C2)⊗Cm(n,k) ⊆
⊕
k

Symk(C2)⊗Cm(n,k).

Here, k ∈ {. . . , n− 2, n} labels the sector, m ∈ {0, 1, . . . , k} our favorite basis vectors |ωm,k−m⟩
of the symmetric subspace (Eq. (6.1)), and p the different copies of Symk(C2). Why is there a
vector sign in p? Recall that m(n, k) was precisely the number of paths from (0, 0) to (n, k) in
Fig. 12.2. We can label any such path by a string p = p1 . . . pn, where each pi = ± corresponding
to making a step to the right and going either up (+) or down (-). (Note that not all such strings
correspond to valid paths: some do not arrive at the right endpoint, others go below zero.)
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(a)

(b)

Figure 15.1: (a) The Schur transform (15.3). As usual we label subsystems by upper-case symbols.
(b) We can implement the measurement {Pn,k} by first applying the Schur transform and then
measuring the K-system.

Now, since the values of m and p are constrained by k, the vectors |k,m,p⟩ do not naturally
live in a tensor product space! However, we can safely think of it as a subspace of the tensor
product space

C
n+1 ⊗Cn+1 ⊗ (C2)⊗n

since (i) there are at most n+ 1 options for k, (ii) the dimension of Symk(C2) is k + 1 ≤ n+ 1,
and (iii) each path p gives rise to a computational basis state |p⟩. Thus, what we will be after is
an isometry

VSchur : (C
2)⊗n −→ C

n+1 ⊗Cn+1 ⊗ (C2)⊗n (15.3)

This transformation is called the quantum Schur transform (Fig. 15.1, (a)).
Why is this convenient? The isometry nicely separates the three pieces of information that

we care about – the sector k and the corresponding data in Vn,k and in Cm(n,k) – into three
different subsystems. For example, we can now implement the spectrum estimation measurement
{Pn,k} by first applying VSchur and then measuring the K-subsystem. In other words,

Pn,k = V †
Schur (|k⟩ ⟨k|K ⊗ IM ⊗ IP )VSchur.

This is visualized in Fig. 15.1, (b). The goal of today’s lecture will be to design a quantum circuit
for the quantum Schur transform.

15.1 Quantum circuits

Just like we typically describe computer programs or algorithms in terms of simple elementary
instructions, in quantum computing we are interested in describing “quantum software” in terms
of “simple” building blocks. These building blocks are quantum gates, i.e., operations that involve
only a smaller number of qubits (or qudits). We obtain a quantum circuit by connecting the
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Figure 15.2: Illustration of a quantum circuit, composed of four unitary quantum gates and a
single measurement. The first qubit is initialized in state |0⟩ and the other three wires are inputs
to the circuit.

output of some quantum gates by “wires” with the inputs of others. We will allow both gates
that apply unitaries as well measurements of individual qubits in the standard basis {|i⟩}. In
addition, we will allow ourselves to add qubits that are initialized in a basis state |i⟩ (such qubits
are often called “ancillas”). For example, the circuit in Fig. 15.2 first adds a qubit in state |0⟩,
then performs the unitary

(U3 ⊗ U4) (IC2 ⊗ U2 ⊗ IC2) (U1 ⊗ IC2 ⊗ IC2)

and then measures one of the qubits. In the absence of measurements and initializations, a
quantum circuit performs a unitary transformation from the input qubits to the output qubits.
In the absence of measurements alone, but allow initializations, the quantum circuit implements
an isometry from the input qubits to the outputs qubits.

The number of gates in a quantum circuit is known as the (gate) complexity of that circuit.
Intuitively, the higher the complexity the longer it would take a quantum computer to run this
circuit. This is because we expect that a quantum computer, in completely analogy to a classical
computer, will be able to implement each gate and measurement in a small, fixed amount of
time. Much of the field of quantum computation is concerned with finding quantum circuits and
algorithms of minimal complexity – with a particular emphasis on finding quantum algorithms
that outperform all known classical algorithms. For example, Peter Shor’s famous factoring
algorithm outperforms all known classical factoring algorithms. Just like quantum information
theory, this is a very rich subject on its own.

In this course, we only have time for a glance, but I encourage you to look at (or attend!)
Ronald de Wolf’s lecture notes (see [DW19]) or at the textbook [NC10] for further detail if you
are interested in this subject.

To practice, let us consider some interesting gates. For any single-qubit unitary U , there is a
corresponding single-qubit gate. For example, the Pauli X-operator X = ( 1

1 ) gives rise to the
so-called X-gate or NOT-gate

which maps X |0⟩ = |1⟩, X |1⟩ = |0⟩. Another example is the so-called Hadamard gate
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which maps H |0⟩ = |+⟩, H |1⟩ = |−⟩. Written as a unitary matrix, H = 1√
2

(
1 1
1 −1

)
.

Single-qubit gates are not enough – for example, they do not allow us to create an entangled
state starting from product states. A powerful class of gates can be obtained by performing a
unitary transformation U depending on the value of a control qubit. This standard terminology
might be slightly confusing – we do not actually want to measure the value of the control qubit.
Instead, we define the controlled unitary gate

by
CU(|0⟩ ⊗ |ψ⟩) = |0⟩ ⊗ |ψ⟩ ,
CU(|1⟩ ⊗ |ψ⟩) = |0⟩ ⊗ (U |ψ⟩)

(15.4)

(and extend by linearity). It is easy to see that CU is indeed a unitary (indeed, C(U †) is its
inverse). For example, if U is the NOT-gate then the controlled not (CNOT) gate maps

CNOT |0, 0⟩ = |0, 0⟩ ,
CNOT |0, 1⟩ = |0, 1⟩ ,
CNOT |1, 0⟩ = |1, 1⟩ ,
CNOT |1, 1⟩ = |1, 0⟩ ,

i.e.,

CNOT |x, y⟩ = |x, x⊕ y⟩ ,

where ⊕ denotes addition modulo 2. This explains why the CNOT gate is often denoted by

Remark 15.1. More generally, if U(0), U(1) are two unitaries then we can define a controlled
unitary that selects one or the other based on the control qubit, i.e.,

|x⟩ ⊗ |ψ⟩ 7→ |x⟩ ⊗ U(x) |ψ⟩ .

Another possible generalization is to use more than one qubit as the control. For example, the
doubly-controlled unitary CCU applies U if and only if both control qubits are in the |1⟩ state:

CCU(|x⟩ ⊗ |y⟩ ⊗ |ψ⟩) =

{
|x⟩ ⊗ |y⟩ ⊗ |ψ⟩ , if x = 0 or y = 0,

|1⟩ ⊗ |1⟩ ⊗ U |ψ⟩ , if x = y = 1.

We can also combine these two ideas and use, e.g., two controls to select a unitary from a family
{U(x, y)}. We will use this generalization below when constructing a quantum circuit for the
Clebsch-Gordan transformation.

Using these ingredients, we can already build a number of interesting circuits.

Remark 15.2. In fact, any N -qubit unitary can be to arbitrarily high fidelity approximated by
quantum circuits composed only of CNOT-gates and single qubit gates. We say, that the CNOT
gate together with the single qubit gates form a universal gate set. (One can show that, in fact,
CNOT together with a finite number of single qubit gates suffices.)
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Entanglement and teleportation

For example, consider the following circuit:

It is plain that this creates an ebit starting from the product state |00⟩. More generally, for each
product basis state |xy⟩ the circuit produces one of the four maximally entangled basis vectors
|ϕk⟩ from Eq. (2.2) that we used in superdense coding and teleportation. Indeed, the circuit
maps

|x, y⟩ 7→ 1√
2
(|0⟩+ (−1)x |1⟩)⊗ |y⟩ = 1√

2
(|0, y⟩+ (−1)x |1, y⟩) .

As a consequence, this allows us to write down a more detailed version of the teleportation
circuit from Chapter 2:

The doubled wires (pink) denote the classical measurement outcomes (two bits x and y, corre-
sponding to the single integer k ∈ {0, 1, 2, 3} from last time). It is a fun exercise to verify that
this circuit works as desired, i.e., that it implements an identity map from the input qubit M to
the output qubit B.

15.2 The swap test

We can implement the swap unitary F : |xy⟩ 7→ |yx⟩ by a quantum circuit composed of three
CNOTs:
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This is called the swap gate.
We can also write down a corresponding controlled swap gate, defined as in Eq. (15.4) for

U = F . Note that this is a three-qubit gate! The decomposition of the swap gate into three
CNOTs immediately yields a decomposition of the controlled swap gate into three CCNOTs –
i.e., doubly controlled NOTs, also called Toffoli gates. It is not completely straightforward to
decompose the Toffoli gate into a quantum circuit that involves only single-qubit and two-qubit
gates (Exercise 15.2).

When we started studying the spectrum estimation problem in Chapter 12, we first considered
the case that we were given n = 2 two copies of our state as a “warmup” (Section 12.2). The idea
was that the two-qubit Hilbert space decomposes into the symmetric (triplet) and antisymmetric
(singlet) subspaces,

C
2 ⊗C2 = Sym2(C2)⊕C |Ψ−⟩ .

This is of course a special case of Eq. (15.2)! In Section 12.2, we also saw that the corresponding
measurement {P2,2, P2,0} = {Π2, I −Π2} already gave useful information about the spectrum.
But how can we implement this measurement by a quantum circuit?

Consider the following circuit, which uses the controlled swap gate discussed above:

(15.5)

Why does this circuit perform the desired measurement? Suppose that we initialize the B-wire
in state |0⟩ and the A-qubits in some arbitrary two-qubit state |Ψ⟩A = |Ψ⟩A1A2

. The Hadamard
gate sends |0⟩ 7→ |+⟩ and so the quantum state right after the controlled swap gate (first dashed
line) is equal to

1√
2
(|0⟩B ⊗ |Ψ⟩A + |1⟩B ⊗ F |Ψ⟩A)

After the second Hadamard gate (second dashed line), we obtain

1

2
[(|0⟩B + |1⟩B)⊗ |Ψ⟩A + (|0⟩B − |1⟩B)⊗ F |Ψ⟩A]

= |0⟩B ⊗
I + F

2
|Ψ⟩A + |1⟩B ⊗

I − F
2
|Ψ⟩A

= |0⟩B ⊗Π2 |Ψ⟩A + |1⟩B ⊗ (I −Π2) |Ψ⟩A
= |0⟩B ⊗ P2,2 |Ψ⟩A + |1⟩B ⊗ P2,0 |Ψ⟩A ,
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where Π2 = P2,2 is the projector onto symmetric subspace! The NOT gate now simply relabels
|0⟩B ↔ |1⟩B, leading to

|1⟩B ⊗ P2,2 |Ψ⟩A + |0⟩B ⊗ P2,0 |Ψ⟩A .

Thus, right up to before the measurement of the B-qubit (last, pink dashed line) the quantum
circuit achieves the following isometry:

|Ψ⟩A 7→
∑
j=0,1

|j⟩B ⊗ P2,2j |Ψ⟩A .

For general density operators ΓA, this means that

ΓA 7→ Γ′
BA :=

∑
j,j′

|j⟩ ⟨j′|B ⊗ P2,2jΓAP2,2j′ .

since there were no measurements involved up to this point. As a consequence,

PrΓ(outcome j =
k

2
) = tr

[
Γ′
BA (|j⟩ ⟨j|B ⊗ IA1 ⊗ IA2)

]
= tr [ΓAP2,2j ] = tr [ΓAP2,k]

and the post-measurement state on the A-qubits is proportional to P2,kΓAP2,k. Thus, we have
successfully implemented the projective measurement {P2,2, P2,0}! The quantum circuit (15.5) is
known as the swap test.

Applications

The swap test has many applications:

• If we choose Γ = ρ⊗2 as input state for the A-qubits, then

Pr(outcome 1) = tr
[
P2,2ρ

⊗2
]
=

1

2

(
1 + tr ρ2

)
.

Thus we can estimate the purity tr ρ2 which gives us information about the spectrum of
the unknown quantum state ρ. This was our original motivation for implementing the swap
test (cf. Section 12.2).

• If we choose the tensor product of two pure states |ψ⟩ ⊗ |ϕ⟩ as input state,

Pr(outcome 1) =
1

2

(
1 + |⟨ψ|ϕ⟩|2

)
, (15.6)

which allows us to estimate the fidelity |⟨ψ|ϕ⟩|. Thus, the swap test can be used to test
two unknown pure states for equality.

The swap test can be readily generalized to qudits.

Remark 15.3. There is a fun application of the swap test known as quantum fingerprinting,
which we might discuss in class if there is enough time [BCWDW01]: The rough idea goes as
follows: We can find 2n many pure states |ψ(x)⟩ ∈ Ccn, indexed by classical bit strings x of
length n, with pairwise overlaps

|⟨ψ(x)|ψ(y)⟩| ≤ 1

2
.

Here c > 0 is some constant. Thus the quantum states live in a space of only order logn
many qubits! (How can we justify the existence of such vectors? One way is to just choose
them at random and estimate probabilities using a more refined version of our calculations
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for the symmetric subspace, see [Har13] for more detail.) If we perform k swap tests on
|ψ(x)⟩⊗k ⊗ |ψ(y)⟩⊗k then we obtain

x ̸= y ⇒ Pr(outcome 1 for all k swap tests) =
(
3

4

)k
≈ 0

Thus the probability of outcome 1 is arbitrarily small, controlled only by the parameter k (but
not n). In this sense, we can use the states |ψ(x)⟩ as short “fingerprints” for the classical bit
strings x. The latter are require n bits to specify, while the fingerprints only need order k log n
many qubits (this is not even optimal, but sufficient for our purposes).

Remarkably, while this allows us to test the fingerprints pairwise for equality with high
certainty, it is not possible to determine the original bitstring |x⟩ from its fingerprint |ψ(x)⟩
to good fidelity. This is ensured by the Holevo bound, mentioned briefly in Chapter 2, which
ensures that we cannot communicate at a rate higher than one classical bit per qubit sent (in
the absence of ebits).

15.3 The quantum Schur transform

Now that we have acquired some familiarity with quantum circuitry, we will turn towards solving
our actual goal for today – finding a quantum circuit for the Schur transform (15.3),

VSchur : (C2)⊗n ∼=
⊕
k

Symk(C2)⊗Cm(n,k) −→ C
n+1 ⊗Cn+1 ⊗ (C2)⊗n

(cf. Fig. 15.1). We will follow the exposition in [Chr10]. A general solution is given in [BCH07,
BCH06].

How could we go about finding such a quantum circuit? Remember how we proved Eq. (15.2)
in Chapter 12. There we used the Clebsch-Gordan rule (12.9), which asserted that there exists a
unitary intertwiner

Jk : Symk(C2)⊗C2 −→


⊕
p=±1

Symk+p(C2) if k > 0,

Sym1(C2) = C2 if k = 0.

(15.7)

We started with k = 0 (zero qubits) and applied the rule in an inductive fashion – after n steps,
we managed to decompose the n-qubit Hilbert space into SU(2)-irreps. We can easily lift this
procedure from a mere counting scheme to the construction of an actual intertwiner:

(a) Construct a circuit for the Clebsch-Gordan transformation:

This circuit is supposed to implement the following functionality: For every k ≥ 0,
m ∈ {0, 1, . . . , k}, and b ∈ {0, 1},

|k⟩K ⊗ |m⟩M ⊗ |b⟩B 7→
∑
p=±1

∑
m′

⟨ωm′,(k+p)−m′ | Jk (|ωm,k−m⟩ ⊗ |b⟩)︸ ︷︷ ︸ |k + p⟩K′ ⊗ |m′⟩M ′ ⊗ |p⟩P .

(15.8)

120



For fixed k, the underbraced term is simply an arbitrary matrix element of the Clebsch-
Gordan transformation (15.7). Thus, (15.8) applies the Clebsch-Gordan transformation –
with k is controlled by the K input and the other two inputs corresponding to Symk(C2)
and in C2, respectively. The output subsystem K ′ contains the label k′ = k ± p of the
symmetric subspace that we ended up in, the output M ′ corresponds to the symmetric
subspace Symk′(C2) itself, and P ′ contains the path information (p = ±1).
To obtain a finite transformation, we should restrict the possible values of k that we allow
to not exceed some kmax. Then the output can be as large as kmax + 1, so Eq. (15.8)
(partially) defines an isometry, which we will call a Clebsch-Gordan isometry

CG: Ckmax+1 ⊗Ckmax+1 ⊗C2 −→ C
kmax+2 ⊗Ckmax+2 ⊗C2 (15.9)

(On all other basis vectors we can define this isometry in an arbitrary way.) We know from
Fig. 12.2 that kmax := ℓ is a good choice for the ℓ-th step (ℓ = 0, 1, . . . , n− 1).

(b) Then the quantum Schur transform can be obtained in the following inductive fashion:

=

Each Clebsch-Gordan isometry is an isometry between Hilbert spaces of size at most 2n2

and we need to apply n such maps to implement the quantum Schur transform. This already
implies (using general principles which we have not learned in this course) that the quantum
Schur transform can be efficiently implemented!

The Clebsch-Gordan isometry

We will sketch how the Clebsch-Gordan isometries can be implemented in more detail. It is clear
that a crucial role is played by the underbraced matrix elements in Eq. (15.8). In the physics
literature, these are often called the Clebsch-Gordan coefficients.

To understand the situation better, we proceed as in Chapters 6 and 11. IfH is a representation
of SU(2) with operators {RU}, we previously associated with any operator M on C2 an operator

rM := −i∂s=0 [ReısM ]

on H. We used these operators to analyze representations of SU(2) – in particular, to prove that
the symmetric subspaces are irreducible and to establish the Clebsch-Gordan rule! In particular,
if J : H → H′ is an intertwiner then the rM are likewise intertwined, i.e.,

JrM = r′MJ, (15.10)

which in particular implied that J maps eigenvectors of rZ to eigenvectors of r′Z with the same
eigenvalue. We used this in Chapter 11 to decompose a given representation simply by studying
the multiset of eigenvalues of rZ .

Indeed, recall that for symmetric subspace H = Symk(C2), RU = T
(k)
U is the restriction of

U⊗k and we computed previously that rZ = t
(k)
Z is simply the restriction of Z̃ = Z ⊗ I ⊗ . . .⊗ I +

· · ·+ I ⊗ . . .⊗ I ⊗Z to the symmetric subspace. The eigenvectors are precisely our favorite basis
vectors |ωm,k−m⟩ for m = 0, 1, . . . , k, with corresponding eigenvalue m − (k −m) = 2m − k ∈
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Figure 15.3: Multiplicites of the eigenvalues of rZ in Symk(C2)⊗C2. The color coding indicates
the decomposition Symk+1(C2)⊕ Symk−1(C2).

{k, k−2, . . . ,−k} (each nondegenerate). What this means is that we can decompose an arbitrary
other representation H simply by decomposing the multiset of eigenvalues of its corresponding rZ
into sets of the form {k′, k′ − 2, . . . ,−k′}. In other words, the eigenvalue spectrum of the rZ
operator uniquely characterizes the decomposition into irreducible SU(2)-representations!

At this point it will be useful to change notation one last time, since this makes the below
arguments much more transparent (and also closer to the literature). Specifically, let us label the
basis vectors by the eigenvalue s = 2m− k, i.e., define

|k; s⟩ := |ω(k+s)/2,(k−s)/2⟩ ∈ Symk(C2), s ∈ {k, k − 2, . . . ,−k},

so that t(k)Z |k; s⟩ = s |k; s⟩. In the situation at hand, this means that we would like to think of
the Clebsch-Gordan isometry as a quantum circuit of the format

mapping

|k⟩K ⊗ |s⟩S ⊗ |b⟩B 7→
∑
p=±1

∑
s′

⟨k + p; s′| Jk
(
|k; s⟩ ⊗ |b⟩

)
|k + p⟩K′ ⊗ |s′⟩S′ ⊗ |p⟩P . (15.11)

(This amounts to a simple relabeling m 7→ 2m − k. If you prefer the old labeling, you can
conjugating with the controlled unitary |k⟩K ⊗ |m⟩M 7→ |k⟩K ⊗ |2m− k⟩S !)

Now consider the left-hand side and the right-hand side representations that appear in the
intertwiner

Jk : Symk(C2)⊗C2 −→
⊕
p=±1

Symk+p(C2). (15.12)

We shall focus on the interesting case that k > 0, since for k = 0 we can just use the identity
map.

• For H = Symk(C2)⊗C2, the group action is RU = T
(k)
U ⊗ U and so rZ = t

(k)
Z ⊗ I + I ⊗ Z.

This means that the vectors |k; s⟩ ⊗ |b⟩ form an eigenbasis, with eigenvalues

s+ (−1)b ∈ {k + 1, k − 1, . . . ,−(k + 1)}.

(Note that |b⟩ ∼= |1; (−1)b⟩ if we identify C2 ∼= Sym1(C2) and use our new notation.)
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• For H′ =
⊕

p=±1 Sym
k+p(C2), the action is R′

U = T
(k+1)
U ⊕ T (k−1)

U , so r′Z = t
(k+1)
Z ⊕ t(k−1)

Z .
Hence the vectors |k′; s′⟩ form an eigenbasis, where k′ = k ± p, with eigenvalues

s′ ∈ {k′, k′ − 2, . . . ,−k′} ⊆ {k + 1, k − 1, . . . ,−(k + 1)}.

Note that, in both cases, the eigenvalues are {k+1, k− 1, . . . ,−(k+1)} and that each eigenvalue
appears twice, except for ±(k+1), which implies that the representations must be equivalent! See
Fig. 15.3 for an illustration. This was precisely argument that we used in Chapter 11 to establish
the Clebsch-Gordan rule. Thus, we reproved the fact that there must exist a unitary intertwiner
Jk as in Eq. (15.12). Let us now go further and construct such an intertwiner precisely.

Since Jk preserves the eigenspaces, it must necessarily map the eigenvectors of eigenvalue
s′ = k + 1 onto each other, up to possibly a phase. Since any scalar multiple of an intertwiner is
again an intertwiner, we may in fact assume that

Jk (|k; k⟩ ⊗ |0⟩) = |k + 1, k + 1⟩ . (15.13)

For s′ = k − 1, we likewise know that

Jk (|k;−k⟩ ⊗ |1⟩) ∝ |k − 1; k − 1⟩ . (15.14)

For all other eigenvalues, s′ ∈ {k− 1, k− 3, . . . ,−k + 1}, the eigenspaces are two-dimensional, so
there must exist unitary 2× 2-matrices U(k, s′) such that

Jk

(
|k; s′ − (−1)b⟩ ⊗ |b⟩

)
=
∑
p=±1

U(k, s′)p,b |k + p; s′⟩ (15.15)

for b = 0, 1. Substituting s = s′ − (−1)b, we can write this as

Jk (|k; s⟩ ⊗ |b⟩) =
∑
p=±1

U(k, s+ (−1)b)p,b |k + p; s+ (−1)b⟩ .

We can also bring Eq. (15.13) in this form by defining U(k, k + 1)+,0 = 1, and similarly for
Eq. (15.14). Thus, the Clebsch-Gordan isometry (15.11) takes the following simple form:

|k⟩K ⊗ |s⟩S ⊗ |b⟩B 7→
∑
p=±1

U(k, s+ (−1)b)p,b |k + p⟩K′ ⊗ |s+ (−1)b⟩S′ ⊗ |p⟩P .

In other words, the Clebsch-Gordan isometry in essence takes the form of a controlled unitary
(with input the B qubit and output the P qubit), controlled by the various inputs! This means
that it can be implemented by a circuit of the following form:

.

The notation on the right-hand side needs some explanation: In the first step, we apply a controlled
“addition” that maps |s⟩S ⊗ |b⟩B to |s+ (−1)b⟩′S ⊗ |b⟩B. The middle part uses the slightly more
general notion of a controlled unitary described in Theorem 15.1, mapping |k⟩K ⊗ |s′⟩S′ ⊗ |b⟩B
to |k⟩K ⊗ |s′⟩S′ ⊗ U(k, s′) |b⟩B. And in the last step we again apply a controlled addition, this
time mapping |k⟩K ⊗ |p⟩P to |k + p⟩K′ ⊗ |p⟩P .
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Computing the matrix elements

We still need to give a prescription for computing the matrices U(k, s′). As mentioned before,
U(k, k+1)+,0 = 1 is the only relevant matrix element for s′ = k+1, corresponding to Eq. (15.13),
which we restate for convenience:

Jk (|k; k⟩ ⊗ |0⟩) = |k + 1, k + 1⟩ . (15.16)

To determine the other coefficients, we consider M− = ( 0 0
1 0 ). If we apply r′M−

to Eq. (15.16) and
use Eq. (15.10), we obtain

JkrM− (|k; k⟩ ⊗ |0⟩) = r′M−Jk (|k; k⟩ ⊗ |0⟩) = r′M− |k + 1, k + 1⟩ .

Recall that rM− = t
(k)
M−
⊗ I + I ⊗M− and r′M−

= t
(k+1)
M−

⊕ t(k−1)
M−

. Since t(k) |k, s⟩ ∝ |k, s− 2⟩ etc.
(Eq. (6.5)), it follows that

Jk (α |k; k − 2⟩ ⊗ |0⟩+ β |k; k⟩ ⊗ |1⟩) = |k + 1, k − 1⟩ (15.17)

for certain coefficients α and β that we can calculate explicitly. By unitarity, |α|2 + |β|2 = 1.
But we know from above that Jk preserves the two-dimensional eigenspace corresponding to
s′ = k − 1 (Eq. (15.15)), so it follows that

Jk (γ |k; k − 2⟩ ⊗ |0⟩+ δ |k; k⟩ ⊗ |1⟩) = |k − 1, k − 1⟩ (15.18)

for some coefficients γ and δ. By unitarity, |γ|2 + |δ|2 = 1 and γᾱ+ δβ̄ = 0, which determines
these coefficients up to phase. Any choice of phase will lead to a valid intertwiner, since this is

exactly the freedom that we have from Theorem 13.2. If we define U(k, k − 1) :=
(
α β
γ δ

)−1
, then

Eq. (15.15) is satisfied for s′ = k − 1.
We can now simply keep applying r′M−

to Eqs. (15.17) and (15.18) to obtain the matrices
U(k, s′) for all other values of s′.

Examples

At last, let us discuss some concrete examples to make sure that we fully understand what is
going on:

Example 15.4 (n=1). For a single qubit, the quantum Schur transform is completely trivial:

It maps

|0⟩B1
7→ |1⟩K ⊗ |1⟩S ⊗ |+⟩P1

|1⟩B1
7→ |1⟩K ⊗ |−1⟩S ⊗ |+⟩P1

Note that the K-system is always in state |1⟩K and the P1-system always in state |+⟩P1
,

corresponding to the unique (0, 0)→ (1, 1).

Example 15.5 (n=2). For two qubits, the quantum Schur transform
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maps

|00⟩B 7→ |2⟩K ⊗ |2⟩S ⊗ |++⟩P
|11⟩B 7→ |2⟩K ⊗ |−2⟩S ⊗ |++⟩P ,

while

|01⟩B =
1√
2

|01⟩+ |10⟩√
2

+
1√
2

|01⟩ − |10⟩√
2

7→ 1√
2
|2⟩K ⊗ |0⟩S ⊗ |++⟩P +

1√
2
|0⟩K ⊗ |0⟩S ⊗ |+−⟩P ,

|10⟩B =
1√
2

|01⟩+ |10⟩√
2︸ ︷︷ ︸

∈Sym2(C2)

− 1√
2

|01⟩ − |10⟩√
2︸ ︷︷ ︸

∈C|Ψ−⟩

7→ 1√
2
|2⟩K ⊗ |0⟩S ⊗ |++⟩P −

1√
2
|0⟩K ⊗ |0⟩S ⊗ |+−⟩P .

It is instructive to verify this explicitly by following the algorithm outlined above.

Exercises

15.1 Schur transform for n = 3: Can you write down the Schur transform (concretely) for
n = 3? Compare the result with your solution to Exercise 13.2.

15.2 Toffoli gate: Verify that the following three-qubit circuit computes the Toffoli (CCNOT)
gate:

H V V † V H

Here, V = ( 1 i ) is a square root of the Z-gate.
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Chapter 16

Quantum entropy and mutual
information

Today we will study the von Neumann entropy more generally and discuss its mathematical
properties. We will also introduce a new correlation measure – the mutual information. Finally,
we will introduce a quantum information processing task called (coherent) quantum state merging.
This is a very general task that encompasses several others that we previously studied in this
course, and we will explain how to solve it tomorrow.

16.1 Shannon and von Neumann Entropy

Let us first revisit the classical case. For a probability distribution {p, 1−p} with two outcomes, we
previously defined the binary Shannon entropy as h(p) = −p log p− (1−p) log(1−p) (Chapter 9).
We will now define the Shannon entropy of general probability distribution {pi}di=1 with d many
outcomes by

H({pi}di=1) := −
d∑
i=1

pi log pi.

As before, we set 0 log 0 := 0. It is clear that H({p, 1 − p}) = h(p), so this is a proper
generalization. Everything that we discussed in Chapter 9 generalizes to probability distributions
with d outcomes. Note that

0 ≤ H({pi}) ≤ log d. (16.1)

The lower bound is attained for deterministic distributions and the upper bound for a uniform
distribution. How to see this? For the lower bound, note that pi log pi ≥ 0 for every pi ∈ [0, 1],
with equality if and only if each pi ∈ {0, 1}. For the upper bound we use Jensen’s inequality for
the concave log function, which shows that

∑d
i=1 pi log

1
pi
≤ log(

∑d
i=1 pi

1
pi
) = log d. Since the

logarithm is strictly concave, we have equality if and only if all the 1/pi are equal.

Now consider a density operator ρ on Cd. We define its von Neumann entropy by

S(ρ) := − tr[ρ log ρ].

Clearly, S(ρ) = H({pi}) for {pi}di=1 the eigenvalues of ρ (repeated according to their multiplicity).
This generalizes the definition given previously in Chapter 10 for qubits. Note that

0 ≤ S(ρ) ≤ log d,
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The lower bound is attained precisely for pure states and the upper bound if and only if ρ is a
maximally mixed state, i.e., ρ = I/d. This follows directly from the discussion below Eq. (16.1).

The von Neumann entropy is the optimal asymptotic rate for compression and quantum state
transfer (Chapters 9 and 10). The basic reason is that the following asymptotic equipartition
property (AEP): For every ε > 0 there exist typical projectors Pn on (Cd)⊗n, n = 1, 2, . . . , such
that

(a) tr[Pnρ
⊗n]→ 1 (typicality),

(b) rk[Pn] ≤ 2n(S(ρ)+ε), and
(c) the eigenvalues of Pnρ⊗nPn are within 2−n(S(ρ)±ε).

For qubits, we proved the first two property in class. In fact, we gave two constructions – one
using the eigendecomposition in Chapter 10 and a universal one using Schur-Weyl duality in
Chapter 14). The third property is also useful as we will see tomorrow. For construction in
Chapter 10, it follows readily using the continuity of the binary entropy function, and for the
other you can proceed as in the derivation of Eq. (14.14).

The first property implies that ρ⊗n ≈ Pnρ
⊗nPn for large n (this follows directly from the

gentle measurement lemma, Exercise 7.8). The second and then third property show that
Pnρ

⊗nPN in turn looks – roughly speaking – like a uniform probability distribution on a space
of approximately nS(ρ) qubits. This explains the term “asymptotic equipartition property”.

16.2 Entropies of subsystems and mutual information

Supose that ρABC... is a density operator on a tensor product Hilbert space. We can then not
only compute the entropy of the overall state but also the reduced density operators such as ρA
describing the subsystems, as visualized below.

In order to emphasize the subsystem, let us define the following useful notation:

S(A)ρ := S(ρA)

We will often omit the subscript ρ and write S(A) when the state is clear from the context. Let
us discuss some examples for a density operator on a bipartite system:

• If ρAB is pure then

S(AB) = 0, S(A) = S(B). (16.2)

Note that S(A) = S(B) is nothing but SE(ρ), the entanglement entropy of the pure state.

• If ρAB = ρA⊗ρB is a tensor product of two density operators, then S(AB) = S(A)+S(B).
Indeed, if {pi} and {qj} are the eigenvalues of ρA and ρB , respectively, then {piqj} are the
eigenvalues of ρAB and so

S(AB) = −
∑
i,j

piqj log(piqj) = −
∑
i,j

piqj log pi −
∑
i,j

piqj log qj

= −
∑
i

pi log pi −
∑
j

qj log qj = S(A) + S(B).
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The second example shows that the von Neumann entropy is additive under tensor products (we
can also write it as S(ρ⊗ σ) = S(ρ) + S(σ) to emphasize this aspect).

When ρAB is a general density operator, it is still true that the entropy is subadditive:

S(AB) ≤ S(A) + S(B) (16.3)

MW: Give a short recent proof. This is very important result follows, e.g., from a result
called Klein’s inequality (see [NC10] for all details). In class, we instead gave a plausibility
argument based on the operational interpretation of the von Neumann entropy as the optimal
rate for the quantum state transfer task. Indeed, consider |ψ⟩⊗nABR, where |ψ⟩ABR is a purification
of ρAB. On the one hand, we know that Alice can (approximately) transfer her AB-systems to
Bob at (a rate arbitrarily close to) the optimal rate S(AB):

On the other hand, she can certainly first send the B-systems and then the A-systems, at a rate
S(A) + S(B).

By optimality of the former, it follows that S(AB) ≤ S(A) + S(B). This argument would be a
completely rigorous mathematical proof – except that we did not quite prove optimality! (Can
you see why Exercise 10.1 is not quite enough?)

Equation (16.3) is an example of an entropy inequality. Another example is Araki-Lieb
inequality :

|S(A)− S(B)| ≤ S(AB). (16.4)

We can prove it by a convenient trick that allows us to produce new entropy inequalities from old
ones. Choose a purification |ψ⟩ABR of ρAB. Then, using that the entropies of complementary
subsystems are the same (Eq. (16.2)),

aS(A)− S(B) = S(BR)− S(B) ≤ S(R) = S(AB),

and similarly for S(B)− S(A).

Remark 16.1. There is also a strong subadditivity inequality which asserts that S(AC) +
S(BC) ≤ S(ABC) + S(C). It is not so easy to prove but enormously useful in quantum
information theory.
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Mutual Information

The preceding suggests that the mutual information, defined for any density operator ρAB on
CdA ⊗CdB by

I(A : B)ρ := S(A)ρ + S(B)ρ − S(AB)ρ,

might be an interesting property to consider. The state transfer argument given above indicates
that this quantity to be related to the information that we lose by treating A and B as independent.
Let us discuss some of its mathematical properties:

• I(A : B) ≥ 0 by the subadditivity inequality 16.3. One can show (but we will not) that
I(A : B) = 0 if and only if ρAB = ρA ⊗ ρB.

• If ρAB is pure then I(A : B) = 2S(A) = 2S(B).

• More generally, I(A : B) ≤ 2min{S(A), S(B)} ≤ 2min{log dA, log dB}. The former is a
consequence of the Araki-Lieb inequality 16.4.

• For separable states, I(A : B) ≤ min{S(A), S(B)}. It follows that if I(A : B) > S(A) or
S(B) then the state ρAB is necessarily entangled!

For an example of the latter, contrast:

• For |Φ+⟩AB = 1√
2
(|00⟩+ |11⟩), we have I(A : B) = 1 + 1− 0 = 2.

• For ρAB = 1
2 (|00⟩ ⟨00|+ |11⟩ ⟨11|), we have I(A : B) = 1 + 1− 1 = 1.

Tomorrow, we will prove that in this case we can even extract ebits at a positive rate given many
copies of the state ρAB.

Remark 16.2. There exist further measures than the ones we have discussed here. For example,
the binary relative entropy, which we so far only defined for classical probability distributions
with two outcomes each, can be defined for general probability distributions and even for quantum
states, by S(ρ∥σ) := tr[ρ log ρ]− tr[ρ log σ].

Moreover, there are other linear combinations of the von Neumann entropy that are meaningful.
For example, the conditional entropy S(A|B) = S(AB)− S(B) and its negative, the coherent
information S(A > B) := S(B)− S(AB). We will see the meaning of the latter tomorrow.

16.3 A glance at quantum state merging

We will close today’s lecture with a review of tomorrow’s topic – a task called (coherent) quantum
state merging. Here, we imagine that Alice, Bob, and an unspecified reference system share n
copies of a pure state |ψ⟩ABR. Alice’s and Bob’s goal is transfer the A systems from Alice to
Bob by sending as few qubits as possible, as illustrated in the below figure:
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Note that we already know how to solve this problem by sending S(A) qubits – simply use our
usual state transfer protocol (as we did above when discussing subadditivity). However, this
ignores that Bob already has part of the quantum state. Thus, this strategy will in general not
be optimal (unless there is no B system, in which we are back in the state transfer scenario).

How about if there is not R system? In this case, Alice and Bob share many copies of a pure
state |ψ⟩AB . Here, no quantum communication is required at all, since Bob can simply re-create
the state in his laboratory. Instead, Alice and Bob can use |ψ⟩AB “for free” for other purposes,
such as for distilling perfect ebits |Φ+⟩ at some rate (as indicated in the figure).

Tomorrow we will see that this is indeed possible and prove the following result: There exists
a quantum protocol (sometimes called the mother protocol or the fully quantum Slepian-Wolf
protocol) that, given |ψ⟩⊗nABR,

• achieves the state merging task by sending qubit at an asymptotic rate 1
2I(A : R),

• distills ebits at an asymptotic rate 1
2I(A : B).

Since 1
2I(A : R) ≤ S(A), this indeed improves over the qubit rate over the naive protocol. But it

will also teach us how to distill ebits (even when ρAB is mixed), which is something that we only
alluded to briefly in Section 10.3!
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Chapter 17

Quantum state merging via the
decoupling approach

Today we will study the (coherent) quantum state merging task in more detail and discuss its
many applications. We will discuss a protocol based on the decoupling approach, which is a
beautiful technique for solving quantum communication tasks. We will close with an outlook on
some of the topics that we did not manage to cover in this course.

17.1 Quantum state merging

In yesterday’s Chapter 16, we discussed the (coherent) quantum state merging task: Here, Alice,
Bob, and an unspecified reference system share n copies of a pure state |ψ⟩ABR. They would
like to transfer the A systems from Alice to Bob by sending as few qubits as possible and, in
addition, obtain as many ebits as possible. The situation is illustrated in the following figure,
which also already states the main result:

That is, we will see that it suffices to send qubits at an asymptotic rate arbitrarily close to
1
2I(A : R) and that we will obtain ebits at an asymptotic rate arbitrarily close to 1

2I(A : B).
For comparison, naively applying the quantum state transfer protocol from 10 requires a

qubit rate of S(A) ≥ 1
2I(A : R) and yields no ebits at all!

Remark 17.1. There are other possible variants that can be analyzed similarly. In quantum
state splitting, the “dual” scenario, we imagine that Bob starts out with the AB systems and
he wants to send the A systems over to Alice, while holding on to the B systems. Quantum
state redistribution is the generalization of both scenarios, where we start with many copies of a
four-party state |ψ⟩ABCR; initially, the AC systems belong to Alice, Bob has the B systems, and
after the termination of the protocol we would like for Alice to keep A while Bob is in possession
of BC.
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Special cases and applications

• If there is no B system (which you can formally model by taking HB = C) then everything
reduces to quantum state transfer. Indeed, 1

2I(A : R) = S(A) and 1
2I(A : B) = 0.

• Entanglement distillation: Suppose that Alice and Bob share many copies of a quantum
state ρAB and that they would like to obtain as many ebits as possible by sending (classical)
bits only. This task is known as entanglement distillation (cf. Section 10.3, where we
discussed this briefly). Note that here we do not seem to care about the R systems at
all. Yet, the quantum state merging protocol can be usefully applied (simply choose
any purification |ψ⟩ABR)! Simply use teleportation (Chapter 2) to replace the quantum
communication (at rate 1

2I(A : R)) by classical communication (at rate I(A : R)) and
consuming ebits (at rate 1

2I(A : R)). In this way, we can distill ebits at a net rate

1

2
I(A : B)− 1

2
I(A : R) =

1

2

(
S(A) + S(B)− S(AB)− S(A)− S(AB) + S(B)

)
= S(B)− S(AB)

by sending bits at rate I(A : R). The right-hand side quantity is called the coherent
information and often denoted by I(A > B). It can have either sign – but if it is positive
then this procedure allows us to distill entanglement at a positive rate!

For example, if there is no R system then ρAB is pure and so S(B) − S(AB) = S(B),
which means that we can distill ebits at rate S(A) = S(B)! This was a result that we had
announced in Chapter 2.

• Noisy teleportation: Once we have obtained ebits using the entanglement distillation
procedure sketched above, we can use it as a resource for other tasks, such as teleportation.
This means that using “noisy” density operators ρAB we can teleport qubits at rate
S(B)− S(AB) (provided this rate is nonnegative) by sending bits at rate

I(A : R) + 2 (S(B)− S(AB)) = I(A : B).

• Noisy superdense coding: Similarly, we can do superdense coding by using general density
operators ρAB. Here we take the quantum state merging protocol and do ordinary super-
dense coding with the ebits obtained. This allows us to communicate classical bits at the
“superdense rate” I(A : B) by sending qubits at rate 1

2I(A : R) + 1
2I(A : B) = S(A). Note

that this is only interesting if I(A : B) > S(A) (or S(B) > S(AB)), which is precisely the
threshold which implied that ρAB had to be entangled.

For ρAB = |Φ+⟩, the above reduce to ordinary teleportation and superdense coding, respectively.

17.2 The decoupling approach

How should we go about solving the state merging problem? Here is a natural template for what
such a protocol could look like:
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Here we assume that the initial state is some arbitrary state |Ψ⟩ABR (not necessary a tensor
power state |ψ⟩⊗n)! First, Alice applies a unitary UA. Next, she considers her Hilbert space as a
tensor product HA = HA1 ⊗HA2 , with n1 qubits in the first and n2 qubits in the second tensor
factor, and sends over n1 of the qubits to Bob. Lastly, Bob applies an isometry VA1B→B1B2 ,
where HB1

∼= HA ⊗HB and HB2
∼= HA2 . This protocol would be successful if it leads to a state

that is close to

|Φ+⟩⊗n2︸ ︷︷ ︸
on A2B2

⊗ |Ψ⟩ABR︸ ︷︷ ︸
on B1R

. (17.1)

Hopefully we can achieve this by choosing n1 not too large (and hence n2 not too small). How
should we define the objects in the protocol so that this procedure is successful?

The crucial observation is that we can analyze the situation purely by considering the state

|Γ⟩ABR := (UA ⊗ IBR) |Ψ⟩ABR .

Indeed, if the state at the end of the protocol is close to the desired state Eq. (17.1) then this
implies that

ΓA2R ≈
IA2

2n2
⊗ΨR. (17.2)

Indeed, note that the isometry acts only on A1B and hence does not change the state of the
A2R systems, so we can simply trace out B1B2 in Eq. (17.1). In fact, Eq. (17.2) is not only
necessary, but also sufficient in the following sense: Since |Γ⟩ABR is a purification of ΓA2R and
Eq. (17.1) is a purification of IA2

2n2 ⊗ ΨR, Eq. (17.2) implies that there must exist an isometry
VA1B→B1B2 that maps one purification to another. If Eq. (17.2) held with equality then this
would be precisely what you proved in Exercise 7.5! In the approximate case, you can use the
fidelity from Section 14.1 to prove this assertion – can you fill in the details?

The upshot of the preceding discussion is the following: Remarkably, we do not need to
cleverly construct the isometry V at all – we rather get it for free provided that we manage to
find a unitary UA such that the system A2 that remain with Alice decouple from the reference
system R in the sense of Eq. (17.2). This is the essence of the decoupling argument.

How can we obtain the unitary UA? The following theorem shows that, on average, a randomly
chosen unitary does a good job provided that we choose A2 not too large.

Theorem 17.2 (Decoupling theorem). Let ΨAR be a positive semidefinite operator on CdA⊗CdR ,
where dA = dA1dA2. Then:∫

dUA ∥trA1

[(
UA ⊗ IR

)
ΨAR

(
U †
A ⊗ IR

)]
− IA2

dA2

⊗ΨR∥21 ≤
dAdR
d2A1

tr
[
Ψ2
AR

]
.
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Asymptotics

We will prove Theorem 17.2 momentarily, but let us first see why it allows us to solve the
quantum state merging problem. For this, we will use the asymptotic equipartition property (see
Chapter 16)! Let |ψ⟩ABR denote an arbitrary pure state and PA,n, PB,n, PR,n typical projectors
for ψA, ψB, ψR and some fixed ε > 0, respectively, and define

|Ψ⟩AnBnRn := (PA,n ⊗ PB,n ⊗ PR,n) |ψ⟩⊗nABR .

Then, by typicality and the gentle measurement lemma (applied three times),

|Ψ⟩AnBnRn ≈ |ψ⟩⊗nABR ,

so we may safely construct a protocol for the state |Ψ⟩ instead of for |ψ⟩⊗n.
We will follow the decoupling approach. Let us regard |Ψ⟩ as a vector in CdA′ ⊗CdB′ ⊗CdR′ ,

where dA′ , dB′ , dC′ denote the ranks of those projectors. We will correspondingly write |Ψ⟩A′B′R′ .
Then, by the asymptotic equipartition property,

dA′ ≤ 2n(S(A)+ε),

dR′ ≤ 2n(S(R)+ε),

tr
[
Ψ2
A′R′

]
= tr

[
Ψ2
B′
]
≤ 2n(S(B)+ε)2−2n(S(B)−ε) = 2n(−S(B)+3ε) = 2n(−S(AR)+3ε).

(The last inequality requires some thought!) Together,

dA′dR′ tr
[
Ψ2
A′R′

]
≤ 2n(I(A:R)+5ε).

Thus, Theorem 17.2 ensures the existence of a decoupling unitary UA provided that we choose

dA′
1
≫ 2n(

1
2
I(A:R)+ 5

2
ε)

and n large enough. In other words, we need to send over qubits at a rate arbitrarily close to
1
2I(A : R). This is exactly the desired asymptotic qubit rate!

As a consequence, it is also true that we will obtain ebits at a rate arbirarily close to
1
2I(A : B)> Indeed, we have 1

2I(A : R) + 1
2I(A : B) = S(A), dA′

1
dA′

2
= dA′ , and you proved in

Exercise 10.1 that any typical subspace for ψA has to grow faster than 2n(S(A)−δ) for any δ > 0.

17.3 Proof of the decoupling theorem

In order to prove Theorem 17.2, we first need to understand how to compute averages with
respect to the Haar measure.

Haar averages

First, suppose that M is an arbitrary operator on Cd. Then:∫
dU UMU † =

tr[M ]

d
I. (17.3)

Indeed, Cd is an irreducible representation of U(d) and the invariance property (14.4) of the
Haar measure guarantees that the left-hand side of the equation is an intertwiner; thus, Schur’s
lemma implies that it is proportional to the identity operator. Since the traces agree, Eq. (17.3)
follows.

136



Now consider an arbitrary operator M on Cd ⊗Cd. Here one can similarly show that∫
dU (U ⊗ U)M(U ⊗ U)† =

{
γΠ2 + δ(I −Π2),

αI + βF,
(17.4)

where F denotes the swap operator and α, β, γ, δ are suitable constants that depend linearly
on M . Why is this true? Let us first observe that, since Π2 = 1

2(I + F ), we necessarily have
that α = (γ + δ)/2, β = (γ − δ)/2, so it suffices to prove either expression. We will still give a
justification for each expression individually. Since the left-hand side operator

• As a representation of U(d), Cd⊗Cd decomposes into the symmetric and the anti-symmetric
subspace, which are both irreducible. (The proof that the latter is irreducible is very similar
to the proof for the former, see Chapter 6.) By Schur’s lemma, it follows that any operator
that commutes with every U⊗2 can necessarily be written as a linear combination of Π2

and I −Π2. See Exercise 7.4 where you proved a very closely related statement in the case
of qubits (d = 2)!

• On the other hand, one can prove directly that any operator that commutes with every U⊗n

can necessarily be written as a linear combination of the permutation operators {Rπ}π∈Sn

– see Theorem 13.9. The above is the special case n = 2 of this general result.

We still need to determine the coefficients. Since there are two coefficients, two equations suffice
to determine both. For example, we can compare the trace of the left and the right-hand side
operators, as well as the trace after multiplying the equation by F (which amounts to replacing
M by FM and interchanging α and β). Using that tr[I] = d2 and tr[F ] = d, this leads to

α =
d

d3 − d
tr[M ]− 1

d3 − d
tr[FM ]

β =
d

d3 − d
tr[FM ]− 1

d3 − d
tr[M ].

(17.5)

Sanity check

Let us first compute the average of the operator trA1 [(UA ⊗ IR)ΨAR(U
†
A ⊗ IR)] to get some

intuition why Theorem 17.2 should be true. Using Eq. (17.3), it is not hard to see that∫
dUA trA1

[
(UA ⊗ IR)ΨAR(U

†
A ⊗ IR)

]
= trA1

[
IA
dA
⊗ΨR

]
=
IA2

dA2

⊗ΨR (17.6)

which is exactly the decoupled operator that we would like to obtain. (In case this calculation is
not clear: This follows simply by applying Eq. (17.3) to each “block” obtained by applying ⟨r|R
on the left and |r′⟩R on the right.)

Note tracing out the A1 system was not important at all. However, this is only an average
statement – if we would like to show that there exist single unitaries UA that decouple then we
need to control the fluctuations! The content of Theorem 17.2 is that the fluctuations are indeed
arbitrarily small provided we choose A1 to be sufficiently large.

Proof of the theorem

We will now prove the decoupling theorem. First, it will be useful to introduce a new norm – the
Frobenius norm (or Hilbert-Schmidt norm) of an operator M , which is often denoted by

∥M∥2 :=
√
tr [M †M ]. (17.7)
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Note that ∥M∥2 is nothing but the ℓ2-norm of the singular values of M . Thus it can be related
to the trace norm in the following way:

∥M∥2 ≤ ∥M∥1 ≤
√
rk(M)∥M∥2

(the second inequality is the Cauchy-Schwarz inequality). Let’s start calculating using the
Frobenius norm: ∫

dUA ∥trA1

[(
UA ⊗ IR

)
ΨAR

(
U †
A ⊗ IR

)]
− IA2

dA2

⊗ΨR∥22

=

∫
dUA tr

[(
trA1

[(
UA ⊗ IR

)
ΨAR

(
U †
A ⊗ IR

)]
− IA2

dA2

⊗ΨR

)2
]

=

∫
dUA tr

[
tr2A1

[(
UA ⊗ IR

)
ΨAR

(
U †
A ⊗ IR

)]]
− 1

dA2

tr
[
Ψ2
R

]
, (17.8)

where the second equality follows from Eq. (17.6). Note that only the first term depends on the
unitary UA! We can compute its average by using the swap trick – this is the main advantage of
using the Frobenius norm:∫

dUA tr
[
tr2A1

[(
UA ⊗ IR

)
ΨAR

(
U †
A ⊗ IR

)]]
=

∫
dUA tr

[((
UA ⊗ IR

)
ΨAR

(
U †
A ⊗ IR

))⊗2 (
IA1A′

1
⊗ FA2A′

2
⊗ FRR′

)]
= tr

[
Ψ⊗2
AR

(∫
dUA U

†,⊗2
A

(
IA1A′

1
⊗ FA2A′

2

)
U⊗2
A︸ ︷︷ ︸

αIAA′+βFAA′

⊗FRR′
)]

= α tr
[
Ψ2
R

]
+ β tr

[
Ψ2
AR

]
.

In the underbraced expressen we used Eq. (17.4). The coefficients can be calculated using
Eq. (17.5):

α =
dA

d3A − dA
d2A1

dA2 −
1

d3A − dA
dA1d

2
A2

=
dAdA1 − dA2

d2A − 1
≤ 1

dA2

β = roles of A1 and A2 reversed =
dAdA2 − dA1

d2A − 1
≤ 1

dA1

.

If we plug this back into Eq. (17.8) and take the average, we see that the α term cancels! Thus
we obtain ∫

dUA ∥trA1

[(
UA ⊗ IR

)
ΨAR

(
U †
A ⊗ IR

)]
− IA2

dA2

⊗ΨR∥22 ≤
1

dA1

tr
[
Ψ2
AR

]
.

Finally, we use the upper bound on the trace norm in terms of the Frobenius norm in Eq. (17.7):∫
dUA ∥trA1

[(
UA ⊗ IR

)
ΨAR

(
U †
A ⊗ IR

)]
− IA2

dA2

⊗ΨR∥21 ≤
dA2dR
dA1

tr
[
Ψ2
AR

]
=
dAdR
d2A1

tr
[
Ψ2
AR

]
.

This is the desired result.
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17.4 Outlook

Now that we have reached the end of this course, we will close with a brief discussion of two
important topics that we did not have time to cover this term:

• Converses: Over the past weeks, we constructed many useful information processing
protocols, but only rarely proved optimality. To do so in a systematic way requires
extending the formalism of quantum information theory to include so-called quantum
channels, which provide a natural model for arbitrary sequences of operations composed of
unitaries, measurements, adding and removing auxiliary systems, etc. On a mathematical
level, they are described by completely positive, trace-preserving maps.

• Noisy communication channels and their capacities: Throughout these lectures, we always
assumed that we could transmit bits, qubits, etc. in a perfect way from Alice and Bob. (In
contrast, our quantum data sources were noisy and we often considered arbitrary quantum
states shared between Alice and Bob quantum states, not just idealized resource states
such as ebits.) An important part of quantum information research is to determine the
ultimate capacities of noisy communication channels to transmit bits, qubits, etc.

See, e.g., [NC10, Wil17] for much more material than what we had time to discuss this term.
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Appendix A

Handout: The formalism of quantum
information theory

This handout summarizes the formalism of quantum information theory that is developed in this
course.

(A) Systems: To every quantum mechanical system, we associate a Hilbert space H. For
a joint system composed of two subsystems A and B, with Hilbert spaces HA and HB ,
the Hilbert space is the tensor product HAB := HA ⊗HB.

(B) States: A density operator ρ is an operator on H that satisfies (i) ρ ≥ 0 and (ii)
tr[ρ] = 1. Any density operator describes the state of a quantum mechanical system.
If the rank of ρ is one (i.e., of the form ρ = ψ := |ψ⟩ ⟨ψ| for some unit vector |ψ⟩ ∈ H)
then we say that ρ is a pure state. Otherwise, ρ is called a mixed state. An ensemble
{pi, ρi} of quantum states can be described by the density operator ρ =

∑
i piρi.

If ρAB is the state of a joint system, the state of its subsystems can be described by
the reduced density matrices ρA = trB[ρAB] and ρB = trA[ρAB]. The latter states can
be mixed even if ρAB is pure. Conversely, any density operator ρA has a purification
ρAB = |ψAB⟩ ⟨ψAB| (see Chapter 7).

(C) Unitary dynamics: Given a unitary operator U on H, the transformation ρ 7→ UρU †

is in principle physical. In other words, the laws of quantum mechanics allow a way
of evolving the quantum system for some finite time such that, when we start in an
arbitrary initial state ρ, the final state is UρU †. If ρ = |ψ⟩ ⟨ψ| is a pure state, then
this corresponds to |ψ⟩ 7→ U |ψ⟩.

(D) Measurements: A POVM measurement {Qx}x∈Ω with outcomes in some finite set Ω
is a collection of operators on H that satisfies (i) Qx ≥ 0 and (ii)

∑
x∈ΩQx = I. Born’s

rule asserts that the probability of outcome x in state ρ is given by the Born rule:

Prρ(outcome x) = tr [ρQx] .

If ρ = |ψ⟩ ⟨ψ| is a pure state, then this can also be written as ⟨ψ|Qx|ψ⟩. A POVM
measurement that has precisely two outcomes is called a binary POVM measurement,
and it has the form {Q, I−Q}, hence is specified by a single POVM element 0 ≤ Q ≤ I.
We can also consider POVMs with a continuum of possible outcomes (see Chapter 4).
We say that {Px} is a projective measurement if {Px}x∈Ω is a POVM where the Px are
projections that are pairwise orthogonal (i.e., QxQy = δx,yQx). If Ω ⊆ R, then the data
{Px}x∈Ω is equivalent to specifying a Hermitian operator with spectral decomposition
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O =
∑

x xPx, called an observable. If the outcome of a projective measurement is x
then the state of the system “collapses” into the post-measurement state

ρ′ =
PxρPx
tr[Pxρ]

If ρ = |ψ⟩ ⟨ψ| is a pure state, then ρ′ = |ψ′⟩ ⟨ψ′|, where |ψ′⟩ = Px |ψ⟩ /∥Px |ψ⟩∥.
Any POVM can be implemented using projective measurements on a larger system
(see Chapter 2).

(E) Operations on subsystems: Consider a joint system with Hilbert space HAB =
HA⊗HB . If we want to perform a unitary UA on the subsystem modeled by HA, then
the appropriate unitary on the joint system is UA ⊗ IB. Similarly, if {QA,x}x∈Ω is a
POVM measurement on HA then the appropriate POVM measurement on the joint
system is {QA,x ⊗ IB}x∈Ω.

The standard formalism of quantum information theory includes two further notions that
we did not discuss in this course: Quantum channels model general evolutions that can be
obtained by composing unitary dynamics, adding ancillas, and taking partial traces. Quantum
instruments can be thought of as implementations of POVM measurements that not only describe
the statistics of outcomes but also model the post-measurement state.
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axioms of quantum mechanics, 5, 13
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Bell inequality, 25
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Born rule, 7, 19, 32, 54
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classical strategies, 24
computational basis, 6

density matrix, 54
density operator, 8, 54
direct sum, 43
dual representation, 52
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entangled, 6
entanglement swapping, 17
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fidelity, 21

general linear group, 49
GHZ game, 23
GHZ state, 29
group, 33, 40
group action, 40
guessing probability, 11

Haar measure, 33
Hadamard basis, 9

intertwiner, 43
invariant subspace, 42

nontrivial, 42
irrep, 42

Lie algebra, 48
action, 49

Lie algebra representation, 49
Lie group, 48
local hidden variable strategies, 24

matrix exponential, 48
maximally entangled state, 6
maximally mixed state, 54
mixed state, 54

nonlocal game, 23
norm

operator, 60
trace, 58

observable, 7
occupation number basis, 35, 47
occupation numbers, 34
operator norm, 60

partial trace, 56
Pauli matrices, 9
permutation matrix, 41
post-measurement state, 7
POVM, 19

continuous, 32
uniform, 35

POVM elements, 19
private randomess, 26
product states, 6
projection, 6
projective measurement, 13
projector, 6
pure quantum state, 31
pure state, 54
purification, 58

standard, 60
purity, 54

quantum cryptography
device-independent, 27

quantum information source, 53
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quantum state, 54
quantum strategy, 25
qubit, 5

randomness expansion, 26
reduced state, 55
representation, 34, 40

defining, 41, 46
equivalent, 44
irreducible, 42
Lie algebra, 49
sign, 41
trivial, 41
unitary, 34

resource, 17
rigid, 27

Schmidt coefficients, 57
Schmidt decomposition, 57
Schmidt rank, 57
Schur’s Lemma, 44
self-test, 27
shared entanglement, 15
sign, 41
singlet, 30
special unitary group, 40
square root

positive semidefinite, 20
superdense coding, 15
superposition principle, 6
symmetric group, 33, 40
symmetric subspace, 34
symmetrizer, 34

tangent vector, 48
teleportation, 16
tensor product, 43
trace distance, 21, 58
trace norm, 58
transposition, 40
type, 34

uncertainty relation, 10
uniform measure, 33
uniform POVM, 35
unitary group, 40

weight, 35
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