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Course Description

This course gives an introduction to quantum information and quantum computation from the perspective
of theoretical computer science. We discuss the theoretical model of quantum bits and circuits, how to
generalize computer science concepts to the quantum setting, how to design and analyze quantum algorithms
and protocols for a variety of computational problems, and how to prove complexity theoretic lower bounds.
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Chapter 1

From classical to quantum computing

1.1 Introduction

Quantum computing is a relatively recent area of research that combines two revolutions of the past century:

• Quantum mechanics, which in the early 20th century was discovered to be the right theory to describe
our world at the smallest scales. It was pioneered by the likes of Planck, Einstein, Heisenberg, Curie,
Dirac, Schrödinger, etc.

• Computer science, needs no explanation to this crowd. It really set off with the invention of the digital
computer (we all know Turing, von Neumann, Church, Hopper, etc), but aspects were already studied
much earlier, e.g., by Babbage, Leibniz, Lovelace, etc.

Without quantum mechanics there would be no understanding of semiconductors, so quantum mechanics is
surely important to understand how transistors etc. work. But as computer scientists we can usually ignore
this: when we as theorists design algorithms or as practitioners implement these, we are usually very happy
to think of our computers as abstract machines that employ Boolean operations to manipulate bits and bytes.
Indeed, the very insight that this is possible is one of the most fundamental ideas that kick-started our field.

Quantum computing is not understanding the physics of semiconductors better. Instead, it asks a much
more fundamental question:

What does computer science look like if we replace our familiar bits by “quantum bits”, and Boolean
operations by the kind of “quantum operations” that nature allows us to apply to these?

We will learn all about quantum bits and operations in the coming weeks. But why should we ask such a
question in the first place?

• To solve problems faster: We might be able to find certain clever quantum algorithms that allow future
quantum computers to solve certain computational problems much faster than what is possible (or at
least known to be possible) using ordinary computers. Some of you may already know that this is
indeed the case.

• To understand the ultimate power and limits of computation: Since the world is really described by
quantum mechanics, studying computers based on bits and bytes is simply not good enough if we care
about what it really means to compute in our world. Our motivation might be intellectual curiosity,
and this is a great reason for thinking about computer science. But there are also other reasons - for
example when designing cryptosystems, we might want to come up with methods today that will be
secure against attackers far in the future that may possess quantum computers, or we might want
to understand whether the rules of quantum computing can give us more security than is possible
otherwise.

• To help overcome the end of Moore’s law: For roughly half a century, computers were becoming faster
at an exponential rate, but this is no longer the case, so perhaps we should start looking into new
computational paradigms. Quantum computing may well be such a paradigm. There are many efforts
world-wide to build quantum computing hardware, but the technological challenges are enormous
(currently existing ones are small and do not yet work very well).
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Thus, quantum computing takes seriously the idea that the world really plays by different rules (namely by
the rules of quantum mechanics) than by the ones we usually like think about as computer scientists, and
asks what this means for the theory (and hopefully at some point also for the practice) of computation.

As such it is no surprise that quantum computing is a very interdisciplinary field: it sits right at the
intersection of computer science (which gives us the right questions to ask), mathematics (which gives us the
tools to answer them), and physics (which gives us the rules of quantum mechanics by which we need to
play). In this course, we will study quantum computing from the perspective of theoretical computer science
(TCS), so we will need to understand how to generalize computer science concepts to the quantum setting. In
the remainder of today’s lecture we will give some more context and highlight some cool results that we will
discuss later in this term, to get you all motivated. Next week we will then kick off things more properly.

1.2 Computational problems

One central goal of TCS is to understand how to solve computational problems, by algorithms, and as fast as
possible. Let us recall some well-known computational problems.

Problem 1.1: Multiplication

Given two n-digit numbers, compute their product.

For small n you know how to do this by heart, but imagine n = 1000 or so, then this is clearly annoying
enough of a problem to need an algorithm. For example, in high school you learn the “long multiplication”
algorithm (“schriftliche Multiplikation”), which allows you to solve this problem assuming you are patient
enough (and do not run out of paper). Here is a reminder for how it works:

4891 * 3722
---------------
= 14673
+ 34237
+ 9782
+ 9782

===============
= 18204302

We see that in order to multiply two n-digit numbers using this method we perform O(n2) steps. (In the
example we used decimal digits, while in computer science we usually use binary digits, but this does not
make a difference.) Thus the number of steps is polynomial in the input size of this problem. We say that
Problem 1.1 can be solved in polynomial time – it is in the complexity class P. Such problems are usually
thought of as “easy” or at least “tractable”.

In fact, we can do even better: Some of you may know the Karatsuba algorithm, which solves for
Problem 1.1 in time O(nlog2(3)), with log2(3) ≈ 1.58. In 1997, Schönhage-Strassen gave an algorithm that
runs in time O(n log(n) log(log(n))). Their algorithm is practically useful and outperforms simpler methods
for numbers in the order of n = 100000 decimal digits. We will end up learning the basic idea of how it works
when we discuss the Fourier transform. Very recently, in 2019, Harvey-van der Hoeven gave an algorithm that
uses O(n log(n)) time. Since the “big O” notation hides huge constants, their algorithm is not practical at all.
Since log(n) grows much slower than n, these algorithms are much faster than the high school method when n
is really large. Can we do even better? It is believed that O(n log(n)) is optimal, but noone really knows!
It’s remarkable that there are still deep open problems about as elementary of a computational problem as
multiplying two numbers.

Problem 1.2: Factoring

Given an n digit number x that is not prime, find a nontrivial factor. That is, find a number 1 < p < x
such that p | x (x divides x).
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Here is an easy “brute force” algorithm to address this problem: Test if 2 | x, 3 | x, and so forth. How
many options do we have to test in the worst case in order to find a factor? If p is not a prime, then we can
always find a factor p such that p ≤

√
x. Since x is an n-bit number, we have x < 2n. Thus, in general we

need to test
√
2n = 2n/2 = (1.415 . . . )n

options. Thus this naive algorithm runs in exponential time!
Can we do better? There are much more clever algorithms. The best algorithm is the so-called “generalized

numbers field sieve”, and it is believed to run in 2Õ(n1/3) time.1 This is called “subexponential time” – it
runs much faster than an exponential time algorithm, but much slower than an polynomial time algorithm.
Famously, no polynomial-time algorithm for factoring is known that runs on ordinary ‘classical’ computers.
(When quantum computer scientists say ‘classical’, they mean ‘non-quantum’.) The security of, e.g., the
RSA cryptosystem relies on the hope that this is indeed a difficult problem. . .we will return to this hope
momentarily.

It is also worth mentioning that the factoring problem is not believed to be NP-hard.

Problem 1.3: Satisfiability

Given an Boolean formula f : {0, 1}n → {0, 1}, is there a satisfying assignment? That is, is there x ∈
{0, 1}n such that f(x) = 1?

Here there is again an easy algorithm that runs in exponential time: simple try all 2n many possible
assignments x. While there are more clever algorithms, this problem is NP-hard, and so it is believed that
there should not be any polynomial-time algorithm (otherwise, P = NP). However, the situation is possibly
even worse: computer scientists believe that, roughly speaking, any algorithm for the satisfiability problem as
stated in Problem 1.3 necessarily requires time Ω̃(2n) in the worst case, hence it should be impossible to even
just find an algorithm that runs, e.g., in time O(1.999n). This belief is known as the strong exponential time
hypothesis (SETH).

1.3 Probabilistic computing

In the 70s, people started to wonder whether randomness could help compute faster. This gave rise to the
field of probabilistic computing, which equips algorithms with one new trick – the ability to toss a fair coin
(bit) that returns heads (1) or tails (0) with 50% probability each.

Do algorithms become more powerful if they have the ability to make random choices? Of course, if the
task is to produce true randomness or to exactly simulate a random process, then this is trivially true. But
can randomness help solve problems faster that have nothing to do with randomness – especially if we are
happy to allow the algorithm to fail with some tiny probability? For an example, let us consider the following
problem:

Problem 1.4: Primality

Given an n-bit number, decide if it is a prime.

For example, key pairs for the RSA cryptosystem are generated by picking two large primes, which is only
one reason for why are interested in solving Problem 1.4 efficiently.

In 1976, Miller proposed a deterministic algorithm for the primality problem that takes time Õ(n6), but it
relies on the so-called generalized Riemann hypothesis (GRH), which is not known to be true. A breakthrough
happened in 2002, when Agrawal-Kayal-Saxena discovered the first deterministic primality testing algorithm
that really runs in polynomial-time (not relying on any unproven hypothesis). Their algorithm ran in

1Õ-Notation: We write f(n) = Õ(g(n)) if f(n) = O(g(n) logk(g(n))) for some integer k. This is a convenient notation to
ignore logarithms, which is often a good idea (recall that log(n) and its powers grows much slower than n). For example, you
can simply write Õ(n) regardless of whether your algorithm takes time O(n), or O(n log(n)), or even O(n log100(n)).
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time Õ(n12). It was later improved by Lenstra-Pomerance. Their algorithm is the deterministic state of the
art; it runs in time Õ(n6). While polynomial time, this is not very practical.

In contrast, early on, in 1977, Solovay-Strassen found that there exists a randomized algorithm that runs in
time Õ(n3) and succeeds up to an arbitrarily small (fixed) failure probability. This is already quite practical!
In 1980, Rabin-Miller discovered an even faster randomized algorithm – it runs in time Õ(n2) for any fixed
failure probability.2 It is widely used in practice!

Here is another example:

Problem 1.5: Zero testing

Given a polynomial function f(x1, . . . , xn), decide if it always returns zero.

If the polynomial is given as a linear combination of monomials, then this is simple. But what if the
polynomial is given by a mathematical formula? For example, do you see right away whether the following
polynomial is zero or not?

f(x1, . . . , xn) = det

1 x1 . . . xn−1
1

...
...

. . .
...

1 xn . . . xn−1
n

−
∏
j<k

(xk − xj)

It is not so clear how to solve this problem efficiently. If you simply write out the determinant then there
will be exponentially many terms, so this will not be efficient. Or how about the more difficult case when a
formula but just a “black box” that evaluates f?

x1

f...
f(x1, . . . , xn)

xn

It turns out that there is a simple randomized algorithm that even works in this latter case: Simply input a
random point (x1, . . . , xn) into the function. If f is not the zero polynomial, then it is very unlikely that
f(x1, . . . , xn) = 0. This can be made quantitative by the so-called Schwartz-Zippel lemma, and results in an
algorithm that is efficient in theory and also in practice.

Thus, randomness appears to help us compute faster. Using randomness, we can find polynomial speedups
over the best known deterministic algorithms also for many other problems. However, computer scientists
believe that there is some limit to this: namely, it is believed that randomness only gives at most polynomial
speedups (such as Õ(n2) instead of Õ(n6)). In particular, many computer scientists believe that solving the
satisfiability problem (Problem 1.3) should require time Ω̃(2n) even when using randomness.

Summary of probabilistic computing:

• we get it by adding to deterministic computing one new trick – random coin tosses (or bit flips)

• by definition, this is useful to simulate random processes

• but even for many problems that do not involve randomness, we can get speedups over the best
deterministic algorithms

• however, it is believed that we can only get polynomial speedups in this way

Before moving on, let us us briefly pause to think about how represent the state of programs mathematically.
When you have a deterministic program that uses n bits of memory, you would simply describe its state

by a vector or bitstring x ∈ {0, 1}n.
2More precisely, for any choice of k the two algorithms run in time Õ(n3k) or Õ(n2k), respectively, and fail with probability

at most 2−k.
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In contrast, the state of a probabilistic program that uses n bits of memory will at any point be described
by a probability distribution 

p(00 . . . 00)
p(00 . . . 01)

...
p(11 . . . 11)

 .

E.g., p(00 . . . 00) is the probability that x1 = x2 = · · · = xn = 0 etc. This is a vector of exponential size 2n,
but of course this only arises in the mathematical description – we never have to write this down when
running the program!

Similarly, the overall result of applying a probabilistic program operating on n bits can be described by
a 2n × 2n “transition matrix”:p(0 . . . 0|0 . . . 0) . . . p(0 . . . 0|1 . . . 1)

... p(y1 . . . yn|x1 . . . xn)
...

p(1 . . . 1|0 . . . 0) . . . p(1 . . . 1|1 . . . 1)

 ,

where the entry p(y1 . . . yn|x1 . . . xn) is the probability that the program outputs y if the input is x. Can
you see what conditions this matrix needs to satisfy so that it maps probability distributions to probability
distributions? For example, consider the following program:

def f(x):
if x == 0:

return 0
return random_bit()

When given 0, it returns 0, while when given 1 it returns a uniformly random bit. This would be described
by the transition matrix (

p(0|0) p(0|1)
p(1|0) p(1|1)

)
=

(
1 1/2
0 1/2

)
.

1.4 Quantum computing

Given the success of adding randomness to computation, researchers in the 1980s began to wonder whether
one could similarly exploit quantumness for computation. The researchers that pioneered the idea of quantum
computing include Nobel prize winner Richard Feynman, Yuri Manin, Paul Benioff, and David Deutsch, while
Charles Bennett and Gilles Brassard following up on earlier work by Stephen Wiesner discovered quantum
cryptography and information. Some of them, such as the physicist Feynman, were motivated by simulating
quantum mechanical systems (it seems plausible that this should be easier if your computer is also quantum!),
while others were more concerned with the ultimate limits of computation.

So, what do we get by replacing bits with quantum bits? We mention two highlights that revolutionized
the field:

• In 1994, Shor discovered a quantum algorithm that can factor n-digit numbers in time Õ(n2). This is
exponentially better than the best known classical algorithms, as we discussed below Problem 1.2.

• In 1996, Grover discovered a quantum algorithm that can be used to solve the satisfiability problem
(Problem 1.3) in time Õ(

√
2n) = Õ(1.415 . . .n). As discussed, this is exponentially better than the best

known classical algorithms, and indeed believed to be impossible using classical algorithms.

In this course, we will learn exactly how this works (and much more). However, it is good to emphasize that
quantum computers are not all-powerful, even in theory. In particular:

• It is strongly believed that they will not be able to solve NP-hard problems efficiently!
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• Quantum computers do not simply compute faster or in parallel. Instead they rely on an entirely new
model of computation (which however includes deterministic and randomized computation as special
cases); hence entirely new computer science ideas are required to make use of them and design quantum
algorithms such as the ones by Shor and Grover mentioned above.

So, how do quantum computers work? The state of n quantum bits is described by an 2n-dimensional
vector

ψ =


ψ00...00

ψ00...01

...
ψ11...11


This looks similar to probabilistic computing, but the numbers ψx are not probabilities. Instead they
can be negative and even complex numbers. We will call them ‘amplitudes’ to remember that they are
not probabilities. Instead of summing to one, their absolute values squared sum to one:

∑
x|ψx|2 = 1.

Geometrically, this means that ψ is a vector of norm (length) one. While this vector has exponentially many
entries, this is only the mathematical description. In our computer it will simply corresponds to the state of
n quantum bits. We should not be surprised – the same was true for probabilistic computing.

What operations can we apply to n quantum bits? First, we can again apply 2n × 2n-matrices to
manipulate the state of our n quantum bits:

U =

U0...0,0...0 . . . U0...0,1...1

... Uy1...yn,x1...xn
...

U1...1,0...0 . . . U1...1,1...1

 ,

These matrices should send quantum states to quantum states, so they need to preserve the norms of vectors
(we will learn that such matrices are called ‘unitary’). Second, we can extract answers by measurement. If we
measure n quantum bits, we obtain n ordinary bits x1, . . . , xn with probability |ψx1,...,xn |2. Note that this is a
probability distribution! How can we use all this? The high-level idea of any quantum algorithm is as follows:

1. We start by initializing our quantum algorithm in some definite state, such as

(
1
0
...
0

)
.

2. We manipulate it using 2n-dimensional linear algebra. For example, we will see that we can apply
Fourier transforms very efficiently using quantum computers, and that this is key for Shor’s factoring
algorithm!

3. Finally, we measure to extract the desired answer.

Of course the above can only give you a very rough idea. We will discuss the rules of quantum computing in
detail in Chapters 2 and 3.

Summary of quantum computing:

• it is again obtained by taking something familiar and adding one new trick - roughly speaking, we
replace probabilities (which are always ≥ 0) by complex numbers (called amplitudes).

• by definition, this is useful to simulate quantum processes

• but even for many problems that do not involve quantumness, we can get speedups over the best
classical (= non-quantum, i.e., deterministic or randomized) algorithms

• amazingly, sometimes these speedups can even be exponential !

The ideas of quantum computation and quantum information were revolutionary at the time. Nowadays
they are well established in the scientific community and even beyond. For example, the 2023 Breakthrough
Prize in Fundamental Physics was awarded to Bennett, Brassard, Deutsch, and Peter Shor (who we will
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mention in a moment) for their fundamental contributions to quantum computation and information (exactly
what we will study in this course), while the 2022 Nobel Prize in Physics went to Alain Aspect, John Clauser,
and Anton Zeilinger for their experiments demonstrating some important phenomena that show that the
quantum information is really as weird as we will see that it is. Many big (and also some smaller) tech
companies such as IBM, Google, Amazon, Microsoft, etc. are actively working on building quantum computers,
and many other companies are interested in the capabilities that quantum computers may bring to the table
in the future.

1.5 Outlook

In the coming weeks we will first discuss how to mathematically describe quantum bits and quantum circuits
(Chapters 2 and 3). Then we will design and analyze quantum algorithms for a variety of computational
problems, including 3SAT, discrete logs, and factoring (Chapters 4 to 10). We will also learn techniques for
how one can show that an algorithms is optimal (Chapter 11). So far, we mostly discussed using quantum
computing to compute faster. In the last part of the course we think more deeply about the strange features
of quantum information itself – why quantum bits cannot be cloned, what entanglement is and how to use
it to teleport and beat non-quantum players in certain games, and why all this is useful for cryptography
(Chapters 12 to 14). In the last lecture we will give a brief outlook on some other exciting topics that go
beyond this first course (Chapter 15).

These lecture notes are meant to be self-contained and we will also provide video recordings. It can
still be useful to look at other sources. We recommend two particularly excellent ones: the lecture notes
by Ronald de Wolf, which are available at https://arxiv.org/abs/1907.09415, and Ryan O’Donnell lecture
series at https://www.youtube.com/playlist?list=PLm3J0oaFux3YL5qLskC6xQ24JpMwOAeJz. If you are
looking for a textbook that covers much more material, the book “Quantum Computation and Quantum
Information” by Nielsen and Chuang is an oldie but goodie; it also contains a detailed refresher of the most
relevant mathematics that we will need.
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Chapter 2

Quantum bits: states and operations

In this chapter we will discuss the rules that tell us how to describe a single quantum bit and what we can do
with it. These rules are also called the “axioms” of quantum computing.

2.1 States and Dirac notation

An ordinary bit is a “system” (“variable”, “degree of freedom”) that can be in one of two possible states. Here
are some examples:

• A coin that can be in one out of two orientations: heads or tails.

• One of two voltage level: low or high. This is one way in which bits are stored in your computer.

• One out of two directions in which a piece of a tape drive is magnetized.

One of the great insights of computer science is that we do not want to care about all this, so we simply
agree to use 0 and 1 for the two possible states, and move on with life.

Now consider a random bit, i.e., a bit whose state is not definite but described by probabilities. For
example, consider the state of the x bit at the end of the execution of the following probabilistic program:

x = random_bit()
if x == 1:

x = random_bit()

If random_bit() performs a fair coin toss then at the end of the program we have

• probability p = 75% that x is in state 0,
• probability q = 25% that x is in state 1.

We can summarize these two probabilities by the vector ( 0.750.25 ). More generally, if in a probabilistic system or
computation a bit has probability p of being 0 and a probability q of being 1, then we can summarize the
state of the random bit by the vector (

p
q

)
= p

(
1
0

)
+ q

(
0
1

)
,

where p, q ≥ 0 and p+ q = 1. We can think of the state of the random bit as a “mixture” of the ‘definite’
states ( 10 ) and ( 01 ), which correspond to 0 and 1, respectively.

How about if we have a quantum bit, that is, a bit in a quantum system or computation? In this case we
again describe it by two numbers, but these can now be negative or even complex. These numbers are called
“amplitudes”. For example, we might say that a quantum bit has

• amplitude a = 0.6 of being in state 0,
• amplitude b = −0.8 of being in state 1.

13

https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://en.wikipedia.org/wiki/Tape_drive


Again this can be described by a vector, here
(

0.6
−0.8

)
. More generally, if in a quantum system or computation

a bit has amplitude a of being 0 and a amplitude b of being 1, then we can summarize the state of the
quantum bit by the vector (

a
b

)
= a

(
1
0

)
+ b

(
0
1

)
. (2.1)

We say that that the state of the quantum bit is a “superposition” of the ‘definite’ states ( 10 ) and ( 01 ), which
correspond to 0 and 1, respectively.

What constraints do the amplitudes need to satisfy? As mentioned, they can be arbitrary complex
numbers, a, b ∈ C, but we require that their squared absolute values sum to one: |a|2 + |b|2 = 1. Note that
this is the case in our example, since |0.6|2 + |−0.8|2 = 0.36 + 0.64 = 1. Let us summarize this in a box (we
call it a “first attempt”, since next time we will define these rules in general, for more than just one qubit):

Rule 1: State of a quantum bit

The state of a quantum bit or “qubit” is described by a complex unit vector(
a
b

)
∈ C2,

meaning a, b ∈ C and |a|2 + |b|2 = 1.

Geometrically, this means that the states of a quantum bit are unit vectors, that is, two-dimensional
vectors of norm or length one. In contrast, states of a random bit are described by a line segment. This is
visualized in Fig. 2.1:

|0⟩

|1⟩

random bitquantum bit

Figure 2.1: States of a quantum bit (red) vs states of a random bit (blue).

In the literature you will often read that “quantum states are unit vectors in a complex Hilbert space”.
In finite-dimensions, a Hilbert space is simply a vector space with an inner product. (It’s like a Euclidean
space, but in our case over the complex numbers, not over the reals.) In infinite dimensions, there is some
additional requirement that makes the functional analysis work out fine, but this will not concern us further
in this course.

2.1.1 Dirac notation

Before moving on and discussing what we can do with quantum bits, we briefly pause to introduce Dirac
notation, which is extremely popular and used in almost all textbooks and papers:

• In Dirac notation, column vectors are denoted by putting a little flag around them. For example, we
write |ψ⟩ ∈ Cd and not ψ ∈ Cd. This is called a “ket”. You can write any label you like, such as |v⟩, |0⟩,
|error⟩, . . .

• If |ψ⟩ =

(
ψ1

...
ψd

)
is a column vector as above, then we define

⟨ψ| := (|ψ⟩)† =
(
ψ1 . . . ψd

)
,
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which is a row vector.1 This is called a “bra”.

• If |ψ⟩ =

(
ψ1

...
ψd

)
and |ϕ⟩ =

(
ϕ1
...
ϕd

)
then their “bra-ket”2 computes the inner product:

⟨ψ|ϕ⟩ := ⟨ψ| · |ϕ⟩ =
(
ψ1 . . . ψd

)ϕ1...
ϕd

 = ψ1ϕ1 + · · ·+ ψdϕd =

d∑
j=1

ψjϕj .

(A row vector is a 1× d matrix and a column vector is a d× 1 matrix, so their product is a 1× 1-matrix
– a number!)

• If we are interested in the norm ∥ψ∥ :=
√∑d

j=1|ψj |2 of a vector, then we can compute its square by
taking the inner product of the vector with itself:

⟨ψ|ψ⟩ =
d∑
j=1

|ψj |2 = ∥ψ∥2.

In particular, if ⟨ψ|ψ⟩ = 1 then, and only then, is |ψ⟩ a quantum state.

Why do we use Dirac notation? Mostly for historical reasons (“everyone is doing it”), but once you get used to
it you will find it quite convenient that you can see immediately from the notation what kind of mathematical
object you are dealing with.

2.1.2 Some important qubit states

Let us discuss some useful states and practice Dirac notation while doing so. The examples we will discuss all
come in pairs, with each pair defining a basis3 of C2.

Example 2.1: Computational basis

First of all, we have the two standard basis vectors of C2:

|0⟩ :=
(
1
0

)
, |1⟩ :=

(
0
1

)
.

We also call these the computational basis states. Indeed, these are states because their norm is one, and
they are pairwise orthogonal, meaning that ⟨0|1⟩ = ⟨1|0⟩ = 0.

We will think of the computational basis state as describing an ordinary bit, sitting inside our quantum
bit. This is useful because in many quantum algorithms the input will be ordinary bits.

Example 2.2: Hadamard basis

Another basis that will be useful is the so-called Hadamard basis of C2:

|+⟩ := 1√
2
(|0⟩+ |1⟩) = 1√

2

(
1
1

)
, |−⟩ := 1√

2
(|0⟩ − |1⟩) = 1√

2

(
1
−1

)
.

Naturally, these are called the “plus states” and the “minus state”.

This might perhaps seem somewhat unorthodox, but you may find it to be quite useful to remember these
states. . .

1On Practice Set 1 you learned the notation A† = AT = (Ā)T for the adjoint or conjugate transpose of a matrix A. The
symbol † is pronounced “dagger”. Here we use this in the special case that A is a column vector, i.e., a matrix of size d× 1.

2Bracket! Get it?
3Whenever we say “basis” in these notes we will mean “orthonormal basis”, meaning that the basis vectors have norm one and

any two of them are orthogonal. For the computational basis, this means ⟨0|0⟩ = ⟨1|1⟩ = 1 and ⟨0|1⟩ = ⟨1|0⟩ = 0.
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Example 2.3: θ-rotated basis

Finally, for every θ, we define the θ-rotated basis:

|θ⟩ :=
(
cos(θ)
sin(θ)

)
, |θ⊥⟩ :=

(
− sin(θ)
cos(θ)

)
.

These are valid states, since cos2(θ) + sin2(θ) = 1 for every angle θ.

Can you find all these basis states in Fig. 2.1?

Using Dirac notation, any vector |ψ⟩ ∈ C2 can be written as

|ψ⟩ = a |0⟩+ b |1⟩ , (2.2)

where a, b ∈ C. Indeed, this is exactly the same as what we wrote in Eq. (2.1), except that we now use
our new notation. Recall that this is called “superposition”. As an aside, note that we can compute the
“amplitudes” a and b in Eq. (2.2) as follows:

a = ⟨0|ψ⟩ and b = ⟨1|ψ⟩

You can see this either concretely, by writing everything in terms of two-dimensional vectors, or abstractly,
by using that the computational basis is an orthonormal basis. Thus we can compute the squared norm of
any vector |ψ⟩ can be computed as follows:

∥ψ∥2 = |a|2 + |b|2 = |⟨0|ψ⟩|2 + |⟨1|ψ⟩|2. (2.3)

For a quantum state, this must be equal to one.
The above works for any orthonormal basis (and recall that mostly all bases that we will be dealing

with will be orthonormal): For example, any vector |ψ⟩ ∈ C2 can also be written as a superposition of the
Hadamard basis states,

|ψ⟩ = c |+⟩+ d |−⟩ , (2.4)

where c = ⟨+|ψ⟩ and d = ⟨−|ψ⟩. For example,

|0⟩ = 1√
2
|+⟩+ 1√

2
|−⟩ ,

|1⟩ = 1√
2
|+⟩ − 1√

2
|−⟩ ,

because ⟨+|0⟩ = 1√
2

etc. If this confuses you, check explicitly that these equations hold by writing everything
as two-dimensional vectors.

2.1.3 What do qubits look like in practice?

At the beginning of this chapter we discussed how bits can take many different concrete manifestations. The
same is true for quantum bits.

In fact, physicists believe that everything in nature is at its core described by quantum mechanics. This
means that every bit in nature is really part of a quantum bit. However, if you take some arbitrary bit then
it will be very hard to see (and make use of) its quantum nature. Therefore, when physicists want to build a
quantum computer, they try to find or design qubits that are particularly easy to control.

Here are some examples of physical systems that scientists are currently trying to use as qubits:

• Ions, that is, charged atoms (|0⟩ and |1⟩ correspond to two energy levels)

• Electrons in a semiconductor device (|0⟩ and |1⟩ correspond to two states of the electron “spin”, which
you can think of as a kind of magnetization)
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• Superconductors (|0⟩ and |1⟩ correspond to, e.g., charge or flux stored in a superconducting loop)

• Photons, which are the particles that light is made of (|0⟩ and |1⟩ correspond to, e.g., different
polarizations of light). This, at last, is something you can try for yourself – we’ll come back to it later.

We see that all these have in common that they are really small and also much more complicated than, say,
two voltage levels that are used to represent ordinary bits in a computer. Hence the difficulty of building
larger and better quantum computers.

2.2 Measurements and Unitaries

What can we do with a qubit? Basically two things – we can manipulate it and we can measure it. We will
start with measurement.

To motivate this, we start with an analogy. Suppose I toss a fair coin and hide the result in an envelope.
As discussed, you would describe this by a random bit, with probability distribution

(
1/2
1/2

)
. But if you open

the envelope and look into it, then you will see a definite outcome – either 0 (heads) or 1 (tails) – and you
should update your description to either ( 10 ) or ( 01 ), depending on what you saw. This makes sense, because
if you look into the envelope again, then you will of course see the same outcome! We might say that the
state of the random bit has “collapsed” when you “measured” (i.e., look at) it. Here is a picture that visualizes
the situation:

?

(
1/2
1/2

) heads

tails

( 10 )

( 01 )

50%

50%

Quantum bits work very much the same:

Rule 2: Measuring a quantum bit

We can measure a qubit in the computational basis. If the qubit state is in state |ψ⟩, then:

• with probability |⟨0|ψ⟩|2, the outcome reads “0” and the state changes to |0⟩,
• with probability |⟨1|ψ⟩|2, the outcome reads “1” and the state changes to |1⟩.

We will use the following symbol to denote measurements: (the qubit comes in from the left

and exits on the right; we sometimes write the outcome on top)

Below and on the homework you will learn how to measure in another basis.)
Note that the rule for computing probabilities is reasonable: Because qubit states are unit vectors, we

necessarily have that

|⟨0|ψ⟩|2 + |⟨1|ψ⟩|2 = 1,

see Eq. (2.3), so the two probabilities add up to one. We can remember once and for all: “to compute the
probability of an outcome, we need to compute the absolute value squared of the corresponding amplitude”.

For example, if our qubit is in state

|ψ⟩ = 0.6 |0⟩ − 0.8i |1⟩ =
(

0.6
−0.8i

)
then with |0.6|2 = 36% probability we see outcome “0” and the qubit state changes to |0⟩, while with
|−0.8i|2 = 64% probability we see outcome “1” and the qubit state changes to |1⟩. Because the state changes
when we measure a qubit, we will always get the same result if measure it again!

In quantum computations, we usually measure qubits at the very end, in order to extract the answer to
the problem we are trying to solve. The next rule tells us another way by which we can manipulate qubits:
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Rule 3: Applying unitaries to a quantum bit

We can apply arbitrary unitary matrices to a qubit. If the state of the qubit is |ψ⟩ and we apply a
unitary U , then the state changes to U |ψ⟩.
We will use the following symbol to denote unitaries: |ψ⟩ U U |ψ⟩

Recall that a matrix U is called unitary if U †U = I, where I is the identity matrix. There are many
equivalent characterizations, as you discussed in the tutorials. We restate them here for your convenience:

Remark 2.4: Unitaries – good to know

The following conditions are all equivalent for a d× d-matrix U :

(a) U †U = I.
(b) UU † = I.
(c) U preserves inner products, i.e., ⟨Uv|Uw⟩ = ⟨v|w⟩ for all |v⟩ , |w⟩ ∈ Cd.
(d) U preserves the length of vectors, i.e., ∥Uv∥ = ∥v∥ for every |v⟩ ∈ Cd.
(e) U sends any orthonormal basis to an orthonormal basis.
(f) U sends at least one orthonormal basis to an orthonormal basis.

The point is that if you manage to prove one of these conditions, then your matrix is unitary and you get
all the other ones for free. Please make sure that you understand and remember this result.

In particular, characterization (d) tells us that unitaries send unit vectors (i.e., vectors of norm one) to
unit vectors. Thus, if |ψ⟩ is a qubit state then U |ψ⟩ is again a qubit state.

Unitaries that are used in quantum circuits are also called gates. Here are some examples:

Example 2.5: Rotations

For every θ ∈ R, we define the rotation unitary

Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)

Note that Rθ rotates the computational basis onto the θ-rotated basis (Example 2.3): Rθ |0⟩ = |θ⟩
and Rθ |1⟩ = |θ⊥⟩. As a picture:

|0⟩

|1⟩

|θ⟩

|θ⊥⟩

θ

Example 2.6: Pauli matrices

The three Pauli matrices are defined as follows:

X = NOT =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y =

(
0 −i
i 0

)
.

Note that X |0⟩ = |1⟩ and X |1⟩ = |0⟩, so the X gate acts as a NOT on the computational basis. For
this reason we also call it the NOT gate.

We will mostly need the first two, X and Z. These can be visualized as reflections in R2:
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|0⟩

|1⟩

45°
|0⟩

|1⟩

-|1⟩

The third one, Y , can also be thought of as a reflection. Can you see how?

Example 2.7: Hadamard matrix

The Hadamard matrix is defined as

H =
1√
2

(
1 1
1 −1

)
(2.5)

Note that H sends |0⟩ ↔ |+⟩ and |1⟩ ↔ |−⟩.

This is again a reflection:

|0⟩

|1⟩
|+⟩

|−⟩

Two other unitaries are the T -gate, which seems quite mysterious as well:

T =

(
1 0

0
√
i = eiπ/4

)
(2.6)

and the identity matrix, which is complete boring and leaves all states unchanged:

I =

(
1 0
0 1

)
(we will use I for any identity matrix, not just for the 2× 2 one)

Unitaries have some interesting properties:

• They are invertible: the inverse of a unitary U is given by U †. How can we embed ordinary classical
computation into this? After all, most Boolean gates such as AND and OR are not reversible!

• They have square roots: for every unitary U there exists a unitary V such that V 2 = U . For example,
even the NOT unitary has a square root!

2.3 Quantum Circuits

When we think about quantum algorithms, we will usually describe them in terms of quantum circuits. We
start with one or more qubits in some state (typically all qubits are initialized in the |0⟩ state) and then
compute by applying various unitary and measurement gates.

Let us practice and consider the following quantum circuit:

H H

1 2 3

(2.7)

(Recall that we input qubits on the left and apply the gates from left to right.)
What happens when you apply this circuit to a qubit initialized in state |0⟩? To answer this question, we

compute what happens step by step:
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1. First, the Hadamard gate changes the |0⟩ state to H |0⟩ = |+⟩ = 1√
2
|0⟩+ 1√

2
|1⟩.

2. Next, we measure. With probability ( 1√
2
)2 = 1

2 , we see outcome “0” and the state changes to |0⟩.
Otherwise we see outcome “1” and the state changes to |1⟩.

3. Finally, we apply another Hadamard gate that changes |0⟩ to |+⟩ and |1⟩ to |−⟩.

Thus see that when we apply the above circuit to |0⟩ then the overall effect is the following:

• With 50% probability, we see outcome “0” and the output state is |+⟩.
• With 50% probability, we see outcome “1” and the output state is |−⟩.

Let’s now ask a slightly harder question: what happens if we apply the above circuit to some arbitrary
initial state |ψ⟩? Here is a nice trick: Instead of expanding the initial state in the form |ψ⟩ = a |0⟩+ b |1⟩, let
us instead write it in the form of Eq. (2.4), that is,

|ψ⟩ = c |+⟩+ d |−⟩ ,

where c = ⟨+|ψ⟩ and d = ⟨−|ψ⟩. Now we proceed as above:

1. The Hadamard gate changes the state |ψ⟩ to H |ψ⟩ = c |0⟩+ d |1⟩.

2. When we measure, with probability |c|2 = |⟨+|ψ⟩|2 we see outcome “0” and the state changes to |0⟩,
and with probability |d|2 = |⟨−|ψ⟩|2 we see outcome “1” and the state changes to |1⟩.

3. As above, the second Hadamard gate that changes |0⟩ to |+⟩ and |1⟩ to |−⟩.

In summary:

Example 2.8: Hadamard measurement

If we apply the quantum circuit in (2.7) to a qubit in an arbitrary state |ψ⟩, then:

• with probability |⟨+|ψ⟩|2, we see outcome “0” and the output state is |+⟩.
• with probability |⟨−|ψ⟩|2, we see outcome “1” and the output state is |−⟩.

Note that these rules look exactly the same as Rule 2, except that the standard basis is replaced by the
Hadamard basis. Thus we call the quantum circuit in (2.7) a Hadamard measurement.

Note also that for |ψ⟩ = |0⟩, we have |⟨+|ψ⟩|2 = |⟨−|ψ⟩|2 = 1
2 , and hence we recover what we computed

above in the special case that |ψ⟩ = |0⟩.

2.4 Is all of this real?

You may be wondering if these strange rules of quantum computing are really necessary (or even correct).
Here is a simple experiment you can do at home (or in class). As mentioned earlier, light can be polarized.
How can we polarize it? Simply take a polarizing filter (we’ll give you some in class) and rotate it in whichever
direction you want to polarize, for example, horizontally, vertically, or diagonally. Here is what happens when
you first place a horizontal and then a vertical filter:

� 50% intensity
no light let through

Let’s try to explain what we see. Light emitted by the sun, or by a light bulb, is in in some random state, so it
makes sense that the first filter should reduce the intensity by around half. And once the light is horizontally
polarized, it will surely be absorbed by the second filter, which only lets through vertically polarized light.
Thus, no light is let through at all. So far so good.

Now let’s ask ourselves what should happen if we insert another filter inbetween these two filters. Since
filters only ever absorb light, it seems clear that no light should be let through either. However, here is the
kicker:
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� 50% intensity 25% intensity 12.25% intensity

If we add a diagonal polarizing filter in the middle, more light is let through! Watch this video if you don’t
believe it. How can this be?!

This might seem extremely strange, but in fact can be easily explained by the rules of quantum bits. As
mentioned earlier, light consists of many small particles called photons. We can think of the polarization of
a photon as defining a qubit: the basis state |0⟩ corresponds to horizontal polarization, and |1⟩ to vertical
polarization. How do we describe polarizing filters?

• A horizontally-oriented polarizing filter, , performs a measurement in the standard basis and only lets
through |0⟩.

• If we rotate it all the way to be vertically oriented, , it performs a measurement in the standard basis
and only lets through |1⟩.

• But if we rotate it halfways so that it is diagonally oriented, , then it performs a Hadamard
measurement (precisely as in Example 2.8) and only lets through |+⟩.

(In general, if we rotate the filter by some angle θ then it will correspond to measuring in the θ-rotated basis
and only letting through the |θ⟩ state.)

Now the rules of quantum computing perfectly explain what we saw in the two experiments. In the first
experiment, the first filter only lets through photons (qubits) in state |0⟩ (and this happens roughly half
the time). The second filter measures again in the standard basis but only lets through |1⟩ – but this never
happens, since if we measure a qubit in state |0⟩ then we never get outcome “1”. Hence all photons are
absorbed and no light is let through:

�
photons |0⟩

50% intensity
no photons let through

How about the second experiment? Again, the first filter only lets through photons (qubits) in state |0⟩
(and this happens roughly half the time). The second filter perform a Hadamard measurement and only lets
through state |+⟩. If we measure a |0⟩ in the Hadamard basis then this happens with probability 50%, as
discussed above. The third filter again measures in the standard basis but only lets through |1⟩. Since the
Hadamard measurement has changed the state to |+⟩, this now happens with probability |⟨1|+⟩|2 = 1

2 > 0.
Thus the overall probability of the photon making it through all three filters is 1

2 · 1
2 · 1

2 = 1
8 = 12.5%. This is

precisely the intensity of the light that comes out:

�
photons |0⟩

50% intensity

|+⟩

25% intensity

|1⟩

12.25% intensity

Thus the rules of quantum measurements, which in general can change the state, helped save the day!

2.5 Elitzur-Vaidman quantum ‘bomb’ tester

You will discuss the following in the tutorials (and do even better on the homework)! Imagine someone hands
you a box with two openings,

? ,

and they promise to you that one of the following is true:

, In the first case, the box is empty: if you input in a qubit then it is simply let through unchanged.
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� In the second case, the box contains a device that measures the qubit in the computational basis. If the
result is “0” then the resulting |0⟩ state is let through, while if the result is “1” then it explodes.

(For example, in the second case the box could contain a horizontal polarizing filter, connected to a fuse that
sets of the bomb whenever a photon is absorbed. This would be quite the delicate fuse. . .)

Your task is to determine which is the case, without setting off the bomb. It seems like there is not much
you can do: if you input a |0⟩ state then nothing happens in either case, while if you input a |1⟩ state and
there is a bomb then it will always explode. However, consider the following quantum circuit:

|0⟩ H ? H

What happens in each case?

, If the box is empty then the state before the measurement is HH |0⟩ = H |+⟩ = |0⟩ and hence the
measurement always gives outcome “0”.

� In this case we input H |0⟩ = |+⟩ into the box. The box measures and will explode with 50% probability.
However, if it does not explode then the qubit will leave the box in the |0⟩ state. The second Hadamard
turns this into H |0⟩ = |+⟩, and hence the final measurement gives outcome “0” or “1” with 50%
probability each.

The punchline is this: If the measurement at the end yields outcome “1” then we are certain that there is a
bomb in the box, without the bomb having exploded – and this happens with 50% · 50% = 25% probability! On
this week’s homework you will do even better.

2.6 Beyond qubits

In ordinary computing, we mostly deal with bits, but in principle nothing stops us from considering systems
with more than two states. For example, a “trit” is a system that has three possible values (say 0, 1, and 2; or
“true”, “false”, and “don’t know”). In general, a “dit” is a system that can be in one of d distinct states, for
some integer d. If such a dit is in a random state, it is naturally described by a probability distribution with
d many outcomes.

We can generalize the rules of quantum bits in the same way to systems with d basic states:

Rule 1 for qudits: States

The state of a quantum system is described by a unit vector |ψ⟩ ∈ Cd, where d is the number of basic
states.

The standard or computational basis of such a “qudit” is denoted by

|0⟩ =

 1
0
0
...
0

, |1⟩ =

 0
1
0
...
0

, . . . , |d− 1⟩ =

 0
0
...
0
1

,
and we can write any vector in Cd in the form

|ψ⟩ =

 ψ0

ψ1

...
ψd−1

 =
d−1∑
j=0

ψj |j⟩ .

Rule 2 for qudits: Measurement

We can measure a quantum system in state |ψ⟩ in the computational basis. With probability |⟨j|ψ⟩|2,
the outcome will be “j”, in which case the state changes to |j⟩.
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Rule 3 for qudits: Unitaries

We can apply an arbitrary unitary d× d matrix to a quantum system. If the state is |ψ⟩ and we apply a
unitary U , then the state becomes U |ψ⟩.

However, just like we usually consider multiple bits in case we want more than two options, we will also
in the quantum world usually consider multiple qubits if we are interested in a quantum system with more
than two basic states. This will be the subject of next week’s lecture.
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Chapter 3

Quantum computing with many qubits

Today we will discuss what quantum computing looks like if we have more than one quantum bit. Let’s
first recall the classical situation. Two bits have four possible “definite” states: 00, 01, 10, 11. If we allow
randomness, for example because we are analyzing a probabilistic algorithm, then we also consider “mixtures”
of these. That is, we describe the state of two random bits by a probability distribution consisting of four
probabilities: p00, p01, p10, and p11. More generally, if we have n bits, then there are 2n definite states,
namely the bitstrings of length n; if the bits are allowed to be in a random state, we would describe them
by 2n probabilities, that is, by a vector of dimension 2n. As explained in Chapter 1, while this vector is
exponentially large, this is only our mathematical description – in reality there are simply n bits that are in
some uncertain (to us) state.

3.1 States and operations

How do we describe the state of multiple quantum bits? In the following comes some motivation and a
reminder of the tensor product of two vector spaces – if you already know what C2 ⊗ C2 means, you can
skip over it and simply move to Rule 1 below. Just like we did in Chapter 2 for one qubit, we simply replace
probabilities (nonnegative numbers that sum to one) by amplitudes (complex numbers whose squared absolute
values sum to one). For example, a quantum state of two qubits is described by four amplitudes ψ00, ψ01,
ψ10, and ψ11, such that |ψ00|2 + |ψ01|2 + |ψ10|2 + |ψ11|2 = 1. Similarly, quantum states of n qubits can be
represented as vectors of dimension 2n. However, writing quantum states as concrete vectors in C2n quickly
gets confusing. For example, already for two qubits it is hard to remember whether we write

ψ00

ψ01

ψ10

ψ11

 or rather


ψ00

ψ10

ψ01

ψ11

 .

Instead, let us label the standard basis vectors by bitstrings, defining:

|00⟩ :=


1
0
0
0

 , |01⟩ :=


0
1
0
0

 , |10⟩ :=


0
0
1
0

 , |11⟩ :=


0
0
0
1

 .

Then every two-qubit state can be written in the form

|ψ⟩ = ψ00 |00⟩+ ψ01 |01⟩+ ψ10 |10⟩+ ψ11 |11⟩ =
∑

a,b∈{0,1}

ψab |ab⟩ .

This is much nicer to deal with and actually there is no reason at all to think about concrete vectors C4 – all
we want is a vector space with a basis labeled by the bitstrings of length two. Mathematicians write C2 ⊗ C2

for precisely this – a four-dimensional vector space that comes with a distinguished basis labeled by the
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bitstrings of length two, i.e., |00⟩, |01⟩, |10⟩, and |11⟩ (instead of |0⟩, |1⟩, |2⟩, |3⟩, like it would be for C4).
More generally:1

Definition 3.1: Tensor product of vector spaces

We denote by

C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
n times

= (C2)⊗n

the vector space of dimension 2n that comes with a distinguished standard or computational basis

|x⟩ = |x1, . . . , xn⟩ = |x1 . . . xn⟩

that is is labeled by the bitstrings x ∈ {0, 1}n of length n. We call this the tensor product of n copies
of C2, or the n-th tensor power of C2.

We analogous define the tensor product when the vector spaces have arbitrary dimensions, such
as Cd ⊗ Cd′ etc. See also the footnote.

Above and in the following we use a bold font to denote bitstrings.

Rule 1: State of n quantum bits

The state of n qubits is described by a unit vector in C2 ⊗ · · · ⊗ C2 = (C2)⊗n. That is, quantum states
of n qubits are vectors

|ψ⟩ =
∑

x∈{0,1}n
ψx |x⟩ = ψ0...00 |0 . . . 00⟩+ ψ0...01 |0 . . . 01⟩+ · · ·+ ψ1...11 |1 . . . 11⟩

such that
∑

x∈{0,1}n |ψx|2 = 1.

You should think of the basis state |x⟩ = |x1, . . . , xn⟩ as: the first qubit is in state |x1⟩, the second qubit
is in state |x2⟩, etc. Now the other rules we learned in Chapter 2 generalize easily. We first explain what
happens when one measures all qubits:

Rule 2: Measuring n quantum bits

Suppose n qubits are in state |ψ⟩ ∈ (C2)⊗n and we measure all of them. Then, with probability
|⟨x|ψ⟩|2 = |ψx|2, we see outcomes “x1”, . . . , “xn”, in which case the state changes to |x⟩ = |x1, . . . , xn⟩.

You should really think of this as n separate measurements that you apply in parallel, like so:

“a′′

|a, b⟩“b′′

Here we have n = 2 qubits, so we use two wires, and we label the outcomes a and b instead of x1 and x2 (just
for the fun of it). By convention, the first (top) wire corresponds to the first qubit, and the second (bottom)
wire corresponds to the bottom qubit. For example, if we measure both qubits of the two-qubit state

|ψ⟩ =
√
0.3 |00⟩+

√
0.7 |11⟩

then with 30% probability both measurements yield outcome “0” and the state changes to |00⟩, and with 70%
probability both measurements yield outcome “1” and the state changes to |11⟩.

1There is a more general and abstract definition of the tensor product of two vector spaces. If you know it: great! If you
don’t: what we explain in this chapter will be enough to understand all we do in this course.

26



Rule 3: Unitaries on n quantum bits

We can apply arbitrary unitaries to n qubits. If the state of the n qubits is |ψ⟩ ∈ (C2)⊗n and we apply a
unitary U on (C2)⊗n, then the state changes to U |ψ⟩.

What is a unitary on C2 ⊗ · · · ⊗ C2? We can think of U either as an abstract linear map or operator, but
also concretely as a 2n × 2n matrix with respect to the computational basis:

U =

U0...00,0...00 . . . U0...00,1...11

... Ux,y

...
U1...11,0...00 . . . U1...11,1...11.


Note that Ux,y = ⟨x|U |y⟩. (Can you see why?) We say that U is unitary if this 2n × 2n matrix is unitary.
We always use lexicographic order to sort the computational basis (but we note that it does not actually
matter in which order we sort this basis if all we want is to check if U is unitary).

We visualize n-qubit unitaries in the same way as before, except that we use n wires instead of just one.
E.g., for n = 2:

U

Let’s discuss some examples of important two-qubit unitaries.

Example 3.2: Swap gate

The swap unitary simply exchanges the state of the two qubits. It is clear how we should define it on the
four basis states:

SWAP |00⟩ = |00⟩ ,
SWAP |01⟩ = |10⟩ ,
SWAP |10⟩ = |01⟩ ,
SWAP |11⟩ = |11⟩ .

We can write this more succinctly as follows:

SWAP |a, b⟩ = |b, a⟩ for all a, b ∈ {0, 1}.

The matrix representation of SWAP with respect to the computational basis |00⟩, |01⟩, |10⟩, |11⟩ looks
as follows: 

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


In quantum circuits, the following three notations are all quite usual:

SWAP
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Example 3.3: Controlled NOT gate

The controlled NOT or CNOT gate operates as you might expect on the four basis states:

CNOT |00⟩ = |00⟩ ,
CNOT |01⟩ = |01⟩ ,
CNOT |10⟩ = |11⟩ ,
CNOT |11⟩ = |10⟩

or simply

CNOT |a, b⟩ = |a, a⊕ b⟩ for all a, b ∈ {0, 1}. (3.1)

In other words, if a = 0 then b is left untouched, while if a = 1 then b is inverted. We say that we apply a
NOT gate to the second qubit, “controlled” on the first qubit. (Since we use X and NOT interchangably,
sometimes we also write CX instead of CNOT.) The CNOT gate looks as follows in quantum circuits,
which is quite intuitive given what we just discussed:

Here is its matrix representation: 
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

(
I 0

0 X

)

On the right-hand side we write CNOT as a 2× 2 block matrix. Each block is itself a 2× 2-matrix.

Above we inverted the second qubit based on the value of the first one. We can also invert the first qubit
based on the value of the second one. Naturally, this is denoted by

Can you write down a formula and matrix representation for this unitary?

Example 3.4: Controlled Z gate

Instead of the NOT gate, we can also apply other unitaries to the second qubit controlled on the first
qubit. For example, the controlled Z gate is defined as follows on the basis states:

CZ |00⟩ = |00⟩ ,
CZ |01⟩ = |01⟩ ,
CZ |10⟩ = |10⟩ ,
CZ |11⟩ = − |11⟩ .

We can write this more succinctly:2

CZ |a, b⟩ = (−1)ab |a, b⟩ for all a, b ∈ {0, 1}.
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Its matrix representation follows the same pattern:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 =

(
I 0

0 Z

)

Observe that, unlike for the CNOT gate, it does not matter which is the control and which is the target!
Accordingly, the controlled Z also visualized in a symmetric way, as follows:

On the homework you will explore controlled gates more generally.
One important observation of Rules 1 to 3 is that any two states that differ by an overall constant are

indistinguishable, so they should really be considered “the same state”. To see this, suppose that

|ϕ⟩ = λ |ψ⟩ .

for some λ ∈ C. Since states have norm one, we must necessarily have |λ| = 1.3 If we measure the qubits of
such a state, then we cannot see the difference, since the probabilities of measurement outcomes only depend
on (the square of) the absolute value, and we have

|⟨x|ϕ⟩|2 = |λ|2︸︷︷︸
=1

|⟨x|ψ⟩|2 = |⟨x|ψ⟩|2.

It also doesn’t help to apply unitaries before measuring, since

U |ϕ⟩ = λU |ψ⟩

for every linear map U and hence U |ϕ⟩ and U |ψ⟩ also only differ by an overall constant.

3.1.1 Some puzzles

So far so good! Is this all there is to know about quantum computing? Not quite. In ordinary computing, we
usually apply gates to only some of the bits of our memory. But we don’t actually know how this works in
quantum computing. Specifically, here are some important questions that we still have to address:

Q1. Suppose Alice has one qubit in state |α⟩ ∈ C2, and Bob has another qubit in state |β⟩ ∈ C2. How
should we describe the joint state of their two qubits, which should be a vector |ψ⟩ ∈ C2 ⊗ C2?

Q2. Suppose Alice and Bob both have a qubit. If Alice applies a 2 × 2 unitary to her qubit alone, what
does this do to their joint state?

Q3. Suppose Alice and Bob both have a qubit. If Alice measures her qubit alone, then her outcome should
be a bit. What are the probabilities of outcomes? What happens to the joint state depending on the
outcome?

We’ll discuss these three questions in the following two sections.

3.2 Product states and entangled states

The answer to the first question is clear for basis states. If Alice has a qubit in state |0⟩ and Bob has a
qubit in state |0⟩, then their joint state should simply be the basis state |00⟩, and likewise for the other three
combinations. Let us introduce a new operation “⊗” that combines the basis states in this way:

|0⟩ ⊗ |0⟩ := |00⟩ ,
2Recall that (−1)n = 1 if n is even and (−1)n = −1 if n is odd. In particular, (−1)ab = −1 if and only if a = b = 1.
3That is, |ϕ⟩ = eiθ |ψ⟩ for some angle θ. In the literature, people often say that the two states only differe by a “global phase”.
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|0⟩ ⊗ |1⟩ := |01⟩ ,
|1⟩ ⊗ |0⟩ := |10⟩ ,
|1⟩ ⊗ |1⟩ := |11⟩ .

How should we combine states that are not basis states? Let’s simply “multiply out”! This defines the
following operation, which is known as the tensor product of vectors.

Definition 3.5: Tensor product of vectors

If |α⟩ = α0 |0⟩+ α1 |1⟩ ∈ C2 and |β⟩ = β0 |0⟩+ β1 |1⟩ ∈ C2, then we define their tensor product to be

|α⟩ ⊗ |β⟩ = (α0 |0⟩+ α1 |1⟩)⊗ (β0 |0⟩+ β1 |1⟩)
= α0β0 |00⟩+ α0β1 |01⟩+ α1β0 |10⟩+ α1β1 |11⟩ ∈ C2 ⊗ C2.

In the same we can define the tensor product of vectors of arbitrary dimension, e.g., when |α⟩ ∈ Cd and
|β⟩ ∈ Cd′ , or when |α⟩ or |β⟩ themselves are vectors in a tensor product of vector spaces.

For example, recall the Hadamard basis states |+⟩ = 1√
2
(|0⟩+ |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩). Then:

|+⟩ ⊗ |+⟩ = 1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩) = 1

2
(|00⟩+ |01⟩+ |10⟩+ |11⟩),

|+⟩ ⊗ |−⟩ = 1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩ − |1⟩) = 1

2
(|00⟩ − |01⟩+ |10⟩ − |11⟩).

Here is a more complicated example, in which we combine a one-qubit state with a two-qubit state to get a
three-qubit state:

|0⟩ ⊗ 1√
2
(|00⟩+ |11⟩) = 1√

2
|000⟩+ 1√

2
|011⟩ = 1√

2
(|000⟩+ |011⟩).

If |α⟩ and |β⟩ are unit vectors, then |α⟩ ⊗ |β⟩ is again a unit vector. (Try proving this for yourself.) Thus
the following rule makes sense and answers the first question (Q1).

Rule 4: Combining states

If the first qubit is in state |α⟩ ∈ C2 and the second qubit is in state |β⟩ ∈ C2, then the overall state of
the two qubits is |α⟩ ⊗ |β⟩ ∈ C2 ⊗C2. We can similarly combine states of more than one qubit (or qudit)
each.

As a picture:

|α⟩ |α⟩ ⊗ |β⟩|β⟩

Definition 3.6: Product and entangled states

A state |ψ⟩ ∈ C2 ⊗C2 is called a product state if it can be written in the form |ψ⟩ = |α⟩ ⊗ |β⟩ for certain
|α⟩ , |β⟩ ∈ C2. Otherwise, |ψ⟩ is called entangled.

We can’t quite appreciate this right now, but entanglement plays a really important role in quantum
information (roughly speaking, without entanglement, quantum computing would be no more powerful than
ordinary computing). Here is an example of an entangled state:
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Example 3.7: EPR pair

The following two-qubit state is called a (or “the”) maximally entangled state of two qubits, or an EPR
pair (in honor to physicists Einstein, Podolski, and Rosen, who wrote an influential paper about the
confusing properties of entangled states):

1√
2
(|00⟩+ |11⟩).

Why is it entangled? Suppose it is not! Then we could write it as a product state, i.e.,

1√
2
(|00⟩+ |11⟩) !

= |α⟩ ⊗ |β⟩ = α0β0 |00⟩+ α0β1 |01⟩+ α1β0 |10⟩+ α1β1 |11⟩ .

Then we would have

1

2
=

1√
2
· 1√

2
= (α0β0)(α1β1) = (α0β1)(α1β0) = 0 · 0 = 0. �

But this is a contradiction. Thus the state is not a product state – instead, it is entangled.

3.3 Unitaries on subsystems

Now suppose that there are two qubits in some state |ψ⟩ ∈ C2 ⊗ C2. Say, Alice has the first qubit and Bob
the second one. If Alice applies a unitary U to her qubit (the first qubit), what will happens to the state |ψ⟩?

The answer is clear for product states: if |ψ⟩ = |α⟩⊗ |β⟩, then after applying U to the first qubit, the state
should change to U |α⟩ ⊗ |β⟩. You should read this as (U |α⟩)⊗ |β⟩, and not as U(|α⟩ ⊗ |β⟩). In particular
this tells us what happens with the basis states:

|00⟩ = |0⟩ ⊗ |0⟩ 7→ U |0⟩ ⊗ |0⟩ ,
|01⟩ = |0⟩ ⊗ |1⟩ 7→ U |0⟩ ⊗ |1⟩ ,
|10⟩ = |1⟩ ⊗ |0⟩ 7→ U |1⟩ ⊗ |0⟩ ,
|11⟩ = |1⟩ ⊗ |1⟩ 7→ U |1⟩ ⊗ |1⟩ .

Since a linear map is determined by its action on a basis, the above rules define a linear map on C2 ⊗C2 that
we can apply to arbitrary states, not only product states. For example:

|00⟩+ |11⟩ 7→ U |0⟩ ⊗ |0⟩+ U |1⟩ ⊗ |1⟩ .

The linear map thus defined is denoted by U ⊗ I, which is a special case of a more general definition (the
third kind of tensor product that we will learn today).

Definition 3.8: Tensor product of linear maps (“operators”)

If A and B are linear maps on C2 (i.e., 2× 2-matrices), then their tensor product A⊗B is the unique
linear map on C2 ⊗ C2 such that

(A⊗B)(|α⟩ ⊗ |β⟩) = A|α⟩ ⊗B|β⟩

for all |α⟩ , |β⟩ ∈ C2. The right-hand side of the equation should be interpreted as (A |α⟩)⊗ (B |β⟩). Note
that this defines the tensor product of operators in terms of the tensor product of vectors!

In the same way we define the tensor product of arbitrary linear maps between arbitrary vectors
spaces. We can even make sense of objects such as ⟨γ| ⊗B, which is the linear map from C2 ⊗ C2 to C2

defined by

(⟨γ| ⊗B)(|α⟩ ⊗ |β⟩) = ⟨γ|α⟩ ·B |β⟩ (3.2)
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for all |α⟩ , |β⟩ ∈ C2. Note that ⟨γ|α⟩ is a number and hence the right-hand side is a vector in C2.

The tensor product is bilinear, associative, and satisfies some other useful rules. For example, (A ⊗
B)(A′ ⊗B′) = AA′ ⊗BB′ whenever it makes sense. Now we can summarize the above discussion.

Rule 5: Unitaries on some of the qubits

If we apply a one-qubit unitary U to the first qubit of two qubits in state |ψ⟩, then the result is (U⊗I) |ψ⟩.
If we instead apply U to the second qubit, then the result is (I ⊗U) |ψ⟩. We can similarly apply unitaries
(of one or more qubits) in situations when we have more than two qubits.

This answers question Q2. In pictures:

U
= U ⊗ I and

U
= I ⊗ U.

That is, if we apply the left-hand side circuit to an arbitrary two-qubit state |ψ⟩ then we get (U ⊗ I) |ψ⟩, and
similarly for the right-hand side one. Similarly:

U
= U ⊗ I ⊗ I, U = I ⊗ U ⊗ I,

U

= I ⊗ I ⊗ U, etc.

Or if W is a two-qubit unitary, then we have

W
=W ⊗ I,

W
= I ⊗W.

As a consequence of the general rule mentioned above, we have:

(I ⊗ V )(U ⊗ I) = U ⊗ V = (U ⊗ I)(I ⊗ V ).

This tells us that it does not matter in which order we apply unitaries on different qubits! This is quite
intuitive:

U

V
=

U

V
=

U

V

(Caution: circuit time goes left to right, while linear maps are applied right to left).
Let’s discuss an interesting example:

Example 3.9: EPR circuit

Which state is creates by the following quantum circuit?

|0⟩ H

|0⟩

1 2

(3.3)

By Rule 4, we start out in state |00⟩ = |0⟩ ⊗ |0⟩. We fist apply a Hadamard gate on the first qubit. By
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Rule 5, this means that the state changes to

(H ⊗ I) |00⟩ = H |0⟩ ⊗ |0⟩ = 1√
2
(|0⟩+ |1⟩)⊗ |0⟩ = 1√

2
(|00⟩+ |10⟩).

Finally, we apply the CNOT gate. By Eq. (3.1), the result is

CNOT
1√
2
(|00⟩+ |10⟩). = 1√

2
(|00⟩+ |11⟩).

Thus, the circuit in (3.3) prepares the maximally entangled or EPR state from Example 3.7.

3.4 Measurements on subsystems

The last question we need to address is what happens if we measure only some of the qubits but not all
of them (Q3). For example, suppose again that there are two qubits in some state |ψ⟩ ∈ C2 ⊗ C2. What
happens if we only measure the first qubit? This is called a partial measurement :

|ψ⟩

“a′′

The outcome should be a bit – but what are the probabilities of the two possible outcomes a ∈ {0, 1}? And
what is the state afterwards? Again the answer is clear if the state is a product state |α⟩ ⊗ |β⟩, but how
about in general?

It is not so hard to figure out what the probabilities should be. Suppose instead of just measuring the
first qubit, you measure both qubits, but you only care about the outcome of the first qubit. Since the
joint probability of both outcomes is |ψab|2, by Rule 2, the probability of seeing some outcome “a” for the
measurement of the first qubit is computed by the marginal probability

pa = |ψa0|2 + |ψa1|2.

It turns out that this is exactly the probability of outcome a ∈ {0, 1} if we only measure the first qubit.
What should happen with the state? If we measure both qubits then we know that the state collapses into a

basis state |a, b⟩, corresponding to the outcomes that we see. If we only measure one qubit then we might guess
that the state will “partially” collapse, meaning that we should keep precisely those terms that are consistent
with the outcome that we see. That is, if we measure the first qubit and see outcome “a”, then the state should
change to ψa0 |a0⟩+ψa1 |a1⟩. This is almost correct, except that this vector will not have norm one. How can
we make it a unit vector? We simply divide by its norm. Since ∥ψa0 |a0⟩+ψa1 |a1⟩∥2 = |ψa0|2+|ψa1|2 = pa, the
norm that we need to divide by is simply √

pa. Thus we arrive at the following rule for partial measurements:

Rule 6: Partial measurement

If two qubits are in state |ψ⟩ = ψ00 |00⟩+ ψ01 |01⟩+ ψ10 |10⟩+ ψ11 |11⟩ and we measure the first qubit,
then the following happens: for a ∈ {0, 1}, with probability

pa = |ψa0|2 + |ψa1|2

we see outcome “a”, in which case the state changes to

1
√
pa

(
ψa0 |a0⟩+ ψa1 |a1⟩

)
= |a⟩ ⊗ 1

√
pa

(
ψa0 |0⟩+ ψa1 |1⟩

)
.

Analogously we can compute what happens if we measure only the second qubit, or if we have more
qubits, or if we measure multiple qubits, or if we have qudits, etc.

This answers question (Q3). It is a fun exercise to check that if you measure one qubit after the other
(using Rule 6 each them) then you obtain precisely Rule 2.
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Remark 3.10

Here is another way of stating Rule 6 that might at first glance look a more abstract, but which I find easy
to remember and use in practice: For concreteness, suppose you have a two-qubit state |ψ⟩ ∈ C2 ⊗ C2

and you want to know what happens when you measure the first qubit. To this end, write your state as

|ψ⟩ = |0⟩ ⊗ |ψ0⟩+ |1⟩ ⊗ |ψ1⟩ ,

for vectors |ψ0⟩ and |ψ1⟩ (in general these will not be unit vectors). This is often very easy to do by
hand. Alternatively you can simply compute |ψa⟩ = (⟨a| ⊗ I) |ψ⟩ for each a ∈ {0, 1} (see Eq. (3.2) if you
are confused by this notation). Then the probability of outcome “a” is

pa = ∥ψa∥2,

and if one sees this outcome then the two-qubit state changes to

|a⟩ ⊗ |ψa⟩√
pa

= |a⟩ ⊗ |ψa⟩
∥ψa∥

.

Here is a variation of the above prescription that can also be useful: if instead you write

|ψ⟩ = β0 |0⟩ ⊗ |ϕ0⟩+ β1 |1⟩ ⊗ |ϕ1⟩ ,

for complex numbers β0, β1 ∈ C and unit vectors |ϕ0⟩ and |ϕ1⟩, then the probability of outcome “a” is
simply

pa = |βa|2

and if one sees this outcome then the state changes to

|a⟩ ⊗ |ϕa⟩ .

All the above generalizes readily to measuring the second qubit, to more than two qubits, etc. You
can discuss this in more detail in the exercises.

Phew! Now we know all the rules of quantum computing that we will need. From the next chapter
onwards, we will have fun applying them.
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Chapter 4

Classical vs quantum computing and oracles

In this lecture, we will start discussing how to compute with quantum circuits. The first topic that we need
to discuss is whether quantum computing is even just as powerful as ordinary classical computing! To address
this, we will show how to construct for any Boolean circuit a corresponding quantum circuit that allows
us to compute the same result (and is at most a constant factor larger than the circuit we started with).
Afterwards, we will discuss oracle problems and see a first example where quantum computing solve a problem
more efficiently than any classical algorithm.

4.1 What do quantum circuits and algorithms look like?

Quantum algorithms are often thought of in terms of circuits. A typical quantum circuit looks as follows:

input

. . .

. . .

. . .

|0⟩ . . .

|0⟩ . . .

initialize apply gates measure

Figure 4.1: Anatomy of a typical quantum circuit

We start with some qubits that contain our problem input (e.g., if the task is to check whether a number
is prime, then the input qubits might be initialized in a basis state |x1, . . . , xn⟩ that encodes the number in
binary). In addition, there might be some auxiliary qubits initialized in the |0⟩ state (our “scratch space”).
Then we successively apply gates. We will only consider unitary gates that act on one, two, or three qubits
at a time (such as the ones discussed in Chapters 2 and 3).1 At the end we measure one or more qubits to
hopefully obtain the desired answer. It is also okay to have measurements in the middle of the computation –
this is called an “intermediate measurement” –, although you will show in the exercises that measurements
can always be postponed to the end.

Usually, there is not just a single circuit, but the circuit depends on the problem size (e.g., the bitsize
of the number that we want to factor). To get a quantum algorithm, we need to be able to generate this
circuit for any possible problem size. To this end, we ask that there is a classical algorithm that tells us which
quantum gates should be applied in which order (it can also take the outcomes of intermediate measurements
into account to decide which gates should be applied next).2

1In fact, there are universal gate sets, meaning that any unitary can be approximated to arbitrary precision by composing
gates in the set. For example, the H, T , and CNOT gates defined in Eqs. (2.5), (2.6) and (3.1) are universal in this sense!

2We will not be more precise than this for the time being, since it will always be clear in all of our examples what the classical
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4.2 From classical to reversible and quantum circuits

Suppose someone hands you a Boolean circuit computing some function g : {0, 1}n → {0, 1} and asks you
to construct a corresponding quantum circuit that allows computing the same result. (If you aren’t sure
what this should even mean, this is good – please continue reading!) For example, they might hand you the
following Boolean circuit:

x1
AND

ORx2

AND
x3

It computes the function g(x1, x2, x3) = OR(AND(x1, x2),AND(x2, x3)).
Perhaps we can simply go ahead and replace each gate by a quantum gate? Unfortunately, for the AND

and OR gates this will not work, for the interesting reason that those gates are irreversible, while unitary
quantum gates can always be reversed. For example, we cannot simply define a “quantum AND gate” that
maps |x1, x2⟩ 7→ |AND(x1, x2)⟩, since this would need to send |00⟩, |10⟩, and |01⟩ to |0⟩, which is clearly not
reversible! Similarly, splitting the x2 wire into two in order to copy the x2 bit is not bijective either.

Note that this problem has nothing to do with quantum computing per se. What we are really asking is
whether it is possible to compute any Boolean function by a reversible circuit (and hopefully so without any
loss of efficiency). Let us first simplify the problem in two ways:

• We apply De Morgan’s law that says that OR(y1, y2) = NOT(AND(NOT(y1),NOT(y2)));

• Instead of splitting the wire to copy the x2 bit, we add an auxiliary 0 bit and CNOT x2 onto it.

This results in the following Boolean circuit:

x1
AND

x2 NOT
AND

0
AND

NOT NOT

x3

Since the NOT and CNOT gates are reversible, we are left with the problem that the AND gate is not
reversible. Fortunately, there is a general “trick” to make any function reversible:

Definition 4.1: Reversible oracle

For a function f : {0, 1}n → {0, 1}m with n input and m output bits, the reversible oracle (or reversible
embedding) is the function frev : {0, 1}n+m → {0, 1}n+m defined by frev(x,y) = (x,y ⊕ f(x)).

It is easy to pass between f and its reversible oracle. Indeed, the latter is easy to compute from the
former, and we can also recover the former from the latter: simply compute frev(x,0) = (x,f(x)) and look
at the second part of the output. Note that frev is indeed reversible. In fact, it is its own inverse: for all
x ∈ {0, 1}n and y ∈ {0, 1}m, we have

frev(frev(x,y)) = frev(x,y ⊕ f(x)) = (x,y ⊕ f(x)⊕ f(x)) = (x,y).

If we apply this to the AND gate, we get ANDrev(x1, x2, y) = (x1, x2, y ⊕ AND(x1, x2)). This is called
the Toffoli gate and it deserves its own definition.

algorithm looks like that tells us which gates to apply when. However, we will have to be more precise when discussing quantum
complexity theory.

36



Example 4.2: Classical Toffoli gate

The (classical) Toffoli gate is the reversible three-bit gate defined as follows:

CCNOT: {0, 1}3 → {0, 1}3, (x1, x2, y) 7→ (x1, x2, y ⊕AND(x1, x2))

Note that it simply inverts the third bit if both the first and the second bit are true. Accordingly, it is
also called the CCNOT gate, which is short for doubly controlled NOT gate. It is denoted as follows in
circuits:

If we replace the AND gates in our circuit by Toffoli gates, with the third input bit (“y”) initialized to 0,
we obtain the following circuit:3

x1 x1

x2 x2

0 NOT NOT(AND(x1, x2))

0 x2

x3 x3

0 NOT NOT(AND(x2, x3))

0 NOT g(x1, x2, x3)

On the right-hand side we show what is output on each wire. It looks like we have succeeded – the desired
result is output on the very last wire. On the other hand, some of the other wires are outputting some
intermediate results and the copy of x2 (colored in orange) that we are not interested in. Fortunately, there is
an easy way to get rid of this “garbage”: let us simply use another CNOT to copy the result onto a new wire
and then run the above circuit in reverse (this is sometimes called “uncomputing”). Because we are only using
gates that are their own inverses, we simply need to reverse the order in the second part:

x1 x1

x2 x2

0 NOT NOT 0

0 0

x3 x3

0 NOT NOT 0

0 NOT NOT 0

y y ⊕ g(x1, x2, x3)

We see that the resulting circuit precisely computes the reversible oracle grev of the function g! While it uses
some auxiliary bits initialized in state 0 to achieve this, it restores the state of these bits in state 0 so that
they can be used again later – thus the “garbage” does not accumulate. Phew!

3This circuit can be simplified, but let’s not worry about this for the time being – the goal is to try to derive a completely
mechanical procedure that works without any thinking!

37



The above procedure works in complete generality. Given a Boolean circuit computing any func-
tion f : {0, 1}n → {0, 1}m, we can compile it into a reversible circuit that computes the reversible ora-
cle frev : {0, 1}n+m → {0, 1}n+m, by the following steps:

1. First preprocess the circuit so that it only consists of NOT, CNOT, and AND gates.
2. Replace each AND gate by a Toffoli (CCNOT) gate, with the third input a fresh bit that should be

initialized to 0.
3. Use CNOT gates to copy the output bits onto fresh bits.
4. Finally, run step 2 in reverse.

We summarize the properties of this compilation in the following theorem:

Theorem 4.3: Compiling to reversible circuits

Given a Boolean circuit that computes some function f : {0, 1}n → {0, 1}m, the above procedure yields a
reversible circuit that computes the reversible oracle frev : {0, 1}n+m → {0, 1}n+m and uses only NOT,
CNOT, and Toffoli gates. Moreover, if the original circuit consists of T gates, the new circuit will consist
of O(T ) gates and use O(T ) additional bits (which must be initialized in the 0 state, but will be returned
in the 0 state at the end of the circuit).

Now that we have obtained a reversible circuit it is clear how to get a quantum circuit. Simply replace
each classical NOT, CNOT, and Toffoli gate by the corresponding quantum gates, and instead of initializing
the wires with 0 bits, initialize them with |0⟩. In our running example, this will look as follows (while this
looks almost identically as before, the circuit is now a quantum circuit):

|x1⟩ |x1⟩
|x2⟩ |x2⟩

|0⟩ NOT NOT |0⟩

|0⟩ |0⟩

|x3⟩ |x3⟩

|0⟩ NOT NOT |0⟩

|0⟩ NOT NOT |0⟩

|y⟩ |y ⊕ g(x1, x2, x3)⟩

In general, this will implement the following functionality:

Definition 4.4: Standard quantum oracle

For a function f : {0, 1}n → {0, 1}m with n input and m output bits, the standard quantum oracle is the
unitary Qf on (C2)⊗n ⊗ (C2)⊗m defined as follows on the computational basis:

Qf |x,y⟩ = |x,y ⊕ f(x)⟩ for all x ∈ {0, 1}n and y ∈ {0, 1}m

That is:

n

m

|x⟩
Qf

|x⟩

|y⟩ |y ⊕ f(x)⟩

In other words, Qf |x,y⟩ = |frev(x,y)⟩.
For completeness, we also define the quantum Toffoli gate.
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Example 4.5: Quantum Toffoli gate

The (quantum) Toffoli gate is the three-qubit gate that acts as follows on the computational basis:

CCNOT |x1, x2, y⟩ = |x1, x2, y ⊕AND(x1, x2)⟩ .

When used in circuits it is denoted in the same way as the classical Toffoli gate.

Remark 4.6

Interestingly, while it is not possible to compile the classical Toffoli gate into reversible one-bit and
two-bit gates, it is possible to compile the quantum Toffoli gate into one-qubit and two-qubit gates. See
here for how to do it using H, T and CNOT.

Then we obtain the following result as a direct consequence of Theorem 4.3:

Corollary 4.7: Compiling to quantum circuits

Given a Boolean circuit that computes some function f : {0, 1}n → {0, 1}m, the above procedure yields a
quantum circuit that computes the standard quantum oracle Qf and uses only NOT, CNOT, and Toffoli
quantum gates. Moreover, if the original circuit consists of T gates, the new circuit will consist of O(T )
gates and use O(T ) additional qubits (which must be initialized in the |0⟩ state, but will be returned in
the |0⟩ state at the end of the circuit).

The punchline of this section is this: the cost of computing a function reversibly or quantumly is essentially
of the same order as if we compute the function using ordinary Boolean circuits.

Remark 4.8

So far we only discussed how to convert deterministic Boolean circuits into quantum circuits. What if
our Boolean circuit also uses some randomness? This can easily be simulated quantumly, since we can
always prepare a |+⟩ = H |0⟩ state and measure it to get a uniformly random basis state |0⟩ or |1⟩.

4.3 A first quantum advantage: Deutsch’s problem and algorithm

We just saw that the quantum oracle Qf for a Boolean function f can be implemented at essentially the
same cost as the classical one. Clearly, it is at least as useful as f , since we can always apply Qf to |x,0⟩
and measure to obtain f(x). Is it more powerful? It turns out that this is indeed the case! We will now see a
first such example (which you will generalize in the exercises).

Problem 4.9: Deutsch’s problem

Given a function g : {0, 1} → {0, 1}, decide if it is constant or not.

The question is of course how the function is given to us. Here we want to imagine that we only have
the ability to evaluate the function g. That is, we want to think of g as an oracle or black box, that is, a
subroutine that we can call or query, but know nothing about its implementation.

Clearly, any classical algorithm needs at least two queries to g to solve this problem. This is because if we
only know g(0), then g(1) is still completely arbitrary, and vice versa. Randomness does not help either. On
the other hand, two queries are enough, since of course we can simply query g(0) and g(1) and decide based
on that, as in the following pseudocode:

def is_constant(g):
return g(0) == g(1)
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We will now see that there exists a quantum algorithm that can solve Problem 4.9 using only a single
query to the quantum oracle Qg! To get some intuition, let us see what happens if we apply Qg with a
Hadamard basis state in the second qubit. For |+⟩, nothing happens at all, since for x ∈ {0, 1} we have

Qg |x,+⟩ = 1√
2
(Qg |x, 0⟩+Qg |x, 1⟩) =

1√
2
(|x, g(x)⟩+ |x, 1⊕ g(x)⟩) = |x,+⟩ .

This is perhaps strange, but not useful. However, if we instead use |−⟩ then, for x ∈ {0, 1}, we get

Qg |x,−⟩ = 1√
2
(Qg |x, 0⟩ −Qg |x, 1⟩) =

1√
2
(|x, g(x)⟩ − |x, 1⊕ g(x)⟩) = (−1)g(x) |x,−⟩ .

That is, if we input |x⟩ in the first register and |−⟩ in the second one, then the state remains the same
if g(x) = 0, but it gets a minus sign if g(x) = 1. This is called the “phase kickback trick”. In pictures:

|x⟩
Qg

(−1)g(x) |x⟩

|−⟩ |−⟩
(4.1)

Note that the pink box implements a unitary that maps |x⟩ to (−1)g(x) |x⟩. This is so useful that it deserves
its own name. We call it the phase oracle, and it can be defined for any function g : {0, 1}n → {0, 1} (with
one output bit).

Definition 4.10: Quantum phase oracle

For a function g : {0, 1}n → {0, 1} with n input bits and one output bit, the (quantum) phase oracle is
the unitary Pg on (C2)⊗n defined as follows on the computational basis:

Pg |x⟩ = (−1)g(x) |x⟩ .

That is:

n|x⟩ Pg (−1)g(x) |x⟩

As just discussed, we can implement the phase oracle using one query to the standard quantum oracle. It
is easy to see that this works not just for n = 1, but in fact for any n.

We will now see that by using it once we can solve Deutsch’s problem. Without further ado, here is the
circuit:

.|0⟩ H Pg H (4.2)

Let’s compute the state step by step:

|0⟩ 7→ |+⟩ = 1√
2
(|0⟩+ |1⟩) 7→ 1√

2

(
(−1)g(0) |0⟩+ (−1)g(1) |1⟩

)
7→

{
± |0⟩ if g(0) = g(1)

± |1⟩ otherwise.

Thus the measurement at the end will always yield outcome “0” if the function is constant, and “1” otherwise.
Accordingly, one quantum query (to either Pg or Qg) suffices to solve Deutsch’s problem!

Remark 4.11: Deutsch’s circuit in terms of the standard quantum oracle

If you find the phase oracle mysterious, you can also consider the following quantum circuit which uses
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the standard quantum oracle instead of the phase oracle:

|0⟩ H

Qg

H

|1⟩ H

This circuit is completely equivalent to (4.2). To see this, note that we get it from (4.2) by replacing Pg
with the pink box in (4.1), which implements it, and preparing the |−⟩ state by starting with a |1⟩ basis
state and applying a Hadamard, since H |1⟩ = |−⟩.

To summarize, the above quantum circuit shows clearly that the quantum oracles can offer an advantage.
However, a factor two is perhaps not a very big advantage (especially because quantum oracles will typically
be a bit more costly to implement, see Section 4.2). In the coming weeks, we will study more convincing
problems where quantum algorithms offer an advantage – sometimes even an exponential one.

4.4 Outro: Time vs query complexity

We just saw a problem that took as its input not a bitstring, but an oracle or black box that it could call. Let
us discuss some computational problems, how their input is specified, and how to quantify their complexity,
in order to see that the above setting is quite natural:

• Factoring a number: Here the input is just a number which we would typically input in binary.

• Minimize a function: Here it is not so clear how the input should be given!

One option would be to restrict to some class of functions which can be specified by some type of
formula. E.g., if we want to restrict to minimizing only polynomials, such as f(x) = x2 − 3x+ 5, we
could input the sequence of coefficients 1,−3, 5 in binary.

The following option is often more natural: We could simply give our algorithm the ability to evaluate
the function f(x) for any x of choice:

x f f(x)

In other words, the input is given by an oracle or black box, that is, a subroutine that we can call but
know nothing about its implementation.

For example, if you want to minimize an arbitrary convex function then gradient descent manages. It
only needs to be able to evaluate a function and its gradient (derivative). Moreover, the latter can be
estimated using finite differences. Here is some pseudo-code for it:

def gradient_descent_1d(f):
step_size = ... # suitable step size
T = ... # suitable number of iterations
x = x_0 # some starting point
eps = 1e-5

for t in range(T):
grad = (f(x + eps) - f(x)) / eps
x = x - step_size * grad

return x

• Find an element in an array: Again, we could either specify the array by listing one element after the
other, x1, . . . , xN , or we could provide access to a black box that inputs some index j and returns the
j-th element of the array:
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j xj

• Sort an array: Note that specifying the array is not enough – we also need to know how to compare
elements. Once we realize this, we see that knowing the elements is not necessary at all. All we need to
provide to our sorting algorithm is a black box that given two indices, tells us which of the corresponding
entries of the array is larger:

j {
1 if xj > xk

0 otherwise
k

Indeed, most search algorithms that you know are generic and work in this model.

There are many other examples. For examples, in computer graphics, we can describe geometric objects
explicitly (e.g., by lists of triangles) or implicitly (e.g., by distance fields – functions that for any point
compute the distance to the object).

From these examples we see that there are two natural ways of specifying the input for a computational
problem:

(A) The input is given explicitly as a number, formula, array, etc. (usually encoded in binary, as a bitstring).
(B) The input is given by a black box or oracle that can be called or queried (that is, it is given by a

subroutine that we can use in our algorithm, but we know nothing about its implementation).

Problems where the input involves an oracle are called oracle problems.
Accordingly there are different ways of quantifying the efficiency or complexity of an algorithmic solution:

(A) We can count the number of gates/elementary operations that are required to solve the problem. This
is called time complexity.

(B) When the input is given by an oracle, we can also only count the number of queries (= calls) to the
oracle that is required to solve the problem. In other words, we consider circuits that consist of ordinary
gates and oracle queries, and we only count the latter. This is called query complexity.

Deutsch’s problem (Problem 4.9) is an example of an oracle problem, and we just saw that its quantum
query complexity is one, while its classical query complexity is two.

Clearly, for oracle problems, the query complexity is always ≤ the time complexity. Thus, in order to
prove that an oracle problem is difficult, it is enough to show that many queries are needed to solve the
problem. We will learn techniques for doing so in this course. On the other hand, if an oracle problem is
easy, then one often (but not always!) finds that its time complexity is of the same order than the query
complexity.
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Chapter 5

Simon’s quantum algorithm and classical
lower bounds

Last week we discussed the Deutsch-Jozsa quantum algorithm, which gave an exponential speedup over
any deterministic classical algorithm, and the Bernstein-Vazirani quantum algorithm, which offered a linear
speedup over any possibly randomized classical algorithm.

This week, we will discuss Simon’s quantum algorithm, which combines these two features: it offers an
exponential speedup for a certain computational problem as compared to any possibly randomized classical
algorithm! The problem looks as follows (we write 0 for the bitstring consisting of n zeros):

Problem 5.1: Simon’s problem

You are given query access to a function f : {0, 1}n → {0, 1}n that is periodic, i.e., there is some 0 ̸= s ∈
{0, 1}n such that f(x) = f(y) if and only if y = x or y = x⊕ s. Find the period s!

Note that the function f is two-to-one. Indeed, for any z in the image f({0, 1}n), we have f−1(z) =
{x,x⊕ s} for some x ∈ {0, 1}n. In particular, the image of f consists of 2n−1 distinct bitstrings.

We assume that we have query access to an oracle for the function f . As always, a classical query is
simply a function call f(x). Note that the function has n output bits; we learn all of them in a single query.
For quantum queries we use the standard quantum oracle, which is the 2n-qubit unitary

Qf |x, z⟩ = |x, z ⊕ f(x)⟩ ∀x, z ∈ {0, 1}n. (5.1)

(Since the function f has n output bits there is no quantum phase oracle in this case.)

5.1 Classical algorithm

To solve Simon’s problem it suffices to find a collision, i.e., x ̸= x′ such that f(x) = f(x′). Indeed, if we find
such a collision then we know that s = x⊕ x′.

This suggests a simple algorithm: simply draw random distinct bitstrings x(1) ̸= x(2) ̸= . . . ̸= x(T ) ∈
{0, 1}n, and hope for a collision. The “birthday paradox” suggests that T = O(

√
2n) queries should suffice.

To get some intuition, we compute the expected number of collisions. Since there are
(
T
2

)
pairs {i, j}, and

for each pair the probability that we have a collision (i.e., f(x(i)) = f(x(j))) is 1
2n−1 , the expected number

of collision is

E[collisions] =
(
T

2

)
1

2n − 1
= Θ

(
T 2

2n

)
.

Thus, T = O(
√
2n) queries suffice so that we see a collision in expectation. This looks good, but we really

want to find a collision with high probability (and the preceding does not show this!). What is the probability
that there is no collision?

Pr(no collision within T queries)
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=
T−1∏
t=1

Pr(no collision in (t+ 1)-st query|no collision within first t queries)

=

T−1∏
t=1

(
1− t

2n − t

)
≤

T−1∏
t=1

(
1− t

2n

)
≤

T−1∏
t=1

e−
t
2n

= e−
∑T−1

t=1
t
2n = e−

(T−1)T
2

1
2n = e−Θ(T 2/2n)

since for the (t+ 1)-st query there are 2n − t remaining bitstrings to draw from (remember that the queries
that we make are distinct) and precisely t out of those lead to a collision, namely x(t + 1) = x(k) ⊕ s
for k ∈ [t]. The second inequality uses 1 + x ≤ ex which holds for all x ∈ R. It follows that T = O(

√
2n)

queries suffice to find a collision with any desired constant probability.
Thus we obtain the following randomized algorithm, which works with any desired constant success

probability: Query T = O(
√
2n) function values. If we find a collision f(x(i)) = f(x(j)) for some i ̸= j ∈ [T ],

then we output s = x(i)⊕ x(j). Otherwise, report an error (or return some arbitrary guess).

Lemma 5.2

There is a classical algorithm that uses O(
√
2n) queries to solve Simon’s problem with any desired

constant success probability.

We will later see that this is essentially optimal – any classical algorithm needs Ω(
√
2n) queries to solve

this problem with constant success probability.

5.2 Simon’s quantum algorithm

We now describe a quantum algorithm that needs O(n) queries – an exponential improvement. Consider the
quantum circuit given by the left-hand side picture:

...
...

...

...
...

|0⟩ H

Qf

H

...

|0⟩ H H

|0⟩

...

|0⟩

1 2 3

There are 2n qubits - the Hadamard unitaries are applied to the first n of them. The following is a common
way of denoting this:

n

n

|0⟩ H
Qf

H

|0⟩

We would like to compute the joint probability of the measurement outcomes.1 To this end we first
compute the state at the indicated points in the circuit. Recall the general formula

H⊗n |x⟩ = 1√
2n

∑
y∈{0,1}n

(−1)x·y |y⟩ , (5.2)

1In fact, we will see that all we will care about is the outcomes of the measurements of the first n qubits. However, the
analysis becomes slightly more illuminating if one measures all qubits. See also the practice set, where you can analyze what
happens if you measure the last n qubits as soon as possible.
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where x · y = x1y1 ⊕ . . .⊕ xnyn. The state at time 1 is given by(
H⊗n ⊗ I⊗n

)
|0,0⟩ = H⊗n |0⟩ ⊗ |0⟩ = 1√

2n

∑
x∈{0,1}n

|x⟩ ⊗ |0⟩ = 1√
2n

∑
x∈{0,1}n

|x,0⟩ .

To find the state at time 2 we apply the oracle as in Eq. (5.1), and we find

Qf
1√
2n

∑
x∈{0,1}n

|x,0⟩ = 1√
2n

∑
x∈{0,1}n

|x,f(x)⟩ .

Next, we apply another layer of Hadamard’s to the first n qubits, resulting in the following state at time 3 :(
H⊗n ⊗ I⊗n

) 1√
2n

∑
x∈{0,1}n

|x,f(x)⟩

=
1√
2n

∑
x∈{0,1}n

H⊗n |x⟩ ⊗ |f(x)⟩

=
1

2n

∑
z∈{0,1}n

∑
x∈{0,1}n

(−1)x·z |z⟩ ⊗ |f(x)⟩

=
1

2n

∑
z∈{0,1}n

∑
y∈im(f)

(
(−1)xy ·z + (−1)(xy⊕s)·z

)
|z⟩ ⊗ |y⟩

=
1

2n−1

∑
z∈s⊥

∑
y∈im(f)

(−1)xy ·z |z⟩ ⊗ |y⟩ ,

To get from the second to the third line, we again used Eq. (5.2). To get from the third to the fourth line,
we used that for every y in the image of f there exist precisely two x such that y = f(x); we arbitrarily
pick one and call it xy, then the other one is xy ⊕ s, by the periodicity of f . In the last line, we used the
notation s⊥ = {z ∈ {0, 1}n : z · s = 0} for the orthogonal complement of s modulo two. Note that s⊥ is a
subspace of {0, 1}n ∼= Fn2 . Since s ̸= 0, it has dimension n− 1 and hence cardinality 2n−1. Since the image
of f also has cardinality 2n−1, we see that the state has norm one, as it must have. This is a good sanity
check to see that we did not make a mistake.

From the last formula we see that if we measure all qubits we obtain a uniformly random z ∈ s⊥, where s
is the secret period, as well as a uniformly random function value y ∈ im(f) (which we will not actually care
about). The key point is that s can easily be determined from s⊥ – it is the unique nonzero bitstring s ̸= 0
that is orthogonal to all elements of s⊥, hence it can be found by solving a linear system.

The idea of Simon’s quantum algorithm is now very simple: We run the above circuit n−1 times, collecting
vectors z(1), z(2), . . . ,z(n− 1). If we are lucky, the vectors will be linearly independent, hence their span
will be equal to s⊥. We can then determine s as explained above. What is the probability that we get lucky?

Pr
(
z(1), z(2), . . . ,z(n− 1) linearly independent

)
=

n−1∏
t=1

Pr
(
z(t) ̸∈ span{z(1), . . . ,z(t− 1)}

∣∣∣ z(1), . . . ,z(t− 1) linearly independent
)

=

n−1∏
t=1

(
1− 2t−1

2n−1

)
=

(
1− 1

2n−1

)(
1− 1

2n−2

)
· · ·
(
1− 1

4

)(
1− 1

2

)
=

1

2

(
1− 1

4

)
· · ·
(
1− 1

2n−2

)(
1− 1

2n−1

)
≥ 1

2

(
1− 1

4
− 1

8
− · · · − 1

2n−2
− 1

2n−1

)
≥ 1

4
,

using the inequality (1−a)(1−b) ≥ 1−a−b for a, b ≥ 0 and the geometric series 1
4+

1
8+· · ·+ 1

2n−1 = 1
2−

1
2n−1 ≤ 1

2 .
We conclude that the vectors z(1), . . . ,z(n− 1) span s⊥ with probability at least 1

4 . A failure probability at
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most 3/4 does not sound particularly good, but note that we can easily check when failure occurs by checking
whether the vectors are linearly dependent. We thus obtain a quantum algorithm that uses n quantum queries
to either output s correctly or report failure, and the latter happens with probability at most 3/4. If we
repeat this procedure k times, then the probability that failure occurs in every round is at most (3/4)k and
hence can be made as small as we want. In summary:

Theorem 5.3: Simon’s quantum algorithm

Simon’s quantum algorithm described above uses O(n) quantum queries to determine s with any desired
constant success probability.

5.3 Bonus: Classical lower bound

How many queries does a classical algorithm need? Above we saw that T = O(
√
2n) queries suffice when we

can use randomness, but is this also necessary? To show this, it seems natural to try to construct a function f
for which Simon’s problem is particularly difficult to solve. Now this will not quite work, since there is of
course a very simple algorithm for any fixed function f (simply output the correct answer, which is some
fixed s). However if we pick the function f at random then the situation becomes more interesting. Indeed,
suppose that we have a randomized algorithm Arand for Simon’s problem that makes T queries and gives the
right answer with probability at least some p for every periodic function f . Then with probability at least p
it will also give the right answer if we input a function f chosen at random from some fixed distribution D.
Moreover, since we can think of a randomized algorithm as a deterministic algorithm chosen at random,
there must even exist a deterministic algorithm Adet making T queries that does at least as well on the same
distribution D. That is:2

Lemma 5.4: Yao’s principle

Let D be a probability distribution over instances of some computational problem P . Suppose any
deterministic classical algorithm that solves P with probability p when given a random instance drawn
from D needs at least T queries. Then any randomized classical algorithm that solves P with probability p
on arbitrary instances also needs at least T queries.

We will choose the distribution D as follows: first pick a uniformly random 0 ̸= s ∈ {0, 1}n and then let f
be a uniformly random function with this period s.

Now consider an arbitrary deterministic algorithm for Simon’s problem that makes T queries, say
f(x(1)), . . . ,f(x(T )) for certain x(1), . . . ,x(T ); without loss of generality the x(t)’s are all distinct. Note
that later queries may depend on the results of earlier ones. Let us slightly modify the algorithm by making
one more query, namely f(x(T + 1)) for x(T + 1) = x(1)⊕ y, where y is the algorithm’s output. The point
is the following: If the original algorithm’s output was the correct period s, then in the modified algorithm
we are certain to have seen a collision, i.e., f(x(i)) = f(x(j)) for some i ̸= j. In other words, if we see no
collision then the algorithm will necessarily failed to solve Simon’s problem. Thus:

Pr(algorithm fails) ≥ Pr(no collision within T + 1 queries)

We will bound the right-hand inductively. Suppose no collision has occurred in the first t queries, i.e.,
f(x(1)) ̸= . . . ≠ f(x(t)). Then f(x(1)), . . . ,f(x(t)) are independent from s by construction of D. It follows
that x(1), x(2), . . . ,x(t), x(t+ 1) are also independent of s, and hence:

Pr
(
no collision within t+ 1 queries | no collision within t queries

)
= Pr

(
s ̸∈ {x(i)⊕ x(t+ 1)}ti=1

∣∣∣ s ̸∈ {x(i)⊕ x(j)}ti,j=1

)
≥ 1− t

2n − 1−
(
t
2

)
2More formally, we can summarize this idea as follows: maxArand T queries minf Pr(Arand gives the right answer for f) ≤

minD maxAdet T queries Pr(Adet gives the right answer for f ∼ D).
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(to prove the bound, first show that it holds conditioned on any fixed sequence of x(i)’s), and hence

Pr(algorithm fails) ≥ Pr(no collision within T + 1 queries)

≥
T∏
t=1

(
1− t

2n − 1−
(
t
2

)) =
T∏
t=1

2n − 1−
(
t+1
2

)
2n − 1−

(
t
2

)
=

2n − 1−
(
T+1
2

)
2n − 1

= 1−
(
T+1
2

)
2n − 1

≥ 1−Θ(T 2/2n).

We conclude that the algorithm will fail with probability arbitrarily close to 1 unless T = Ω(
√
2n). Thus,

Yao’s principle implies the following result.

Theorem 5.5: Classical lower bound for Simon’s problem

Any (possibly randomized) classical algorithm that solves Simon’s problem with a constant success
probability must make Ω(

√
2n) queries.

5.3.1 Lower bound for the decision version of Simon’s problem

We can use the same idea to prove a stronger result, namely that Ω(
√
2n) queries are required even if we are

only interested in the following simpler problem:

Problem 5.6: Simon’s decision problem

You are given query access to a function f : {0, 1}n → {0, 1}n such that, for some s ∈ {0, 1}n, we have
f(x) = f(y) if and only if y = x or y = x⊕ s. Is s = 0?

That is, either f is bijective (this is the case that s = 0) or it is periodic (with period s ≠ 0). Why is
this problem simpler than the original Simon’s problem (Problem 5.1)? This is because you can use any
algorithm for the original Simon’s problem to solve it: simply run such an algorithm and test whether its
result is indeed the period, using two additional queries.

To analyze the difficulty of this problem we will again rely on Yao’s principle. We choose the distribution
D as follows:

• With probability 1/2, the function f is a random bijection of {0, 1}n. In this case, s = 0. Here the
answer to the problem is “yes”.

• With probability 1/2, we pick a random 0 ̸= s ∈ {0, 1}n and we let f be a random function with this
period s (as before). Here the answer to the problem is “no”.

Consider any deterministic algorithm for Simon’s decision problem. How does it perform on this distributions?

• With probability 1
2 , s = 0 and f is a random bijection. In this case, the query results f(x(1)), . . . ,f(x(T ))

are uniformly random bitstrings, subject only to the condition that they are pairwise distinct.

• With probability 1
2 , s ̸= 0, and f is a random function with period s. If we have no collision then

the query results f(x(1)) ̸= . . . ̸= f(x(T )) are again uniformly random pairwise distinct bitstrings!
Moreover, we know from above that we are very unlikely to have a collision unless T = Ω(

√
2n).

Now assume the algorithm makes fewer than Ω(
√
2n) queries. Then the query results f(x(1)), . . . ,f(x(T ))

have almost the same distribution. Accordingly, the probability that the algorithm outputs “yes” will be
almost the same in both cases. But then the probability of solving Simon’s decision problem for the above
distribution correctly will be arbitrarily close to 1/2, since

Pr(correct) =
1

2
(Pr(“yes”|first case) + (1−Pr(“yes”|second case))) ≈ 1

2

We conclude that the algorithm will fail with probability arbitrarily close to 1/2 unless T = Ω(
√
2n). Again

we can apply Yao’s principle to lift this result to randomized algorithms:
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Theorem 5.7: Classical lower bound for Simon’s decision problem

Any (possibly randomized) classical algorithm that solves Simon’s decision problem with success proba-
bility at least 2/3 (or any other constant probability of success that is strictly larger than 1/2) must
make Ω(

√
2n) queries.
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Chapter 6

Grover’s search algorithm and applications
(or: SAT on a quantum computer)

This week we will study another query algorithm where quantum computers have an advantage.

6.1 Search problem and classical algorithm

Problem 6.1: Grover’s search problem

You are given query access to a function g : {0, 1}n → {0, 1}. Find x ∈ {0, 1}n such that g(x) = 1, or
output “no solution” if no such x exists.

Elements x ∈ {0, 1}n such that g(x) = 1 are called “solutions” to the search problem, or “marked elements”.
Problem 6.1 models an extremely general kind of search problem. For example:

• Satisfiability : g is a boolean formula and x an assignment of variables.

• Knapsack: x is a bitstring representing a subset of items and g(x) = 1 iff the total weight of the items
is ≤W and the total value is ≥ V (for some thresholds W and V ).

• Database search: Given query access to a database, let

g(x) =

{
1 if entry at position x satisfies some search criterion,
0 otherwise.

Usually, the function g(x) is easy to evaluate for any given x ∈ {0, 1}n (that is, in time poly(n)). The
difficulty comes from the fact that there is an exponential number N := 2n of x’s to check.

How well can we do? Any classical algorithm needs Ω(N) queries to solve the search problem for arbitrary g
with probability ≥ 2

3 . This is clear for deterministic algorithms, since such an algorithm will query locations
x(1),x(2), . . . in some definite order until it sees first solution, and in the worst case we will have to inspect
all elements before we find the solution (or conclude that there is none). The same is true for randomized
algorithms, as you will discuss in the exercises.

Similarly, if we know that there are ≥ T solutions then Θ(N/T ) queries are necessary and sufficient to
solve the search problem with probability ≥ 2

3 . What if there are ≥ T solutions but we don’t know T? In
this case, an expected number of Θ(N/T ) queries are necessary and sufficient – simply query g(x) at random
locations x ∈ {0, 1}n until a solution is found.

6.2 Grover’s quantum search algorithm

Amazingly, there is a quantum algorithm for the search problem that offers a quadratic speedup over any
classical algorithm.
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Theorem 6.2: Grover’s quantum search algorithm

Let g : {0, 1}n → {0, 1} be a function and N = 2n. There is a quantum algorithm that uses O(
√
N)

quantum queries and O(
√
N log(N)) other gates to solve the search problem for g with probability ≥ 2

3 .

If we know that there are ≥ T solutions, O(
√

N
T ) queries and O(

√
N
T log(N)) other gates suffice to

find a solution with probability ≥ 2
3 . If we know that there are exactly T solutions, we can even achieve

100% success probability. If we don’t know T , there still exists a quantum algorithm that finds a solution
with an expected number of O(

√
N
T ) queries and O(

√
N
T log(N)) other gates.

Example 6.3: Application to Satisfiability

Given a Boolean formula g, Theorem 6.2 shows that there is a quantum algorithm that solves the
satisfiability problem (Problem 1.3) using O

(√
2n
)
= O(1.414...n) queries to a quantum oracle for the

formula. By Chapter 4 we know that we can implement this oracle using a quantum circuit of polynomial
size (in the description of the formula). Thus, quantum computers can solve the satisfiability problem (for
formulas of subexponential size) in time Õ

(√
2n
)
. In contrast, it is believed that any classical algorithm

must require time Ω̃(2n) in the worst case, as discussed in Chapter 1!

In the remainder of this lecture we will prove a simplified version of Theorem 6.2. The main simplifying
assumption that we will make is the following: we assume that the number of solutions

T := #{x ∈ {0, 1}n : f(x) = 1}

is known to us! This is of course often unrealistic, but we will explain how to fix it later. Given the assumption,

our goal is to solve the search problem using O
(√

N
T

)
queries. Consider the following two states.

• The uniform superposition over all computational basis states:

|U⟩ = 1√
N

∑
x∈{0,1}n

|x⟩

This one is easy to prepare (|U⟩ = H⊗n |0⟩), but if we measure it we get a solution with probability T/N
(so we would have to repeat O(N/T ) times to find one with good probability).

• The “good” state, which is a superposition over all solutions:

|G⟩ = 1√
T

∑
x∈{0,1}n:g(x)=1

|x⟩

If we measure this state then we get a solution with 100% probability, but it is a priori unclear how to
prepare this state.

The key idea is that we will try to go from |U⟩ (which is easy to prepare) to |G⟩ (which solves our problem)
using only O(

√
N/T ) queries.

To better understand the situation, let us also define the “bad” state

|B⟩ = 1√
N − T

∑
x∈{0,1}n:g(x)=0

|x⟩ .

Then:

|U⟩ =
√
1− T

N
|B⟩+

√
T

N
|G⟩ = cos(θ) |B⟩+ sin(θ) |G⟩ ,

where we choose the angle to be in θ ∈ [0, π/2]. Note that, crucially,

θ ≥ sin(θ) =

√
T

N
(6.1)

because sin(x) ≤ |x| for every x ∈ R. We can visualize the situation as follows:
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|B⟩

|G⟩

|U⟩

θ

What natural operations do we have available?

1. The quantum phase oracle Pg |x⟩ = (−1)g(x) |x⟩, which sends

Pg |B⟩ = |B⟩
Pg |G⟩ = − |G⟩ .

Note that this is a reflection across the |B⟩-axis!

2. Inspired by the above, we can also reflect about the |U⟩-axis by using the unitary

R = 2 |U⟩ ⟨U | − I.

Note that this unitary does not depend on the function. It is easy to implement using O(n) gates, as
you will discuss in the exercises.

The Grover operator is defined by combining these two operations:

G = RPg.

As it is a product of two reflections, it acts as a rotation in the two-dimensional subspace spanned by |G⟩
and |B⟩! The rotation angle is easily seen to be 2θ. To confirm this, simply consider the following picture:

|B⟩

|G⟩

|U⟩

θ
θ

Pg|U⟩

G|U⟩ = RPg|U⟩

2θ

If we start with the state |U⟩, which is at an angle θ, and apply the Grover operator k times, then we obtain
the state

Gk |U⟩ = cos((2k + 1)θ) |B⟩+ sin((2k + 1)θ) |G⟩ .

Ideally, (2k+1)θ = π
2 to obtain the good state, but k needs to be an integer. Thus we choose k as the integer

closest to kideal :=
π
4θ −

1
2 . Then:

k = O

(
1

θ

)
= O

(√
N

T

)
,

51



|U⟩ G G G

n . . .|0⟩ H Pg R Pg R Pg R

“x′′

Figure 6.1: Grover’s quantum circuit as used in Theorem 6.4. The Grover operator G = RPg is repeated k =

O(
√

N
T ) times.

using Ineq. (6.1) in the second step. This is indeed the right number of iterations that we are aiming for! To
see that this is a good choice, let us compute the probability that we obtain a solution if we measure Gk |U⟩
in the computational basis:

Pr(solution) = sin2((2k + 1)θ)

= cos2
(
(2k + 1)θ − π

2

)
= 1− sin2

(
(2k + 1)θ − π

2

)
≥ 1− sin2(θ) = 1− T

N
.

If the first equality bothers you, see the corresponding problem on the practice set. The inequality follows
because |k − kideal| = |k − ( π4θ − 1

2)| ≤
1
2 and hence

∣∣(2k + 1)θ − π
2

∣∣ ≤ θ, using that sin(x) is monotonic
for x ∈ [−π/2, π/2].

We summarize what we have achieved:

Theorem 6.4: Baby Grover

Suppose we know that g : {0, 1}n → {0, 1} has exactly T solutions. Then we can use the quantum circuit

in Fig. 6.1, which uses O(
√

N
T ) queries to g, to output a solution with probability at least 1− T

N .

Let’s discuss this result:

• If T ≤ N
3 then the success probability of the algorithm is ≥ 2/3 as desired. What if this is not the case?

There are two options:

– If T > N
3 then we can simply (classically) query the function a few times at random locations to

find a solution with probability ≥ 2/3.
– Alternatively, we can replace g by a new function

g̃ : {0, 1}n+2, g̃(x, y, z) :=

{
g(x) if y = z = 0,

0 otherwise,

whose solutions are precisely of the form (x, 0, 0) for x a solution to g. Thus, g̃ has T solutions,
but the search space has size 4N . Hence if we apply Grover’s algorithm to g̃ we obtain a solution
with probability at least ≥ 3/4. Note that g̃ can be constructed from an oracle for g without
knowledge of its inner workings nor of T .

• If T is known, it is in fact possible to improve the above circuit to rotate to |G⟩ exactly and get an
algorithm that succeeds with 100% probability.

• If T is not known (or only a lower bound is known), there are at least two options:

1. Try different k in a systematic way.
2. Estimate the number of solutions T ! We will learn how this works later in the course.

Either option allows proving Theorem 6.2.
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Chapter 7

Quantum Fourier transform

In Chapter 5, we studied Simon’s problem. The key ingredient in solving it was the Hadamard transform H⊗n,
which maps the n-qubit standard basis to the n-qubit Hadamard basis

H⊗n |x⟩ = 1√
N

∑
z∈{0,1}n

(−1)x·z |z⟩ , (7.1)

where x · z = x1z1 ⊕ . . .⊕ xnzn is the inner product modulo two and N = 2n. To study the peculiar sign
pattern on the right-hand side, let us define for every x ∈ {0, 1}n the function

βx : {0, 1}n → C, βx(z) := (−1)x·z. (7.2)

It has the following magical property:

βx(a⊕ b) = βx(a)βx(b) ∀a, b ∈ {0, 1}n. (7.3)

That is, adding the arguments (which are bitstrings) modulo two is the same as multiplying the function
values (which are complex numbers).

Moreover, if you think of the functions βx for x ∈ {0, 1}n as complex vectors of length N = 2n, then these
vectors are orthogonal.1 Indeed, if this were not true then H⊗n would not be unitary, so we could not use it
in a quantum circuit!

7.1 Fourier transform for ZN
Today we want to discuss a unitary transformation that is adapted to the cyclic group ZN = Z/NZ, i.e.,
the set of integers modulo N (we identify any two integers if they they differ by a multiple of N), along
with addition modulo N as the operation. We can think of this concretely as {0, 1, . . . , N − 1} with addition
modulo N . We will mostly write + for the addition modulo N . For now we allow N to be an arbitrary
positive integer.

When N = 2 then Z2 is the same as {0, 1} with ⊕, so in this case we should simply take the Hadamard
transform. However, in general, ZN is not the same as {0, 1}n, even if N = 2n, so we need to find a new
definition. We take inspiration from the above and consider:

Definition 7.1: Characters of ZN

For any x ∈ ZN , we define
χx : ZN → C, χx(z) = ωxzN ,

where
ωN := e

2πi
N .

These functions are called the characters of the cyclic group ZN . The number ωN is a so-called primitive

1As an aside, note that this means in particular that any function f : {0, 1}n → C can be written as a linear combination of
the functions βx, i.e., we can find numbers cx ∈ C such that f(z) =

∑
x∈{0,1}n cx βx(z) for all x. This is studied in the Fourier

analysis of functions.
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N -th root of unity, meaning that ωNN = 1 but ωkN ̸= 1 for any 0 < k < N .

These functions satisfy the magical property (7.3) from above, but with ({0, 1}n,⊕) replaced by (ZN ,+):

χx(a+ b) = ω
x(a+b)
N = ωxaN ω

xb
N = χx(a)χx(b) ∀a, b ∈ ZN . (7.4)

Conversely, any nonzero function χ : ZN → C that satisfies this property is equal to some χx.2

Definition 7.2: Fourier transform

For any N ≥ 2, we define the Fourier transform of the cyclic group FN as the linear map defined by

FN : CN → CN , FN |x⟩ := 1√
N

∑
z∈ZN

ωxzN |z⟩ ∀x ∈ ZN ,

where we write |z⟩ for z ∈ ZN for the standard basis of CN . The map FN is also called the discrete
Fourier transform.a

aSome literature uses slightly different conventions, with ω−xy
N in place of ωxy

N , and they would call our definition of FN

the inverse Fourier transform.

Note the analogy between this definition and Eq. (7.1). For N = 2, F2 is simply the Hadamard unitary H,
but it is different otherwise.

If |v⟩ =
∑

x vx |x⟩ ∈ CN is an arbitrary vector, then its Fourier transform is given by

FN |v⟩ =
∑
x∈ZN

vxFN |x⟩ =
∑
x∈ZN

vx
1√
N

∑
z∈ZN

ωxzN |z⟩ =
∑
z∈ZN

 1√
N

∑
x∈ZN

ωxzN vx

 |z⟩ .

We can also write this without Dirac notation: if v ∈ CN is a vector, then its Fourier transform FNv has
coefficients

(FNv)z =
1√
N

∑
x∈ZN

ωxzN vx (7.5)

for z ∈ ZN .

Lemma 7.3

The Fourier transform FN : CN → CN is unitary for any N .

Proof. It is enough to show that the vectors FN |a⟩ are orthonormal. Indeed, for any two a, b ∈ ZN , we have

⟨FN |a⟩ , FN |b⟩⟩ = 1

N

∑
z∈ZN

ωazN ω
bz
N =

1

N

∑
z∈ZN

ω
(b−a)z
N =

1

N

N−1∑
z=0

(ωb−aN )z

=

1 if a = b mod N ,
1
N

1−ωN(b−a)
N

1−ωb−a
N

= 1
N

1−1
1−ωb−a

N

= 0 otherwise.

The last equality is clear for a = b, while for a ̸= b we used the formula
∑N−1

z=0 η
z = 1−ηN

1−η for the geometric
sum of a number η ̸= 1, applied to η = ωb−aN .

It is clear from the definition F TN = FN . Since it is also unitary, we see that the inverse Fourier transform
is given by:

F−1
N = F †

N = FN ,

where FN means entrywise complex conjugation.
2To see this, note that we must have χ(0) = χ(0 + 0) = χ(0)2 and hence χ(0) = 1. But then it follows that 1 = χ(0) =

χ(1 + · · ·+ 1) = χ(1)N , hence χ(1) = ωx
N for some x ∈ ZN , and we conclude that χ = χx.
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7.2 Excursion: Fast Fourier transform

Next, we discuss how the Fourier transform can already be computed very efficiently classically, and we give
two beautiful applications. We follow the lecture notes of de Wolf quite closely.

Naively, given a vector of length N (written down on paper, or in memory) we need O(N2) elementary
operations to compute the Fourier transform, since this is the time it takes to multiply the N ×N -matrix FN
with a vector. Is this optimal?

In fact one can do almost quadratically better. Suppose only for simplicity that N = 2n is a power of two.
Then we can write, starting with Eq. (7.5), for any v ∈ CN that

(FNv)z =
1√
N

N−1∑
x=0

ωxzN vx

=
1√
N

N/2−1∑
x=0

ω2xz
N v2x +

1√
N

N/2−1∑
x=0

ω
(2x+1)z
N v2x+1

=
1√
N

N/2−1∑
x=0

ωxzN/2v2x + ωzN
1√
N

N/2−1∑
x=0

ωxzN/2v2x+1

=
1√
2

 1√
N/2

N/2−1∑
x=0

ωxzN/2(veven)x + ωzN
1√
N/2

N/2−1∑
x=0

ωxzN/2(vodd)x


=

1√
2

(
(FN/2veven)z mod N/2 + ωzN (FN/2vodd)z mod N/2

)
.

In the third step, we used that ω2
N = ωN/2. In the subsequent step we introduced veven,vodd ∈ CN/2 as the

vectors that contain the entries of v at even and odd locations, respectively. Thus:

FNv =
1√
2

([
FN/2veven
FN/2veven

]
+ diag(1, ωN , . . . , ω

N−1
N )

[
FN/2vodd
FN/2vodd

])
Thus, we can compute FN recursively by first computing FN/2veven and FN/2vodd and then using O(N)
elementary operations to combine the results. If we denote by CN the resulting cost of computing FN , we
therefore have CN ≤ 2CN/2 +O(N). This is solved by CN = O(N log(N)). Thus:

Theorem 7.4: Fast Fourier transform

There is a classical algorithm that, given a vector v ∈ CN , uses O(N log(N)) elementary operations to
compute the Fourier transform FNv.

This is called fast Fourier transform (FFT), and it is quadratically better than the naive O(N2) algorithm
mentioned above. The FFT is very widely used in practice. Note that it is indeed very fast – after all, any
algorithm for computing the Fourier transform will necessarily need Ω(N) operations even just to read the
input or write the result!

7.2.1 Applications: Fast multiplication of polynomials and of integers

Given two polynomials P =
∑D

j=0 pjX
j and Q =

∑D
k=0 qkX

k of degree D, their product is

PQ =

 D∑
j=0

pjX
j

( D∑
k=0

qkX
k

)
=

D∑
j,k=0

pjqkX
j+k =

2D∑
ℓ=0

 ℓ∑
j=0

pjqℓ−j

Xℓ

Naively, it will take O(D2) elementary operations (additions, multiplications) to compute the coefficients
of PQ. However, using the fast Fourier transform we can do better. First note that the above is the same as

PQ =

N−1∑
ℓ=0

N−1∑
j=0

pjqℓ−j mod N

Xℓ
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where p = (p0, p1, . . . , pD, 0, . . . , 0) and q = (q0, q1, . . . , qD, 0, . . . , 0) are vectors of length N = 2D + 1.3

Thus, what we really want to compute is the convolution p ⋆ q ∈ CN , which is by definition the vector with
coefficients given by

(p ⋆ q)x =
∑
y∈ZN

pyqx−y mod N ∀x ∈ ZN .

It is not hard to check, and you will do so on the homework, that the Fourier transform of a convolution is
the coefficientwise multiplication of the individual Fourier transforms:

1√
N
FN (p ⋆ q) = FNp · FNq, that is,

1√
N

(FN (p ⋆ q))z = (FNp)z · (FNq)z ∀z ∈ ZN

It follows that the convolution

p ⋆ q =
√
N F−1

N (FNp · FNq).

This can be computed using O(N log(N)) elementary operations by using the fast Fourier transform three
times.

Theorem 7.5: Fast polynomial multiplication

There is a classical algorithm that given the coefficients of two polynomials of degree D, computes the
coefficients of their product using O(D log(D)) elementary operations.

We can use this idea not only to multiply polynomials, but also integers. Indeed, suppose that

a =
n−1∑
j=0

aj2
j and b =

n−1∑
k=0

bk2
k

are two n-bit integers. We can interpret their digits as the coefficients of polynomials A =
∑n−1

j=0 ajX
j

and B =
∑n−1

j=0 bjX
j . Note that we can recover the two numbers as a = A(2) and b = B(2). Hence their

product can be obtained by first multiplying the polynomials A and B and evaluating the result at X = 2:

ab = A(2)B(2) = (AB)(2).

This suggests that we can multiply two n-bit numbers in time O(n log n). But note that what we called an
“elementary operation” above included operations such as multiplying two numbers, i.e., exactly what we are
trying to solve here! Thus one needs to be more careful. Still, the general idea is sound and one finds that
by using similar ideas one can multiply two n-digit numbers using O(n log(n) log log(n)) = Õ(n) elementary
Boolean operations. This is the famous Schönhage–Strassen algorithm which we mentioned in Chapter 1.

7.3 Quantum Fourier transform

The Fourier transforms takes as input a vector of length N and gives as output a vector of length N . In
Section 7.2 we saw that it can be computed very efficiently on classical computers by using the FFT, which
needs only O(N log(N)) = Õ(N) elementary operations. Since any algorithm that reads in a vector of
length N (i.e., N numbers, written down on paper, or in memory, . . .) must take Ω(N) operations this is
near optimal. How could quantum computers even help?

Quantum computers have another way of storing N = 2n numbers, namely as the amplitudes of an
n-qubit quantum state (we assume for simplicity that N is a power of two). Note that this is a different and
exponentially smaller representation – instead of a list of N numbers (written in memory, or on paper) we
are dealing with a quantum memory of only n = log(N) qubits.

3Note that the sums are now over {0, . . . , N − 1} ∼= ZN , hence ℓ− j mod N may “wrap” around and so we need the zeros as
padding to get the right result.
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To be precise, quantum states of n qubits are vectors in (C2)⊗n, but we can identify them with vectors
in CN as follows: While the computational basis |x⟩ of (C2)⊗n is labeled by bitstrings x ∈ {0, 1}n, the
computational basis |x⟩ of CN is labeled by integers x ∈ {0, 1, . . . , N − 1} (or in ZN ). We can identify the
two by associating with the integer x the string of bits x that make up its binary expansion:

x = x12
n−1 + · · ·+ xn−12 + xn =

n∑
j=1

xj2
n−j . (7.6)

The way of ordering the digits might be strange, but later we will be interested in x/2n =
∑n

j=1 xj/2
j , from

which we see that xj is the j-th significant digit in the binary expansion of x/2n.
With this identification in place, the Fourier transform FN is an n-qubit unitary and we can ask how

fast it can be implemented on a quantum computer. In other words, we are looking for an n-qubit quantum
circuit that implements the following operation: For all n-qubit states |Ψ⟩ ∈ (C2)⊗n,

...
...

|Ψ⟩ FN = FN |Ψ⟩

How many elementary quantum gates do we need to implement FN?
We will now see that there is a quantum circuit – called the quantum Fourier transform (QFT) – which

implements FN using O(n2) = O(log2(N)) one-qubit and two-qubit gates. We will only use Hadamard gates,
swap gates, and controlled Rs-gates, where

Rs =

(
1 0

0 e
2πi
2s

)
.

The key calculation is the following. Using Definition 7.2 and Eq. (7.6) to identify x ∈ {0, 1}n with x ∈ ZN ,
we have

FN |x⟩ = 1√
N

∑
y∈ZN

ωxyN |y⟩

=
1√
2n

∑
y∈{0,1}n

e2πi
xy
2n |y⟩

=
1√
2n

∑
y∈{0,1}n

e2πi
x
∑n

j=1 yj2
n−j

2n |y⟩

=
1√
2n

∑
y∈{0,1}n

e
∑n

j=1 2πi
xyj

2j |y⟩

=
1√
2n

∑
y∈{0,1}n

n⊗
j=1

e
2πi

xyj

2j |yj⟩

=
n⊗
j=1

1√
2

(
|0⟩+ e

2πi x

2j |1⟩
)
.

Note that this is a tensor product! It is therefore natural to try to construct the output state one qubit at a
time. For example, if n = 3 then we have

F23 |x1, x2, x3⟩ =
1√
2

(
|0⟩+ e2πi

x
21 |1⟩

)
⊗ 1√

2

(
|0⟩+ e2πi

x
22 |1⟩

)
⊗ 1√

2

(
|0⟩+ e2πi

x
23 |1⟩

)
=

1√
2

(
|0⟩+ e2πi

4x1+2x2+x3
2 |1⟩

)
⊗ 1√

2

(
|0⟩+ e2πi

4x1+2x2+x3
4 |1⟩

)
⊗ 1√

2

(
|0⟩+ e2πi

4x1+2x2+x3
8 |1⟩

)
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=
1√
2

(
|0⟩+ e2πi

x3
2 |1⟩

)
⊗ 1√

2

(
|0⟩+ e2πi

2x2+x3
4 |1⟩

)
⊗ 1√

2

(
|0⟩+ e2πi

4x1+2x2+x3
8 |1⟩

)
=

1√
2
(|0⟩+ (−1)x3 |1⟩)⊗ 1√

2

(
|0⟩+ e2πi

x3
4 (−1)x2 |1⟩

)
⊗ 1√

2

(
|0⟩+ e2πi

x3
8 e2πi

x2
4 (−1)x1 |1⟩

)
.

Thus we see that the first output qubit only depends on the last input, the second output bit on the last two
inputs, etc. In particular:

• The desired state of the first qubit is prepared simply by applying a Hadamard on the third qubit.

• The desired state of the second qubit is prepared by applying a Hadamard to the second qubit and
then applying a R2 controlled on the third qubit. We have to do this before applying the Hadamard on
the third qubit.

• The desired state of the third qubit is prepared by applying a Hadamard to the first qubit, then applying
R2 controlled on the second qubit, and finally R3 controlled on the third qubit. Moreover, we have to
do this before modifying the state of the second and third qubits.

Thus we arrive at the following circuit:

|x1⟩ H R2 R3

|x2⟩ H R2

|x3⟩ H

This circuit almost implements the 3-qubit QFT except for one flaw – the order of the output qubits is wrong
and in fact reversed! We can easily fix this by swapping the first and the last qubit. Hence:

F23 =

|x1⟩ H R2 R3

|x2⟩ H R2

|x3⟩ H

Now the pattern is clear. For n qubits, we similarly have

e
2πi x

2j = e2πi
∑n

k=1 xk2
n−k−j

= e2πi
∑n

k=n−j+1 xk2
n−k−j

= e2πi
∑j

s=1

xn−j+s
2s

=

j∏
s=1

e
2πi
2s
xn−j+s = e

2πi

2j
xn · · · e

2πi
22
xn−j+2(−1)xn−j+1 .

Hence the state of the j-th output qubit only depends on the last j digits of x and is given by

1√
2

(
|0⟩+ e

2πi x

2j |1⟩
)
= Rxnj · · ·Rxn−j+2

2 H |xn−j+1⟩ .

This leads to the following circuit, which is the general n-qubit quantum Fourier transform:

...
...F2n =

. . .

. . .

...
...

. . .

. . .

|x1⟩ H R2 Rn−1 Rn

|x2⟩ H Rn−2 Rn−1

|xn−1⟩ H R2

|xn⟩ H

It is clear that this circuit contains O(n2) gates!
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Theorem 7.6: Quantum Fourier transform

Let N = 2n. There exists a quantum circuit containing O(n2) one-qubit and two-qubit gates that, given
an n-qubit state |Ψ⟩, outputs the quantum state FN |Ψ⟩. This is called the quantum Fourier transform
(QFT).

For large s, the unitary Rs is very close to the identity, since then e2πi/2s ≈ 1. Accordingly these gates
can be left out if we are happy to tolerate some small error. More precisely, O(n log(n/ε)) gates suffice to
implement FN up to error ε in operator norm. You can show this on the homework. This is almost optimal
since the quantum Fourier transform FN clearly needs Ω(n) gates.

The QFT appears to give an exponential improvement over the classical case – but note again that we
are solving a rather different problem from the “classical” Fourier transform! Next week, we will see that
the QFT is a key ingredient for many quantum algorithms that solve problems involving finding periods or
pattern (just like was the case for the H⊗n). You can already make a head start on this week’s homework
and try to solve a version of Simon’s problem for ZN . In the next lectures, we will learn how to use the QFT
to find discrete logarithms and factor integers.

Remark 7.7

In Theorem 7.6 we assumed that N is a power of two, that is, of the form N = 2n, but this was only for
convenience. In fact one can implement FN by a quantum circuit of size O((logN)2) even if N is not a
power of two. We will use this fact in the following chapter.
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Chapter 8

Shor’s quantum algorithm for discrete logs

We follow the lecture notes of Childs quite closely. On last week’s homework, you solved Simon’s problem for
ZN by using the quantum Fourier transform. Here we discuss a more involved (but also more interesting!)
application.

8.1 Motivation: Breaking Diffie-Hellman by discrete logs

Recall Diffie-Hellman key exchange in its simplest form:

1. Alice and Bob publicly agree on a large prime p.

Since Zp is a field, every nonzero element has a multiplicative inverse. In fact, Z×
p = Zp \ {0} is a cyclic group

(with respect to multiplication), i.e., it is isomorphic to Zp−1 (with addition).

2. Alice and Bob also agree on an element g ∈ Z×
p . For simplicity we suppose that g is a generator of this

cyclic group, i.e., Z×
p = {g, g2, . . . , gp−1 = 1}.

3. Now Alice chooses some a ∈ Zp−1 uniformly at random, and sends A = ga mod p to Bob.

4. Bob similarly chooses some b ∈ Zp−1 uniformly at random, and sends B := gb mod p to Alice.

5. Finally, Alice computes K := Ba = (gb)a = gab mod p, and Bob computes Ab = (ga)b = gab mod p,
which is the same as K!

Thus, Alice and Bob end up sharing a key K, while only revealing p, g, A, and B to the eavesdropper Eve.
For the Diffie-Hellman protocol to be secure, it is necessary that the following problem is difficult:

Problem 8.1: Discrete logarithm problem

Given a prime p, a generator g of Z×
p , and x ∈ Z×

p , determine s ∈ Zp−1 such that gs = x. The element s
is called the discrete logarithm of x in Z×

p with respect to g.

We will now see a quantum algorithm due to Shor (but not the same as his famous factoring algorithm)
which solves the discrete log problem efficiently. This breaks the security of Diffie-Hellmann key exchange
completely. The idea is the following: Let N = p− 1 and consider the function

f : ZN × ZN → Z×
p , (α, β) 7→ xαg−β.

What kind of function is f? Note that

f(α, β) = gδ ⇔ xαg−β = gδ ⇔ gsα−β = gδ ⇔ sα− δ = β (mod N),

where s denotes the discrete logarithm of x. This means that the function is constant on the sets

f−1(gδ) =
{
(0,−δ), (1, s− δ), (2, 2s− δ), . . . , (N − 1, (N − 1)s− δ)

}
,
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In particular it is an N -to-1 function. Note that we can think of the above as the set (in fact, a subgroup of
ZN × ZN )

H =
{
(0, 0), (1, s), (2, 2s), . . . , (N − 1, (N − 1)s)

}
,

but “shifted” by (0,−δ). The idea behind our quantum algorithm for the discrete logarithm problem will be
that we can efficiently generate a superposition over such a set, for a random δ.1 Hopefully this is enough to
recover the discrete logarithm s!

8.2 Shor’s quantum algorithm for discrete logs

We now describe Shor’s quantum algorithm for the discrete log problem, which shows that this is indeed the
case. We shall assume N = 2n. This is purely for convenience, since we did not explain how to implement
the Fourier transform FN by a quantum circuit when N is not a power of two (but it can be done using very
similar ideas).2 Consider the following quantum circuit:

...
...

...

...
...

...

...
...

|0⟩ H

Qf

F †
N

|0⟩ H

|0⟩ H

F †
N

|0⟩ H

|0⟩

|0⟩

α

β

f(α, β)

This is a quantum circuit on 3n qubits. The basis states of the first n qubits encode the first argument,
α ∈ ZN , in the usual way, by identifying basis states |α⟩ ∈ (C2)⊗n with basis states |α⟩ ∈ CN , using the
binary expansion. Similarly, the second n qubits correspond to the second argument, β ∈ ZN . The last n
qubits are used to store the function output in Z×

p , which also has cardinality N = p− 1 (e.g., by identifying
a number y ∈ Z×

p = {1, . . . , N} with the binary expansion of y − 1 ∈ {0, . . . , N − 1}). We indicate this by
the braces. The pattern of the circuit looks similar to Simon’s algorithm.3

Thus, in the above circuit Qf is not an “oracle” or “black box” (like in Simon’s problem), but it has to be
be implemented by a concrete quantum circuit that depends on the inputs p, g, and x. Fortunately, since the
function f can be implemented by an efficient classical circuit, the quantum oracle Qf can be implemented
by an efficient quantum circuit, as you showed on a previous homework.

1This is similarly to the situation of Simon’s algorithm, which relied on our ability to efficiently generate a superposition
1√
2
(|x⟩+ |x⊕ s⟩), for a random “shift” x.
2Note that if N = 2n then p is a so-called Fermat prime. These are actually not used in Diffie-Hellman, but again the crucial

point is that nothing in our discussion depends on this fact.
3For folks who like Fourier transforms of abelian groups: FN ⊗ FN is the Fourier transform for the group ZN ⊕ ZN .
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What does the above circuit do? We compute the quantum state step by step:

|0, 0, 0⟩ 7→ 1

N

∑
α,β

|α, β, 0⟩ 7→ 1

N

∑
α,β

|α, β, f(α, β)⟩

Now we measure the last n qubits. Just like in Simons’s algorithm, we see a uniformly random function
value gδ ∈ Z×

N , and the state of the first 2n qubits changes to

1√
N

∑
α

|α, αs− δ⟩ .

Next, we apply the inverse Fourier transforms and obtain

1

N3/2

∑
α,µ,ν

ω−µα
N ω

−ν(αs−δ)
N |µ, ν⟩ = 1√

N

∑
µ,ν

(
1

N

∑
α

ω
−µα−ν(αs−δ)
N

)
|µ, ν⟩

=
1√
N

∑
µ,ν

ωνδN

(
1

N

∑
α

ω
−(µ+sν)α
N

)
|µ, ν⟩ = 1√

N

∑
ν

ωνδN |−sν, ν⟩

since only the terms with µ+ sν = 0, i.e., µ = −sν survive. If we now measure, we obtain a pair (−sν, ν) of
numbers modulo N . If ν is invertible, i.e., gcd(N, ν) = 1, then it has a multiplicative inverse ν−1 modulo N and
we learn the discrete logarithm s by computing s = −(−sν)ν−1. By ‘elementary’ number theory, the probability
that this is the case is Ω(1/ log logN), so we only need to repeat this O(log logN) = O(log n) = Õ(1) times
to succeed with high probability.

Moreover, running the circuit itself takes poly(n) time – the most expensive part is Qf , but this can be
done in polynomial time by repeated squaring modulo N . Since the input to our discrete log problem are
n-bit numbers, this means we can solve the discrete logarithm problem in polynomial time on a quantum
computer!

Theorem 8.2: Shor’s algorithm for discrete logs

There exists a quantum algorithm that solves the discrete logarithm problem (Problem 8.1) for n-bit
numbers in time poly(n), with probability ≥ 2/3.

With the Diffie-Hellman cryptosystem disposed of, we will move on and break the RSA cryptosystem. This
however requires some preparation.
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Chapter 9

Quantum phase estimation

Suppose you have a unitary U and someone hands you a quantum state |Ψ⟩ that they promise is an eigenvector
of U . How can you determine the corresponding eigenvalue, which is necessarily of the form e2πiϕ for some
“phase” 0 ≤ ϕ < 1?

9.1 Quantum phase estimation in the simplest setting

On the homework you saw how to solve this problem exactly, by using the quantum Fourier transform, under
the simplifying assumption that ϕ can be written exactly using n bits, i.e., ϕ = s

N for N = 2n and an integer
s ∈ {0, . . . , N − 1}, by using a single run of the following circuit:

...
...

...
...

. . . ...
...

. . .

|0⟩ H

F †
N

|0⟩ H

|0⟩ H

|0⟩ H

|Ψ⟩ U2n−1
U2n−2

U2 U

Namely, you showed that if ϕ = s
N then we obtain measurement outcome “s” with probability one. Recall

that we identify numbers s ∈ {0, . . . , N − 1} with bitstrings s = s1 . . . sn ∈ {0, 1}n by the formula s =
s12

n−1 + s22
n−2 + · · ·+ sn−12 + sn. Moreover, on another homework you could also show that if |Ψ⟩ is a

linear combination (superposition) |Ψ⟩ =
∑

j αj |Ψj⟩, where each |Ψj⟩ is an unit-norm eigenvector of the
above type, with pairwise distinct ϕj =

sj
N , then we see “sj” with probability |αj |2.

The above circuit can also be written in the following way, which might be easier to remember:

n|0⟩ H F †
N

|Ψ⟩ U

or also

n|0⟩ FN F †
N

|Ψ⟩ U

The first wire consists of n qubits and is identified with CN , and the “controlled unitary” should be interpreted
as the unitary that sends

|x⟩ ⊗ |Ψ⟩ 7→ |x⟩ ⊗ Ux |Ψ⟩

for x ∈ {0, . . . , N − 1}. Here we used that FN |0⟩ = H⊗n |0⟩.
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9.2 Quantum phase estimation in the general case

We will now see that these results generalize to arbitrary unitaries, that is, even if the eigenvalues are not of
the special form ϕ = s

N .

Theorem 9.1: Quantum phase estimation

Suppose we can apply controlled powers of a unitary U and we have a state |Ψ⟩ =
∑

j αj |Ψj⟩, where
the |Ψj⟩ are unit-norm eigenvectors of U with pairwise distinct eigenvalues e2πiϕj . Then, the above
circuit, applied with U , |Ψ⟩, and the choice n = b+O(log(1/ε)), outputs “ ŝ” such that ϕ̂ = ŝ

N satisfies

|ϕ̂− ϕj mod Z| ≤ 1

2b
(9.1)

(i.e., ϕ̂ is a b-bit approximation of ϕj), with probability at least (1− ε)|αj |2.

In particular, with probability at least 1− ε, our estimate ϕ̂ is close to some eigenvalue ϕj . Thus ε can be
interpreted as a failure probability. Note also that the guarantees of quantum phase estimation can also be
written as follows: if you would like to achieve

|ϕ̂− ϕj mod Z| ≤ γ

with probability at least (1− ε)|αj |2, then you should choose n = O(log(1/ε) + log(1/γ)).

Remark 9.2

What does “|. . . mod Z|” in Ineq. (9.1) mean? Remember that ϕ and ϕ′ determine the same complex
number e2πiϕ = e2πiϕ

′ if and only if ϕ − ϕ′ differ by an integer. Thus, when we measure the distance
between two angles we should measure the distance modulo Z. That is, we define:

|ϕ− ϕ′ mod Z| := min
k∈Z

|ϕ− ϕ′ − k|

Geometrically this means that we imagine the “phases” ϕ and ϕ′ as points on a circle (with circumference
one) and we measure the shortest distance between them along the circle. See also the picture below.

Proof. We now prove that the above quantum circuit indeed does the job. We start with the case when |Ψ⟩
is an eigenvector, with eigenvalue e2πiϕ for some 0 ≤ ϕ ≤ 1, and show that the above circuit can still give a
good approximation of ϕ if we choose n large enough. Let us write

ϕ =
s

N
+ δ where s ∈ {0, 1, . . . , N − 1} and 0 ≤ δ ≤ 1

N
.

We will show that the probability of “bad” outcomes is small. When is an outcome y ∈ ZN good or bad?
How should we even translate outcomes into estimates of the eigenvalue? Inspired by what you showed on
the homework, if the measurement outcome is “y” then we will estimate ϕ by

ϕ̂ =
y

N

How well does this procedure work? To analyze the situation, let us write

y = s+∆ (mod N), where ∆ ∈
{
−N

2
+ 1, . . . ,

N

2

}
.

We can visualize this as follows:
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s−1
N

s
N

s+1
N

s+2
N

s+N
2

N

s−N
2
+1

N (mod Z)

ϕ
δ

We see from the picture that we estimate the phase ϕ by ϕ̂ = y
N then the error in the phase is precisely

computed by

|ϕ̂− ϕ mod Z| = |∆
N

− δ| ≤ 1

2
(9.2)

In particular, the measurement outcomes for which

|∆| ≤M :=
N

2b
− 1 = 2n−b − 1 (9.3)

are such that the error in the phase is at most

|∆
N

− δ| ≤ |∆|
N

+ δ ≤ 1

2b
− 1

N
+

1

N
=

1

2b
,

i.e., we have found a b-bit approximation of ϕ! Those are our good outcomes.
We now compute the probability of outcomes. The state of right before the inverse QFT is given by

1√
N

∑
x∈{0,1}N

|x⟩ ⊗ UxnU2x2 · · ·U2n−2x2U2n−1x1 |Ψ⟩

=
1√
N

∑
x∈{0,1}N

|x⟩ ⊗ Ux |Ψ⟩

=
1√
N

∑
x∈{0,1}N

|x⟩ ⊗ e2πixϕ |Ψ⟩

=

(
1√
N

N−1∑
x=0

e2πixϕ |x⟩

)
⊗ |Ψ⟩ .

Hence after applying the inverse QFT we obtain the following state on the first n qubits:

1

N

N−1∑
y=0

N−1∑
x=0

e2πixϕω−xy
N |y⟩ =

N−1∑
y=0

(
1

N

N−1∑
x=0

e2πix(
s−y
N

+δ)

)
|y⟩ .

Accordingly,

Pr(outcome y) =

∣∣∣∣∣ 1N
N−1∑
x=0

e2πix(
s−y
N

+δ)

∣∣∣∣∣
2

=

∣∣∣∣∣ 1N
N−1∑
x=0

e2πix(
∆
N
−δ)

∣∣∣∣∣
2

=

∣∣∣∣∣ 1N 1− e2πi(∆−Nδ)

1− e2πi(
∆
N
−δ)

∣∣∣∣∣
2

=

∣∣∣∣ 1N 1− e−2πiNδ

1− e2πi(
∆
N
−δ)

∣∣∣∣2
=

1

N2

sin2(−πNδ)
sin2(π

(
∆
N − δ

)
)
≤ 1

4N2

1(
∆
N − δ

)2 =
1

4

1

(∆−Nδ)2
,
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first using a geometric sum, then that ∆ is an integer, and finally that |sin(y)| ≤ 1 for all y ∈ R, while we
have |sin(y)| = sin|y| ≥ 2

π |y| for |y| ≤ π/2. We can thus bound the probability of “bad” outcomes where the
deviation ∆ is large:

Pr(|∆| > M) ≤
−M−1∑

x=−N/2+1

1

4

1

(x−Nδ)2
+

N/2∑
x=M+1

1

4

1

(x−Nδ)2

≤ 1

4

−M−1∑
x=−N/2+1

1

x2
+

1

4

N/2∑
x=M+1

1

(x− 1)2
≤ 1

2

∞∑
x=M

1

x2

≤ 1

2

∫ ∞

M−1

1

x2
dx =

1

2

[
−1

x

]∞
x=M−1

=
1

2(M − 1)
.

For our choice of M = 2n−b − 1 in Ineq. (9.3), we have

Pr(|∆| > M) ≤ ε

provided we choose

n = b+

⌈
log

(
1

2ε
+ 2

)⌉
= b+O(log

1

ε
).

In conclusion, we find that for this choice of n, quantum phase estimation returns a b-bit estimate of the
phase ϕ of the eigenvalue of Φ up to a failure probability of ≤ ε.

What happens if |Ψ⟩ is not an eigenvector? We can always write

|Ψ⟩ =
∑
j

αj |Ψj⟩ ,

where the αj are complex numbers and the |Ψj⟩ are (necessarily orthogonal) unit norm eigenvectors with
pairwise distinct eigenvalues e2πiϕj of U . Suppose that we run the above circuit on |Ψj⟩ until right before the
measurement. Then the overall state is of the form

|Φj⟩ ⊗ |Ψj⟩ ,

where |Φj⟩ is an n-qubit state such that when we measure it we get an outcome y such that ϕ̂ = y
N is a b-bit

estimate of ϕj with probability ≥ 1− ε. By linearity, if we run the above circuit with |Ψ⟩ then the state right
before the measurement becomes ∑

j

αj |Φj⟩ ⊗ |Ψj⟩ .

and hence the probability of outcome y is given by

Pr(outcome y |Ψ) =

∥∥∥∥∥∥
∑
j

αj ⟨y|Φj⟩ |Ψj⟩

∥∥∥∥∥∥
2

=
∑
j

|αj |2 |⟨y|Φj⟩|2 =
∑
j

|αj |2 Pr(outcome y |Ψj)

where we used that the |Ψj⟩ are pairwise orthonormal. Thus the probability of outcomes is the same as
if we first picked j at random according to pj = |αj |2 and then ran the phase estimation circuit with |Ψj⟩
in place of |Ψ⟩.1 We conclude that we obtain a b-bit approximation of eigenvalue ϕj with probability at
least (1 − ε)|αj |2. In particular, since

∑
j |αj |2 = ∥Ψ∥2 = 1, we obtain a b-bit approximation of some

eigenvalue ϕj with probability at least 1− ε. This establishes the result announced above.

1This can also be seen by imagining a fictious measurement in an eigenbasis of U , as in our analysis of Simon’s algorithm.
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Chapter 10

Shor’s quantum algorithm for factoring by
order finding

Before we begin, recall some basics about modular arithmetic. While addition in ZM is always invertible, this
is not in general true for multiplication. However, let a ∈ ZM with gcd(a,M) = 1. Then, and only then, a
has a multiplicative inverse modulo M , meaning that there exists b such that ab = 1 modM . We will say
that a is invertible modulo M . The set of all such elements in ZM ,

Z×
M = {a ∈ ZM : gcd(a,M) = 1},

is called the unit group. For a prime number P , clearly gcd(a, P ) = 1 holds for all nonzero a ̸= 0 mod P ,
so Z×

P = {1, . . . , P − 1} as we discussed in the context of the discrete log problem, but if M is a composite
number then the structure of Z×

M is more complicated.
In any case, whether M is prime or not, if a is invertible modulo M then there exists a positive integer r

such that ar = 1 modM .1 The least such r is called the order of a modulo M . This is a basic notion in
group theory and “elementary” number theory, but it is also interesting in applications. In particular, we will
see that it allows us to find a nontrivial factor of a composite number, as we will see below. But first we
recall the RSA cryptosystem, whose security depends on the difficulty of factoring.

10.1 Motivation: Breaking RSA via factoring

Recall the RSA public key cryptosystem in its simplest form. To generate a key pair, we proceed as follows:

1. Pick two large distinct primes P and Q and compute M = PQ.

2. Compute λ := lcm(P − 1, Q− 1).

3. Choose some e ∈ {2, . . . , λ− 1} such that gcd(e, λ) = 1. Thus e is invertible modulo λ. Compute its
inverse d modulo λ.

4. Then the public key is (M, e), and the private key is d.

To encrypt a message A ∈ ZM , simply compute the ciphertext B = Ae (mod M). Then the ciphertext B can
be decrypted by computing Bd = Aed = A (mod M). The last equality is not hard to see using the Chinese
remainder theorem.2

Clearly, the cryptosystem would be completely broken if we could factor the number M (which is part
of the public key). Indeed, once we know P and Q we can compute λ, and then d as the multiplicative
inverse of e modulo λ. Fortunately, no efficient classical algorithms are known for factoring, as we discussed
in Chapter 1.

1Why is this so? The sequence a, a2, a3, . . . modM at some point has to repeat itself, say, ak = a modM . In other words,
(ak−1 − 1)a = 0 modM . If we multiply this equation with the inverse b of a, then we obtain ak−1 − 1 = (ak−1 − 1)ab = 0b =
0 modM , hence ak−1 = 1 modM , as we wanted to show.

2By the Chinese remainder theorem, ZM
∼= ZP ×ZQ, with componentwise multiplication. Thus it suffices to show that aed = a

(mod P ) for every a ∈ ZP (then this also holds for Q in place of P ). Clearly, aed = a for a = 0, so we may assume that a ̸= 0.
But then a ∈ Z×

P , hence aP−1 = 1 (this holds for generators of Z×
P and hence for any element of Z×

P ), hence aλ = 1 (since λ is a
multiple of P − 1), and hence aed = a (since ed = 1 mod λ we can write ed = kλ+ 1 for some k).
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10.2 Factoring from order finding

However, we will now show that quantum computers can factor numbers in polynomial time. In more detail,
we will see that factoring can be reduced (by a completely classical procedure) to another problem, order
finding, and that there exists a quantum algorithm due to Shor that solves the latter in polynomial time.
This quantum algorithm is just an application of quantum phase estimation, which we saw last week.

We first state the order finding problem formally and then discuss how it is related to factoring.

Problem 10.1: Order finding

Given two integers M and a ∈ {1, . . . ,M} such that gcd(a,M) = 1, determine the order of a modulo M .
That is, determine the smallest integer r ≥ 1 such that ar = 1 (mod M).

Now suppose that we want to find a nontrivial factor of M . We may assume that M is odd (otherwise 2
is a factor!) and that it is not a power (if it is a power, i.e., M = bc, then b can be efficiently found and is
of course a nontrivial factor). Pick a uniformly random a ∈ {2, . . . ,M − 1}. If gcd(a,M) ̸= 1, this GCD is
a nontrivial factor of M , so we are done! Otherwise, if gcd(a,M) = 1, then a is invertible modulo M , as
explained above. Let r denote the order of a modulo M . By ‘elementary’ number theory, with probability at
least 1/2, r is even and moreover M ̸ | ar/2 + 1. Since r is the order of a, we also have that M ̸ | ar/2 − 1.
But then

M |ar − 1 =
(
ar/2 + 1

)(
ar/2 − 1

)
,

and neither factor on the right-hand side is a multiple of M . This means that gcd(M,ar/2 + 1) and
gcd(M,ar/2 − 1) must be nontrivial factors of M ! You saw this very concretely on last week’s practice set.
We conclude that computing the order of elements modulo M indeed suffices to find a nontrivial factor of M .

10.3 Shor’s quantum order finding algorithm

While we do not know any efficient classical algorithms for order finding (after all, we don’t know how to
factor efficiently), Shor discovered in 1994 that there is an efficient quantum algorithm for order finding. For
an m-bit number, it requires O(m2 logm log logm) operations. Given our discussion of Fourier transforms
this might seem quite natural, since the order is nothing but the period of the sequence

a0 = 1, a1 = a, a2 modM, . . . , ar = 1 modM, ar+1 = a modM, . . . ,

i.e., the period of the function f(x) = ax modM , and it seems perhaps intuitive that the quantum Fourier
transform should help us determine this period very efficiently on quantum computers. However, note this is
not completely straightforward since the order finding problem is not simply an instance of Simon’s problem
for ZM , since while the map f is periodic as a function of x ∈ Z, this is not so if we take, e.g., x ∈ ZM . Of
course it is periodic with respect to x ∈ Zr or any multiple of order r (e.g., the size of the unit group Z×

M ),
but the order is precisely what we want to determine in the first place! Nevertheless, our intuition is correct
and we will now show that there is a quantum algorithm that efficiently solves the order finding problem.

The key idea is to use quantum phase estimation for the following unitary:

U : CM → CM , |y⟩ 7→ |ay modM⟩

That U is indeed a unitary follows because a has a multiplicative inverse modulo M . We will typically embed
CM ⊆ (C2)⊗m, where m is the number of bits required to write M . To see why U is the right object to
consider, note that it has eigenvectors

|Ψj⟩ =
1√
r

r−1∑
k=0

ω−jk
r |ak⟩
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for j ∈ Zr. Since

U |Ψj⟩ =
1√
r

r−1∑
k=0

ω−jk
r |ak+1⟩ = ωjr

1√
r

r−1∑
k=0

ω−j(k+1)
r |ak+1⟩ = ωjr |Ψj⟩

thus |Ψj⟩ is an eigenvector with eigenvalue ωjr = e2πiϕj , where ϕj = j
r .

3 Of course, applying quantum phase
estimation to U and |Ψj⟩ directly is out of the question, since the formula for the latter involves the order r
which is what we are interested in computing in the first place. However, observe the following beautiful fact:

1√
r

r−1∑
j=0

|Ψj⟩ =
r−1∑
k=0

1

r

r−1∑
j=0

ω−jk
r

 |ak⟩ = |a0⟩ = |1⟩ .

This means that if we run quantum phase estimation for the unitary U and the state |Ψ⟩ = |1⟩, which is of
course straightforward to prepare, we get an approximation

ϕ̂ ≈ j/r

for some random j ∈ {0, . . . , r − 1}.
Of course we are interested in the precise order r, so an approximation seems not good enough. However,

suppose that we carry out phase estimation with n = 2m+ 1 +O(log(1/ε)) qubits. Then we obtain some ϕ̂
such that ∣∣∣∣ϕ̂− j

r

∣∣∣∣ ≤ 1

22m+1
≤ 1

2M2
(10.1)

for (near uniformly) random j ∈ {0, 1 . . . , r − 1} (provided ε is small). The key point now is the following:
We know that j

r can be written as a reduced fraction with denominator ≤ r < M . We claim that there
exists at most one such number that is 1

2M2 -close to ϕ̂. Indeed, if p
q ̸= p′

q′ are two fractions with denominator

q, q′ < M , then |pq −
p′

q′ | = |pq
′−p′q
qq′ | ≥ 1

qq′ ≥
1
M2 . Thus Ineq. (10.1) ensures that in principle it is possible to

uniquely determine j/r from ϕ̂. This can also be done efficiently in practice, for example by using continued
fractions; see the lecture notes by de Wolf or the book by Nielsen and Chuang.

There is one last issue that we need to worry about in our use of phase estimation: While it seems clear
that one can implement U efficiently on a quantum computer, how about its controlled powers? In fact,
we can implement the entire sequence of controlled-U2s operations used by quantum phase estimation very
efficiently: Note that what we want to implement is

|x, y⟩ 7→ |x⟩ ⊗ U2n−1x1U2n−2x2 · · ·U2xn−1Uxn |y⟩ = |x⟩ ⊗ Ux |y⟩ = |x⟩ ⊗ |axy modM⟩ ,

where x ∈ {0, . . . , 2n − 1}. In essence this boils down to computing the modular exponentiation ax modM in
a reversible way, and this can be done in time O(nm logm log logm) by using a fast multiplication subroutine
mentioned in the last lecture (or in time O(nm2) using the naive one). You explored this on the homework.
By our choice of n this is O(m2 logm log logm) for fixed ε.

We are almost done – using quantum phase estimation and continued fractions we can find a reduced
fraction that is equal to j/r for some uniformly random j ∈ {0, 1, . . . , r − 1}. How can we determine the
order r from this? Similarly as in our solution to Simon’s algorithm for ZN , suppose that we run the above
procedure twice, obtaining reduced fractions p

q = j
r and p′

q′ =
j′

r . We are interested in the probability that j
and j′ have no common divisor, since in this case we can determine the order as r = lcm(q, q′). But

Pr(j and j′ have a common divisor) ≤
∑

p prime

Pr(p|j1 and p|j2) =
∑

p prime

1

p2
≤

∞∑
k=2

1

k2
=
π2

6
− 1 ≈ 64.5%

and hence we learn the order r with probability at least ≈ 35.5% (assuming the phase estimation subroutine
did not fail either). You discussed this on a practice set. By merely repeating the above a suitable number of
times we obtain the order of r with any desired probability of success. In summary:

3Note that the |Ψj⟩ are just (inverse) Fourier modes for the cyclic group {a, a2, . . . , ar = 1}, which is isomorphic to Zr, so the
calculations here are really the same that we did earlier when verifying the properties of the Fourier transform.
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Theorem 10.2: Shor’s algorithm for order finding

There is a quantum algorithm that, given an m-bit integer M and another integer 1 ≤ a < M , determines
the order of a modulo M (Problem 10.1) in time O(m2 logm log logm) with any desired constant
probability of success.

As a consequence of Theorem 10.2 and the discussion in Section 10.2, we see that one can find a nontrivial
factor of an m-bit integer M in time O(m2 logm log logm), with any desired constant probability of success.
In short: on a quantum computer, we can factor numbers in polynomial time!
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Chapter 11

Quantum query complexity

In Chapters 4 to 10 and in the exercises we discussed many computational problems where we saw that
quantum computers could get an advantage over ordinary “classical” ones. But how can we be sure that
we found optimal quantum algorithms for these problems? Similarly, what if you meet a really difficult
computational problem in the future and you would like to show that even quantum computers cannot solve
your problem efficiently? Such questions are studied in quantum complexity theory, which is also concerned
with defining the quantum analogs of complexity classes such as P and NP.

11.1 Introduction and definitions

In this chapter, we will study the simplest possible setting which nevertheless is of great importance, namely
computational problems that get their input by querying an oracle or black box and we care about solving the
problem with a minimal number of queries. This subject is called quantum query complexity, and we already
motivated it in Section 4.4. Here is a short summary and taxonomy of some oracle problems that we met:

Search problem Decision problem
Bernstein-Vazirani problem

(see exercises)
Problem: Given query access to a “linear”
function g(x) = x · s, find s ∈ {0, 1}n.

• Classical deterministic: n queries sufficient
• Classical randomized: Ω(n) necessary
• Quantum: 1 query necessary and sufficient

Deutsch-Jozsa problem (see exercises)
Problem: Given query access to a function
g : {0, 1}n → {0, 1} that is either constant
or balanced, which is the case?

• Classical deterministic: Θ(2n)
• Classical randomized: Θ(1)
• Quantum: 1 query necessary and sufficient

Promise problem Simon’s problem (Chapter 5)
Problem: Given query access to a “periodic”
function f on {0, 1}n, find the period!

• Classical randomized: Θ(
√
2n) queries

• Quantum: O(n) queries sufficient

Simon’s decision problem
(Section 5.3.1)

Problem: Given query access to a function f
on {0, 1}n that is either “periodic” or bijec-
tive, which is the case?

• Classical randomized: Θ(
√
2n) queries

• Quantum: O(n) queries sufficient

Total problem Grover’s search problem (Chapter 6)
Problem: Given query access to
g : {0, 1}n → {0, 1}, find x ∈ {0, 1}n
s.th. g(x) = 1 or report no such x exists.

• Classical deterministic: N queries necessary
and sufficient

• Classical randomized: Ω(N) necessary
• Quantum: O(

√
N) queries sufficient

“Decision Grover” a.k.a. ORN
(see below)

Problem: Given query access to
g : {0, 1}n → {0, 1}, does there exist
some x ∈ {0, 1}n such that g(x) = 1? In
other words, compute the OR of the N bits
in the function table (see Remark 11.1).

• Classical deterministic: N queries necessary
and sufficient

• Classical randomized: Ω(N) necessary
• Quantum: O(

√
N) queries sufficient
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Deutsch’s problem (Section 4.3)
Problem: Given query access to a function
g : {0, 1} → {0, 1}, is it constant?

• Classical deterministic: 2 queries sufficient
• Classical randomized: 2 queries necessary
• Quantum: 1 query necessary and sufficient

Here we distinguish between promise and total problems, as well as between search and decision problems.
Promise problems are ones where the input is promised to have some special property (e.g., that the function
is linear, or periodic, or either constant or balanced, etc.), while total problems are defined for any input.
Decision problems are problems such that the solution is a single bit (typically, whether the input satisfies
some property), in contrast to search problems which ask us to return an entire bitstring.

You will know from your introductory TCS course that computational problems often come in different
variants. For example, Simon’s problem came in two variants (Chapter 5). Similarly, while the search problem
(Problem 6.1) asks us to find a solution (or report that none exists), the corresponding decision problem
simply asks if there exists a solution – we refer to it as “decision Grover” in the above table (the stated
complexities follow directly from the results of Chapter 6).

Remark 11.1: Oracle vs. memory

We often think of the oracle as a function such as g : {0, 1}n → {0, 1} which we would call to make a
query. Of course, we can also equivalently think of it as a function {0, 1, . . . , N − 1} → {0, 1}, or simply
as a bitstring of length N = 2n, namely as the corresponding function table:

g ≡ g(0 . . . 00) g(0 . . . 01) . . . g(1 . . . 11) ≡ g(0) g(1) . . . g(N−1)

In other words, the input to our computational problems can also simply be thought of as a bitstring of
size N stored in some memory and we are asking how many classical or quantum “memory accesses” are
needed to decide some property or compute some Boolean function about it.

In this sense, the “decision Grover” problem simply asks if there is at least one 1-bit in the function
table. In other words, it asks us to compute the N -bit OR function on the function table:

ORN (g) := ORN (g(0), g(1), . . . , g(N − 1)).

This explains the terminology in the last entry of the table.

Note that for most of the problems above, you do not currently know whether the quantum algorithms
that we found are optimal. To study this more systematically, let us first make some definitions so that we
know exactly what we are talking about. For simplicity we restrict to decision problems (which can be total
or promise problems).

Definition 11.2: Query complexities

Let P be a decision problem which takes as input an n-bit function (or, equivalently, a bitstring of
size N = 2n). Then we define:

• The deterministic query complexity D(P ) of P is the minimum number of queries (to g) needed by
any deterministic classical algorithm to solve this problem for any input g : {0, 1}n → {0, 1}.

• The randomized query complexity R(P ) of P is the minimum number of queries (to g) needed
by any randomized classical algorithm to solve this problem with probability ≥ 2/3 for any
input g : {0, 1}n → {0, 1}.

• The quantum complexity Q(P ) of P is the minimum number of queries (to Qg, see Definition 4.4)
needed by any quantum algorithm to solve this problem with probability ≥ 2/3 for any in-
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put g : {0, 1}n → {0, 1}.

As discussed earlier the choice of success probability 2/3 is mostly completely arbitrary. Clearly:

D(P ) ≥ R(P ) ≥ Q(P )

There are two natural questions:

1. How large can the gap be?

2. How to prove that Q(P ) ≥ . . . for some concrete problem P?

Regarding the first question, we already know that this can be exponential for promise problems. E.g., for
Simon’s (decision) problem we have R = Ω(

√
2n), while Q = O(n). Interestingly, for total decision problems,

quantum algorithms (and hence also randomized algorithms) offer at most a polynomial speedup in terms of
query complexity!

Theorem 11.3: No super-polynomial quantum speedup for total decision problems

Let P be a total decision problem. Then, D(P ) ≤ R3(P ) and R(P ) ≤ D(P ) ≤ Q6(P ).

The remainder of this chapter will be concerned with the second question. To this end, we will derive a
simple version of an extremely powerful technique called the “adversary bound”.

11.2 The adversary bounds

Recall that when we argued that Grover’s search problem was difficult to solve on ordinary classical computers,
we argued that even just detecting whether (1) there exists precisely one solution or (2) there is no solution at
all should require Ω(N) queries. Intuitively, these two cases should be difficult to tell apart, since by flipping
a single bit we can turn a “no” instance into a “yes” instance, and vice versa – meaning that we need to look at
all N bits or at least a constant fraction of them to decide between the two options with constant probability
of success. While quantum queries can access multiple bits in superposition, it still seems plausible that the
above should also be the most difficult instances for quantum computers, except for the kind of “square root”
advantage that we already know we may get from Grover’s algorithm.

The adversary bound formalizes this intuition. To state it in its simplest version, let us introduce some
notation: If P is a decision problem and f an input or instance, we will write

P (f) =

{
1 if f is a “yes”-instance of P ,
0 if f is a “no”-instance of P .

Then, P−1(1) consists of the inputs for which the answer to the decision problem is “yes”, and P−1(0) consists
of the ones for which the answer is “no”. To measure whether two inputs are close, we count the number of
bits in the function table that have to be modified in order to convert one into the other. That is, for any
two functions f, g : {0, 1}n → {0, 1}, we define

d(f, g) := |{x ∈ {0, 1}n : f(x) ̸= g(x)}|

Then we have the following result which we call the “super-basic adversary bound”:

Theorem 11.4: Super-basic adversary bound

Let P be a decision problem, F ⊆ P−1(0), and G ⊆ P−1(1). For every f ∈ F , let Gf := {g ∈ G :
d(f, g) = 1}, and for every g ∈ G, let Fg := {f ∈ F : d(f, g) = 1}. Then,

Q(P ) = Ω
(√

mm̃
)
,

where m := minf∈F |Gf | and m̃ := ming∈G|Fg|.
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To apply this bound, we need to select some “no”-instances F and some “yes”-instances G. These should
be selected such that there are many ways of converting any “no”-instance into a “yes”-instance by modifying
one bit, and vice versa. Indeed, note that m is precisely defined such that for any “no”-instance in F , we can
obtain at least m “yes”-instances by modifying a single bit, and similarly for m̃.

Example 11.5: Grover is optimal

Let us apply this to the decision version of Grover’s problem, which asks if a given function has a solution
(equivalently, the goal is to compute the ORN of the function table). For F we have no choice but to
take the function that is everywhere zero, while for G we take the set of all n-bit functions that have a
single solution (following the intuition given above):

F =
{

0 0 . . . 0 0

}
G =

{
1 0 . . . 0 0 , . . . , 0 0 . . . 0 1

}
Clearly, m = N (we can change any bit in the function table of the everywhere-zero function to get a
function with a single one), while m̃ = 1 (for any function in G we have to erase the single one bit in the
function table to obtain the everywhere-zero function). Now Theorem 11.4 yields the lower bound

Q(ORN ) = Ω(
√
N).

The same is true for the search problem, since it is at least as difficult as the decision problem. On the
other hand, we know that Grover’s algorithm achieves this query complexity. Thus we may conclude
that the query complexity of both the search and the decision problem is Θ(

√
N).

We will now prove the super-basic adversary bound.

Proof of Theorem 11.4. Consider any quantum algorithm that solves the problem with probability ≥ 2
3

using q queries. Without loss of generality, we can assume it has the following form:1

n

m

. . .

. . .

. . .

|0⟩

V0

Qg

V1

Qg

V2 Vq−1

Qg

Vq|0⟩

|0⟩

where the result of the query algorithm is determined by the outcome of the measurement at the end (1 =
yes, 0 = no). Let |Ψg(t)⟩ denote the state right after the unitary Vt which is applied after the t-th query to
the standard quantum oracle Qg. That is:

|Ψg(t)⟩ =

{
V0 |0, 0,0⟩ if t = 0,

Vt(Qg ⊗ I) |Ψg(t− 1)⟩ if t > 0

We observe:

• For t = 0, the states |Ψg(t)⟩ do not depend on the input g, since we have not yet made any query. In
particular:

|⟨Ψf (0)|Ψg(0)⟩| = 1 (∀f ∈ F, g ∈ G) (11.1)
1The first n qubits correspond to the input register of the quantum oracle, the middle qubit to its output, and the last m

qubits are some arbitrary scratch space used by the algorithm. The unitaries V0, V1, . . . , Vq are obtained by grouping together all
gates that happen between any two quantum queries Qg, or before the first or after the last query, into a single unitary. By
suitably permuting wires, we can always assume that we measure the middle qubit to obtain the result of the query algorithm (1
= yes, 0 = no). All other measurements can be replaced by controlled quantum gates, as we know from the exercises.
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• For t = q, the states |Ψg(t)⟩ are the states right before the measurement. Since the algorithm is assumed
to solve the decision problem with probability ≥ 2

3 , the states |Ψf (q)⟩ for f ∈ F (for which the answer
is “no”) should be well distinguishable from the states |Ψg(t)⟩ for g ∈ G (for which the correct answer is
“yes”). Indeed, you will show on the practice set that

|⟨Ψf (q)|Ψg(q)⟩| ≤
√

8

9
(∀f ∈ F, g ∈ G) (11.2)

Thus all we need to do is to show that ⟨Ψf (t)|Ψg(t)⟩ changes little in each step! To formalize this idea, let us
define

∆(t) :=
∑

(f,g)∈R

|⟨Ψf (t)|Ψg(t)⟩|,

where

R := {(f, g) ∈ F ×G : d(f, g) = 1}.

We note that |R| ≥ |F | ·m and |R| ≥ |G| · m̃, hence

|F | ≤ |R|
m

and |G| ≤ |R|
m̃
, (11.3)

which will be useful below. Then we have:

1. ∆(0) = |R| by Eq. (11.1).

2. ∆(q) ≤
√

8
9 |R| by Ineq. (11.2).

3. We claim that |∆(t+ 1)−∆(t)| ≤ |R|√
mm̃

. To see this, fix any two f ∈ F and g ∈ G and write

|Ψf (t)⟩ =
∑

x∈{0,1}n, b∈{0,1}

αx,b |x⟩ ⊗ |b⟩ ⊗ |ϕx,b⟩ ,

|Ψg(t)⟩ =
∑

x∈{0,1}n, b∈{0,1}

α̃x,b |x⟩ ⊗ |b⟩ ⊗ |ϕ̃x,b⟩ .

Then,

⟨Ψf (t)|Ψg(t)⟩ =
∑

x∈{0,1}n

∑
b∈{0,1}

αx,bα̃x,b ⟨ϕx,b|ϕ̃x,b⟩ . (11.4)

On the other hand,

(Qf ⊗ I) |Ψf (t)⟩ =
∑

x∈{0,1}n, b∈{0,1}

αx,b |x⟩ ⊗ |b⊕ f(x)⟩ ⊗ |ϕx,b⟩ ,

(Qg ⊗ I) |Ψg(t)⟩ =
∑

x∈{0,1}n, b∈{0,1}

α̃x,b |x⟩ ⊗ |b⊕ g(x)⟩ ⊗ |ϕ̃x,b⟩ ,

and hence

⟨Ψf (t+ 1)|Ψg(t+ 1)⟩ = ⟨Vt(Qf ⊗ I)Ψf (t)|Vt(Qg ⊗ I)Ψg(t)⟩
= ⟨(Qf ⊗ I)Ψf (t)|(Qg ⊗ I)Ψg(t)⟩

=
∑

x∈{0,1}n

∑
b,b̃∈{0,1}

αx,bα̃x,b̃ ⟨b⊕ f(x)|b̃⊕ g(x)⟩ ⟨ϕx,b|ϕ̃x,b̃⟩

=
∑

x∈{0,1}n

∑
b,b̃∈{0,1} s.th.
b⊕f(x)=b̃⊕g(x)

αx,bα̃x,b̃ ⟨ϕx,b|ϕ̃x,b̃⟩ (11.5)
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For any fixed x ∈ {0, 1}n with f(x) = g(x), the corresponding summands in Eqs. (11.4) and (11.5) are
the same. Thus we have

|⟨Ψf (t+ 1)|Ψg(t+ 1)⟩ − ⟨Ψf (t)|Ψg(t)⟩| =

∣∣∣∣∣∣∣∣
∑

x∈{0,1}n s.th.
f(x)̸=g(x)

αx,0α̃x,1 ⟨ϕx,0|ϕ̃x,1⟩+ αx,1α̃x,0 ⟨ϕx,1|ϕ̃x,0⟩

∣∣∣∣∣∣∣∣
≤

∑
x∈{0,1}n s.th.
f(x)̸=g(x)

(
|αx,0||α̃x,1|+ |αx,1||α̃x,0|

)

≤
∑

x∈{0,1}n s.th.
f(x)̸=g(x)

√
Pf (x)Pg(x),

where the last step used the Cauchy-Schwarz inequality and we introduced the following abbreviations:

Pf (x) = |αx,0|2 + |αx,1|2,
Pg(x) = |α̃x,0|2 + |α̃x,1|2.

Finally, we can compute

|∆(t+ 1)−∆(t)| ≤
∑

(f,g)∈R

|⟨Ψf (t+ 1)|Ψg(t+ 1)⟩ − ⟨Ψf (t)|Ψg(t)⟩|

≤
∑

(f,g)∈R

∑
x∈{0,1}n s.th.
f(x) ̸=g(x)

√
Pf (x)Pg(x)

≤
√√√√√ ∑

(f,g)∈R

∑
x∈{0,1}n s.th.
f(x)̸=g(x)

Pf (x)

√√√√√ ∑
(f,g)∈R

∑
x∈{0,1}n s.th.
f(x)̸=g(x)

Pg(x)

=

√√√√√√√
∑
f∈F

∑
x∈{0,1}n

Pf (x)
∑

g∈Gf s.th.
f(x)̸=g(x)

1

︸ ︷︷ ︸
≤1

√√√√√√√
∑
g∈G

∑
x∈{0,1}n

Pg(x)
∑

f∈Fg s.th.
f(x) ̸=g(x)

1

︸ ︷︷ ︸
≤1

≤
√

|F |
√
|G| ≤

√
|R|
m

√
|R|
m̃

=
|R|√
mm̃

where the second inequality uses the Cauchy-Schwarz inequality one more time, the underbraced
inequalities are ≤ 1 since for every f ∈ F and every x ∈ {0, 1}n there exists at most one g ∈ Gf such
that f(x) ̸= g(x) (namely the function which agrees everywhere with f except at x), and vice versa,
and we used Ineq. (11.3) in the last line. This concludes the proof of the claim.

The three points above show directly that q = Ω(
√
mm̃), concluding the proof.

The above proof generalizes readily to a more general criterion, which we call the “basic adversary bound”.
You can practice this one in the exercises:

Theorem 11.6: Basic adversary bound

Let P be a decision problem, F ⊆ P−1(0), G ⊆ P−1(1), and let R ⊆ F ×G be an arbitrary relation. For
every f ∈ F , g ∈ G, and x ∈ {0, 1}n, let

Gf := {g ∈ G : (f, g) ∈ R}, Gf,x := {g ∈ Gf : f(x) ̸= g(x)},
Fg := {f ∈ F : (f, g) ∈ R}, Fg,x := {f ∈ Fg : f(x) ̸= g(x)}.
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Then,

Q(P ) = Ω

(√
mm̃

ℓℓ̃

)
,

where

m := min
f∈F

|Gf |, ℓ := max
f∈F,x∈{0,1}n

|Gf,x|,

m̃ := min
g∈G

|Fg|, ℓ̃ := max
g∈G,x∈{0,1}n

|Fg,x|.

The relation R determines which pairs of “yes”- and “no”-instances you want to think of as “difficult to
distinguish”. The parameters m and m̃ are defined as before. The parameters ℓ and ℓ̃ capture to which extent
your “yes”- and “no”-instances are indeed difficult to distinguish (in the sense that for every “no” instance, a
query to any single location x only allows you to exclude only few “yes”-instances, and vice versa).

Remark 11.7

Note that we recover Theorem 11.4 from Theorem 11.6 by choosing the relation such that (f, g) ∈ R if
and only if d(f, g) = 1, since in this case ℓ = ℓ̃ = 1 (assuming m, m̃ ≥ 1). This is because for this choice
of relation, if Gf,x is nonempty then it will contain precisely the unique function that differs precisely at
location x from f , and vice versa.

As suggested by the terminology, there is a more general version of the adversary bound. Remarkably,
there are versions of the adversary bound that not only give a lower bound on the quantum query complexity,
but which capture the quantum query complexity of decision problems exactly (up to constants)!
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Chapter 12

Quantum entanglement, superdense coding,
and teleportation

In Chapter 3, we introduced the notion of entanglement. Recall that a two-qubit state |Ψ⟩ ∈ C2 ⊗C2 is called
entangled if it cannot be written as a tensor product,

|Ψ⟩ ≠ |α⟩ ⊗ |β⟩ for any |α⟩ ∈ C2 and |β⟩ ∈ C2.

The first example that we saw is the so-called EPR pair state
1√
2
(|00⟩+ |11⟩).

If you don’t remember how to show that this state is entangled, please have a look at the lecture notes.

12.1 Bell states

Earlier this semester, we discussed the following simple quantum circuit:

|a⟩ H

|b⟩
= |βab⟩ (12.1)

The output states |βab⟩ created by this circuit as we input arbitrary basis states |a, b⟩ = |a⟩⊗|b⟩ for a, b ∈ {0, 1}
are known as the Bell states. Explicitly, they are given as

|β00⟩ =
1√
2
(|00⟩+ |11⟩) |β01⟩ =

1√
2
(|01⟩+ |10⟩)

|β10⟩ =
1√
2
(|00⟩ − |11⟩) |β11⟩ =

1√
2
(|01⟩ − |10⟩).

Note that |β00⟩ is simply the EPR pair state. By construction, the Bell states form an orthonormal basis
of C2 ⊗ C2, called the Bell basis. They satisfy a number of important facts, which we also discussed in the
exercises:

1. The four states can be perfectly distinguished by a suitable two-qubit circuit. Indeed, we can simply apply
the inverse of the above circuit and measure in the standard basis:

|βab⟩
H

“a′′

“b′′ (12.2)

The procedure in blue (applying a CNOT, then a Hadamard on the first qubit, then measure both
qubits in the standard basis) is called a Bell measurement.
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2. It is impossible to distinguish the four states by a measurement on the first (or second) qubit only. That
is, the four Bell states are locally indistinguishable – if two parties Alice and Bob each have one qubit of
a Bell state, neither Alice or Bob can tell the four states apart by a measurement of their qubit. In fact,
regardless in which basis they measure their qubit, the outcome is always uniformly random.

3. It is nevertheless possible to transform any of the four states into any other by applying a suitable
unitary on the first qubit. Indeed, for all a, b ∈ {0, 1},

|βab⟩ = (ZaXb ⊗ I) |β00⟩ = (I ⊗XbZa) |β00⟩ , (12.3)

where X and Z are two of the Pauli matrices. We can visualize this in a circuit as follows:

b a

|β00⟩
X Z

= |βab⟩ (12.4)

It follows that if Alice and Bob share a Bell state (i.e., Alice has one qubit and Bob the other), either
of them can apply a suitable combination of Pauli X or Z matrices to convert the state they start with
into any of the other four Bell states.

4. The Bell states are all entangled. Since we already know that the EPR pair |β00⟩ is entangled, this
follows from the previous point (since applying a local unitary will never turn an entangled state into a
product state, or vice versa).

12.2 Superdense coding

The fact that any two Bell states can be converted into each other by a local operation is perhaps surprising.
We can use it for a first application of entanglement.

Suppose that Alice wants to communicate n bits to Bob (without any error), but she is only allowed
to send a single qubit. If Alice and Bob do not share any resources, this is possible only for n = 1, since
the best that Bob can do is to measure the qubit that he receives in some basis, which gives him one bit of
information.

Interestingly, if Alice and Bob share an EPR pair state this allows them to do better. Consider the
following protocol, which is known as superdense coding :

Bob

b a

Alice

|β00⟩

X Z

H

“a′′

“b′′

Let us describe the protocol more formally: Alice and Bob start out in the EPR pair state |β00⟩, where the
first qubit belongs to Alice and the second qubit belongs to Bob. Now suppose Alice wans to communicate
two bits a, b ∈ {0, 1}. First, if b = 1 then she applies a Pauli X operator on her system. Next, if a = 1 then
she applies a Pauli Z operator on her system. Finally, Alice sends over her qubit to Bob. Now both qubits
belong to Bob, so he can perform a Bell measurement as in (12.2) to distinguish the states perfectly.

82



We claim that Bob’s measurement outcome is precisely Alice’s message. Indeed, by Eqs. (12.3) and (12.4),
the joint state of the two qubits when Alice sends over her qubit is precisely the Bell state |βab⟩, as indicated
in the picture. Thus the Bell basis measurement can perfectly identify the state.

The superdense coding protocol allows us to communicate two bits by sending a single qubit. To achieve
this, the protocol consumes one maximally entangled qubit state. This gives us some first insight into the
power of entanglement as a resource for communication.

12.3 Teleportation

We now discuss another interesting protocol known as teleportation. Teleportation is dual to superdense
coding since it achieves the opposite task: it lets you transfer one qubit by sending two bits.

Wait, does this even make sense? This is clearly impossible, since there are infinitely many quantum states,
but only four bitstrings of length two. Even worse, if suppose that there would be a way to communicate a
qubit in an arbitrary state by sending over any amount of classical information. Then we could clone the
qubit state by simply copying the classical message and running Bob’s procedure twice. But you will show on
the homework that cloning an arbitrary unknown quantum state is impossible!

In Section 12.2, we saw that a similar “no go” result could be overcome by using entanglement. Thus we
can ask if our task here can in fact be achieved if Alice and Bob share some entanglement, say an EPR pair.
Surprisingly, this is indeed the case – if Alice and Bob share an EPR pair then they can perfectly transmit an
unknown quantum state by sending only classical information. The protocol that achieves this is known as
the teleportation protocol. We first describe the protocol and then argue its correctness:

Alice

b a

Bob

|ψ⟩ H

|β00⟩

X Z

As visualized in the picture, Alice and Bob start out in a state |ψ⟩ ⊗ |β00⟩, where |ψ⟩ is some arbitrary state
of Alice’s first qubit (which can be unknown to her). First, Alice performs a Bell measurement (12.2) on
both her qubits. The measurement outcome are two bits a and b, which she subsequently sends over to Bob.
Finally, if b = 1 then Bob applies a Pauli X operator; if a = 1 he applies a Pauli Z operator.

We claim that after the protocol has completed, the state of Bob’s qubit is |ψ⟩ – that is, exactly the same
state that started out in Alice’s first qubit! To verify this claim, we first compute the post-measurement state
on Bob’s qubit for any possible pair of measurement outcomes a, b. To this end, we compute(

⟨ab| ⊗ I
)(
H ⊗ I ⊗ I

)(
CNOT⊗I

)(
|ψ⟩ ⊗ |β00⟩

)
=
(
⟨βab| ⊗ I

)(
|ψ⟩ ⊗ |β00⟩

)
=
(
⟨β00| ⊗ I

)(
I ⊗ ZaXb ⊗ I

)(
|ψ⟩ ⊗ |β00⟩

)
=
(
⟨β00| ⊗ I

)(
|ψ⟩ ⊗ |βab⟩

)
=
(
⟨β00| ⊗ I

)(
I ⊗ I ⊗XbZa

)(
|ψ⟩ ⊗ |β00⟩

)
= XbZa

(
⟨β00| ⊗ I

)(
I ⊗ |β00⟩

)
|ψ⟩

=
1

2
XbZa |ψ⟩ .

where we first used Eq. (12.1), next the second, the first, and again the second identity in Eq. (12.3), then we
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rearrange, and finally we used the following key identity: 1

(
⟨β00| ⊗ I

)(
I ⊗ |β00⟩

)
=

1

2

1∑
z,w=0

(
⟨z| ⊗ ⟨z| ⊗ I

)(
I ⊗ |w⟩ ⊗ |w⟩

)
=

1

2
I.

To see that the second equality holds, note that for any x, y ∈ {0, 1}, we have

⟨x|
(
⟨β00| ⊗ I

)(
I ⊗ |β00⟩

)
|y⟩ = 1

2

1∑
z,w=0

(
⟨z| ⊗ ⟨z| ⊗ ⟨x|

)(
|y⟩ ⊗ |w⟩ ⊗ |w⟩

)
=

1

2

1∑
z,w=0

⟨zzx|yww⟩ = 1

2
⟨x|I|y⟩ .

Thus we recognize that each pair of outcomes (a, b) occurs with probability 1
4 , with corresponding post-

measurement state

XbZa |ψ⟩ .

Using X2 = Z2 = I, we see that Bob’s operations precisely undo the Pauli operators and hence the final
state of Bob’s qubit is indeed |ψ⟩. Thus the teleportation protocol behaves correctly.

In fact, the teleportation protocol not only transmits Alice’s state to Bob, but it also preserves any
entanglement or correlations it might have had with some other system. In other words, if we start with
|Ψ⟩ ⊗ |β00⟩, where |Ψ⟩ is a quantum state of Alice’s qubit and some arbitrary other quantum system, and we
apply the teleportation protocol as above, then the resulting joint state of Bob’s qubit and the other system
will be |Ψ⟩. This is visualized in the following figure:

Alice

b a

Bob

|Ψ⟩
H

|β00⟩

X Z

= |Ψ⟩

You can prove this on the homework.
Quantum teleportation is somewhat analogous to the classical one-time pad, a protocol for transmitting a

private probabilistic bit from Alice to Bob by using only public communication and a secret shared random
bit. You can discuss this in the exercises.

Teleportation and superdense coding can be summarized by the following two “resource inequalities”:

teleportation: EPR pair + 2[c→ c] ≥ [q → q],

superdense coding: EPR pair + [q → q] ≥ 2[c→ c],

where [c → c] denotes one bit of classical communication and [q → q] denotes one qubit of quantum
communication. You can read the inequality sign as “is at least as good as” or “can be used to implement”.
In other words, in the presence of unlimited shared entanglement, quantum communication is no more or
less powerful as classical communication (at twice the rate). However, this does not trivialize quantum
information theory, since in most cases of interest we do not have entanglement available ‘for free’ !

1If the meaning of an expression such as I ⊗ |β00⟩ confuses you, have a look at the exercises.
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Chapter 13

No cloning and quantum money

13.1 No cloning revisited

Suppose someone hands you a box that they claim can perfectly clone qubit states, i.e., outputs |ψ⟩ ⊗ |ψ⟩
when given an arbitrary state |ψ⟩ ∈ C2 as input:

???

How could we test their claim? Here is one way to define such a cloning test :

• Initialize a qubit in a state |ψ⟩ chosen randomly from the four states {|0⟩ , |1⟩ , |+⟩ , |−⟩}.

• Input it into the box.

• Measure each of the output qubits in the corresponding basis (standard for |0⟩ and |1⟩, Hadamard
for |+⟩ and |−⟩).1

• Accept if the outcomes are as they should be (e.g. if |ψ⟩ = |1⟩ then the result should be “1” for both
measurements).

A perfect cloner would pass this test 100% of the time.
Now, we know that it is impossible to perfectly clone an unknown state – even when we restrict to the

four states above (or even just |0⟩ and |+⟩). You proved this on last week’s homework. Therefore the box
that we are handed will never pass the test with 100% probability. But how well can we actually perform at
this cloning test (or ‘game’)?

On last week’s homework you discussed various strategies for implementing such a cloner. The best
strategy that you considered passed the test with probability 3/4.2 We will now show that this is the best
one can achieve.

To this end, let us look at an arbitrary machine (box, protocol, . . .) of the following form:

|0⟩

|0⟩
discard

U

1Recall that what we called a “Hadamard measurement” is to first apply H to a qubit, then carry out an ordinary measurement
and then apply H again. See Example 2.8.

2Naively cloning in the standard basis only passes the test with probability 5/8, so this is a nontrivial result.
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Here, U is a unitary on C2 ⊗C2 ⊗Cd for some arbitrary d. Even though this might not a priori be clear, this
is the most general ansatz possible, as we discussed in class.

We would like to bound the probability of passing the cloning test for an arbitrary machine of the above
form. The key idea is to consider the following state:

|Ω⟩ =
(
I ⊗ U

)(
|β00⟩ ⊗ |0⟩ ⊗ |0⟩

)
.

Note that this is a quantum state of four systems. It corresponds to inputting half of an EPR pair into the
machine and stopping before the last qubit is discarded:

|0⟩

|0⟩

|β00⟩

U

As discussed in class, the relevance of the state |Ω⟩ is such that one can ‘extract’ from it the action of the box
on arbitrary input states |ψ⟩. Indeed, for a standard basis state |x⟩, we have(

⟨x| ⊗ I ⊗ I ⊗ I
)
|Ω⟩ =

(
⟨x| ⊗ U

)(
|β00⟩ ⊗ |0⟩ ⊗ |0⟩

)
= (⟨x| ⊗ U)

( 1√
2

1∑
y=0

|y⟩ ⊗ |y⟩ ⊗ |0⟩ ⊗ |0⟩
)

=
1√
2

1∑
y=0

⟨x|y⟩U
(
|y⟩ ⊗ |0⟩ ⊗ |0⟩

)
=

1√
2
U
(
|x⟩ ⊗ |0⟩ ⊗ |0⟩

)
and now the case of general |ψ⟩ ∈ C2 follows by linearity:3(

⟨ψ̄| ⊗ I ⊗ I ⊗ I
)
|Ω⟩ = 1√

2
U
(
|ψ⟩ ⊗ |0⟩ ⊗ |0⟩

)
(13.1)

This is a very general trick that allows translating quantum operations into quantum states.
We can use the preceding to write down a simple and clean formula for the probability of passing the

test. Now, the probability that we obtain outcome “ψ” for both qubits when we input |ψ⟩ into the box and
measure each of the two qubits in an orthonormal basis extending |ψ⟩ is given by∥∥(⟨ψ| ⊗ ⟨ψ| ⊗ I

)
U
(
|ψ⟩ ⊗ |0⟩ ⊗ |0⟩

)∥∥2 = ∥∥(⟨ψ| ⊗ ⟨ψ| ⊗ I
)√

2
(
⟨ψ̄| ⊗ I ⊗ I ⊗ I

)
|Ω⟩
∥∥2

= 2
∥∥(⟨ψ̄| ⊗ ⟨ψ| ⊗ ⟨ψ| ⊗ I

)
|Ω⟩
∥∥2

= 2
〈
Ω|
(
|ψ̄⟩⟨ψ̄| ⊗ |ψ⟩⟨ψ| ⊗ |ψ⟩⟨ψ| ⊗ I

)
|Ω
〉

= 2
〈
Ω|
(
|ψ̄, ψ, ψ⟩⟨ψ̄, ψ, ψ| ⊗ I

)
|Ω
〉
,

where we used Eq. (13.1) in the first step. Therefore, the probability of passing the cloning test is given by

Pr(pass) =
1

4

(
2
〈
Ω
∣∣(|000⟩⟨000| ⊗ I

)∣∣Ω〉+ 2
〈
Ω
∣∣(|111⟩⟨111| ⊗ I

)∣∣Ω〉
+ 2
〈
Ω
∣∣(|+++⟩⟨+++| ⊗ I

)∣∣Ω〉+ 2
〈
Ω
∣∣(|−−−⟩⟨−−−| ⊗ I

)∣∣Ω〉)
= ⟨Ω|Q⊗ I|Ω⟩ ,

where we have introduced the operator

Q =
1

2
(|000⟩⟨000|+ |111⟩⟨111|+ |+++⟩⟨+++|+ |−−−⟩⟨−−−|).

3Note that ⟨ψ̄| = ψ0 ⟨0|+ ψ1 ⟨1| is linear in |ψ⟩, unlike ⟨ψ| = ψ̄0 ⟨0|+ ψ̄1 ⟨1|. Concretely, ⟨ψ̄| is simply the transpose of |ψ⟩.
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How can we bound such an expression? Clearly,

Pr(pass) = ⟨Ω|Q⊗ I|Ω⟩ ≤ ∥Q⊗ I∥ = λmax(Q⊗ I) = λmax(Q),

where we used the fact that for positive semidefinite operators, the operator norm is the same as the largest
eigenvalue.4 But it is easy to verify that the largest eigenvalue of Q is 3

4 . Therefore,

Pr(pass) ≤ 3

4
,

which concludes the proof. Thus, we have shown that the maximal probability with which one can pass the
cloning test is 3

4 .
It is easy to generalize the preceding result to n-qubit states of the form

|Ψ⟩ = |ψ1⟩ ⊗ . . .⊗ |ψn⟩ ,

where each |ψj⟩ ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩}. If we have a machine that claims to clone n-qubit states of this form,

n n

n
???

and we subject it to a similar test as before (input a random n-qubit state of the above form and for
each j = 1, . . . , n measure the j-th qubit in the first and second output of the machine in the appropriate
basis and check the result), then the probability of passing this test is

Pr(pass) ≤
(
3

4

)n
,

i.e., exponentially small in n. Can you see how to prove this precisely, generalizing the above argument?

13.2 Quantum money

Next we discuss an amusing application of the preceding ideas which is due to Wiesner (all the way back in
the 1970s). His idea was the ‘no cloning’ principle should allow one to create and verify bills (banknotes) that
are impossible to forge. Nowadays this and related ideas are referred to as quantum money.

Without further ado let us present Wiesner’s idea. In his scheme, bills consist of a (classical) serial
number s and an n-qubit quantum state |Ψ⟩, where n will play the role of a security parameter. Here is a
visualization:

s

|Ψ⟩

Protocol for issuing bills: Bills are issued by a central bank (just like in the real world) according to
the following protocol: The bank chooses a serial number s according to some scheme, as well as a random
n-qubit quantum state of the form

|Ψ⟩ = |ψ1⟩ ⊗ . . .⊗ |ψn⟩ ,

where each ψj is chosen independently and uniformly at random from {|0⟩ , |1⟩ , |+⟩ , |−⟩}. The bank issues
the bill, i.e., the pair (s, |Ψ⟩), and it also stores the serial number s along with a description “Ψ” of the
quantum state (which we can model, say, by a string in {0, 1,+,−}n) in its records, stored away privately in
the bank vault. For example, if the bank issues the bill

4Don’t remember the operator norm? See Practice Problem Set 8 and Homework Problem Set 7.
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7

|+⟩ ⊗ |0⟩ ⊗ |−⟩ ⊗ · · · ⊗ |+⟩

then it would also keep the following record:

serial number description of the state
7 +0−. . .+

Protocol for verifying bills: 5 Suppose someone hands you what they claim is a bill, but you are sceptical
that this is valid. Then you could simply take the bill (s, |Ψ⟩) to the central bank, who will do the following:
Using the serial number s printed on the bill, the bank will look up the description of what the quantum
state should be according to its records, measure the qubits that make up |Ψ⟩ in the corresponding basis, and
check that each outcome is as expected.

In the example above, when handed a bill with serial number s = 7, the bank would measure the first
qubit of |Ψ⟩ in the Hadamard basis and check that the result is “+”, then the second qubit in the standard
basis and check that the result is “0”, etc.

13.3 Security of Wiesner’s quantum money

The question we are interested of course is whether this scheme lives up to its promise. Are these bills indeed
unforgeable or can they be counterfeited?

13.3.1 Security against simple counterfeiting attacks

For example, suppose that you have a bill (s, |Ψ⟩) in your hands – can you “clone” the bill and make two
out of it? More precisely, we may ask the following question: Is it possible for you to take your n-qubit
state |Ψ⟩ and turn it into two n-qubit states that are both accepted by the bank? This is known as a simple
counterfeiting attack. But if you think about it, the probability that the bank accepts both bills is exactly the
same as the probability of passing the cloning test! Therefore, we deduce from the discussion at the end of
Section 13.1 that any simple counterfeiting attack will succeed with probability at most (3/4)n. By making n
large, we can quickly make this probability as small as we like. This shows that Wiesner’s money is secure
against simple counterfeiting attacks, with n playing the role of a security parameter.

Note that in establishing this result we did not use any computational assumptions. In other words,
the security against simple counterfeiting attacks that we just established is an information-theoretic or
“unconditional” one!

13.3.2 Insecurity against more general attacks

The next question that we can ask, is whether the above attack is the most general model that we should
consider. This is not so. For example, the above attacker model does not account for an attacker that
interacts with the bank multiple times. In this case, it is not hard to craft an attack, provided that we have
enough queries and that the bank returns the residual state after the query.

An Attack with a Verification Oracle. Let us model the bank as an oracle that takes as input a money
bill (i.e., a state |Ψ⟩ = |ψ1⟩⊗ · · ·⊗ |ψn⟩ and a serial number s), runs the check as described above, and returns
{0, 1} (meaning reject/accept) along with the post-measurement state. Given access to such an oracle, the
attack proceeds as follows:

• For all j = 1, . . . , n:
5Since the verification procedure we are about to describe involves the authority that issued the bills, perhaps we should

rather think of the bills as unforgeable tokens that are issued and verified at the place of use (e.g., food tokens that you can buy
and use at the cafeteria, or tokens for a carousel ride that you can buy and use at a fun fair, . . .).
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– For all ϕ ∈ {0, 1,+,−}:
∗ Repeat the following m times:

· Replace the j-th qubit with a fresh qubit initialized in state |ϕ⟩.
· Query the oracle (i.e., the bank) with the resulting n-qubit state.

∗ If the oracle accepts each time then deduce that |ψj⟩ must have been |ϕ⟩.
∗ Otherwise, proceed with the next iteration.

To see why the attack is successful, observe that the qubits of the state |Ψ⟩ are tensored (thus not entangled),
and therefore in the j-th iteration of the outer loop, the measurements carried out by the oracle will never
impact any other qubit than the j-th one. We now want to argue that, once they exit the inner loop, the
attacker has correctly guessed the state of the j-th qubit of the quantum money bill. We consider two cases:

• |ϕ⟩ = |ψj⟩: In this case, the state queried by the attacker is identical to |Ψ⟩, the verification always
passes. At this point, the attacker has correctly deduced that the j-th qubit must have been in
state |ϕ⟩ = |ψj⟩.

• |ϕ⟩ ̸= |ψj⟩: In this case, the verification oracle will accept with probability at most 1
2 . Therefore, if we

repeat the procedure m times, it will accept each time with probability at most 1
2m . In other words, the

verification oracle will decline at least once with probability at least 1− 1
2m , in which case the attacker

has correctly determined that |ϕ⟩ ≠ |ψj⟩ and continues with the next iteration.

Thus, after the above procedure the attacker has learned a full classical description of the state and can
make as many copies as he wants – at a cost of at most 4n2 queries to the verification oracle and with an
exponentially small failure probability.

On the homework you will discuss another attack using EPR pairs.

13.4 Bonus: Public verifiability and public-key quantum money

The above attack is not necessarily practical, as it is likely that the bank will stop answering verification
queries at some point (think of what happens if you mistype your password). However it is useful to illustrate
the pitfalls of this scheme. In particular, we cannot hope to use the same quantum money scheme to achieve
public verification: This property allows anyone to verify the validity of a bill without contacting the bank,
and it is of course highly desirable. Public verification allows users to transact without interacting with the
bank for each transaction.

Assume that we want to construct such a scheme, then by definition the verification algorithm is public,
thus it better be the case that the scheme is secure in the presence of a verification oracle!6 Looking a little
closer to our attack, we can see that it teaches us two lessons if we want to build a scheme with public
verification:

• Security cannot be information theoretic: Given enough queries, an attacker can always obtain a serial
number.

• The state corresponding to a bill cannot consist of a tensor product of single qubits, since this would
enable qubit-by-qubit guessing attacks, such as the one described above.

Public-Key Quantum Money. As discussed before, it would be more desirable if you could verify bills
yourselves without involving any central authority (bank) at all. This is actually a topic of ongoing research,
and schemes get routinely proposed (and in some cases, broken shortly after). Here we describe a particular
family of schemes, that are currently the most “stable” in terms of security. In such schemes, bills are of the
form:7

|Ψ⟩ = 1√
2n/2

∑
x∈A

|x⟩

6Note that this condition is necessary but not sufficient, since in the actual scheme we don’t even get to see the queries of
the attacker to the verification oracle. However, for the sake of this exposition, we will think of the adversary with access to a
verification oracle as the “right” definition of security.

7For convenience, we ignore the serial number here and we just concentrate on the quantum part of the bill.
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where A ⊆ Fn2 is a randomly sampled linear subspace of dimension n/2 and s is a serial number randomly
sampled. To verify the validity of a bill, one proceeds in two steps: (i) First test the membership of |Ψ⟩
in A, then (ii) apply the QFT (this is actually the QFT over (Z/2Z)n, which can be implemented as H⊗n)
and test membership in the dual subspace A⊥.8 Given the description of A and A⊥, both tests can be
implemented efficiently by a unitary, since one can efficiently verify whether an x is linearly independent of A
(A⊥, respectively). Furthermore, note that verification is always successful on well-formed states since

1√
2n/2

∑
x∈A

|x⟩ QFT−−−→ 1√
2n/2

∑
x∈A⊥

|x⟩ .

For security, it can actually be shown that these states cannot be copied even if the attacker has oracle access
to a membership tester for A and A⊥! In other words, this scheme does not suffer from the same weakness as
Wiesner’s original proposal, and no attack similar to the one described above is possible.

However, we are not done yet. If we want to achieve public verifiability, we need to provide an algorithm
to run the above verification procedure, that can be run by all parties (even the attacker). In other words,
we need to somehow implement the above mentioned membership oracles. Clearly, we cannot just publish
(A,A⊥) in the clear, since then all security would be immediately lost. Here the idea is to publish instead
an obfuscated version of the program that computes membership in A (A⊥, respectively). This way, anyone
can perform the verification of the state, but there is a sense in which A and A⊥ remain hidden. There are
several proposals from the literature on how to realize this obfuscation procedure (from various computational
assumptions).

8Recall that the dual space of A consists of the vectors orthogonal to all x ∈ A. Furthermore, dim(A) + dim(A⊥) = n.
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Chapter 14

Nonlocal games and the CHSH Game

Over the past lectures we discussed some of the strange features of quantum mechanics. In particular, we
explored superpositions (such as |+⟩ = (|0⟩ + |1⟩)/

√
2) and entanglement (|Ψ⟩AB ̸= |ψ⟩A ⊗ |ϕ⟩B), and we

discussed how these features impose both challenges (e.g., non-orthogonal states cannot be distinguished
perfectly, no cloning) and opportunities (e.g., entanglement gives rise to superdense coding).

Today, we will discuss another way of quantifying the distinction between classical and quantum mechanics,
namely through the correlations predicted by these theories. A modern perspective of studying and comparing
correlations is through the notions of a nonlocal game. This is closely related to the notion of a Bell inequality.

In a nonlocal game, we imagine that a number of players play against a referee. The referee hands them
questions and the players reply with appropriate answers that win them the game. The players’ goal is to
collaborate and maximize their chances of winning. Before the game, the players meet and may agree upon
a joint strategy – but then they move far apart from each other and cannot communicate with each other
while the game is being played (this can be ensured by the laws of special relativity). The point then is
the following: Since the players are constrained by the laws of physics, we can design games where players
utilizing a quantum strategy may have an advantage. This way of reasoning about quantum correlations is
eminently operational and quantitative, as we will see in the following.

14.1 The CHSH game

The CHSH game is a famous example of a nonlocal game proposed in 1969 by Clauser, Horne, Shimony and
Holt. (Clauser, along with Aspect and Zeilinger, received the Nobel Prize in Physics 2022 “for experiments
with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information
science.” In a moment we’ll learn what a Bell inequality is.) The following figure illustrates the setup:

Alice Bob time

x ∈ {0, 1} y ∈ {0, 1}

a ∈ {0, 1} b ∈ {0, 1}

(Perhaps this figure should be rotated, since in the circuits we drew so far, time usually goes from left to
right!)

As is clear from the figure, it involves two players, Alice and Bob. Each receives as question a bit x, y ∈
{0, 1} and their answers are likewise bits a, b ∈ {0, 1}. They win the game according to the following table:

x y winning condition
0 0 a = b
0 1 a = b
1 0 a = b
1 1 a ̸= b
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The winning condition can be succinctly stated as follows:

xy = a⊕ b. (14.1)

14.2 Classical strategies

It is easy to see that the CHSH game cannot be won if the players’ strategies are described by a “local”
and “realistic” theory. Here, “local” means that each player’s answer does only depend on its immediate
surroundings, and “realistic” means that the strategy assigns a definite answer to any possible question –
before that question is being asked. Thus in a local and realistic theory we assume that

a = f(x) and b = g(y)

When we say that the players may jointly agree on a strategy before the game is being played, we mean that
they may jointly select “answer functions” f and g. They can even do so in a correlated way, by using shared
randomness. For example, when the players meet before the game is being played, they could flip a coin,
resulting in some random λ ∈ {0, 1}, and agree on the functions fλ(x) = x ⊕ λ and gλ(y) = y ⊕ λ. More
generally, when Alice and Bob meet before the game is being played, they choose λ at random according to
some probability distribution p(λ) and then pick answer functions fλ and gλ depending on λ.1

If the players’ strategy can be described by the rules of our ‘classical world’, then the above would provide
an adequate model. Thus, strategies of this form are usually referred to as classical strategies (or as local
hidden variable strategies, with λ called a hidden variable).

Suppose now for sake of finding a contradiction that Alice and Bob can win the CHSH game perfectly
using such a classical strategy. For simplicity, we assume that the strategy is deterministic (in the exercises
you will show that randomness does not help). Then,

1 = 0⊕ 0⊕ 0⊕ 1

=
(
f(0)⊕ g(0)

)
⊕
(
f(0)⊕ g(1)

)
⊕
(
f(1)⊕ g(0)

)
⊕
(
f(1)⊕ g(1)

)
= 0.

The first equality is plainly true, the second holds since we assumed that the players always give a correct
answer, and the last equality holds all terms appear exactly twice, but z ⊕ z ≡ 0 for any z ∈ {0, 1}. This is a
contradiction!

We conclude that there is no perfect classical winning variable strategy for the CHSH game. Suppose,
e.g., that the referee selects each possible question (x, y) with equal probability 1/4. Then the game can be
won with probability at most

pwin ≤ 3/4, (14.2)

since the players must get at least one of the four possible answers wrong. This winning probability can be
achieved by, e.g., the trivial strategy f(x) = g(y) ≡ 1. One can call Ineq. (14.2) a “Bell inequality”. Indeed,
in 1964 Bell was the first to show that classical strategies satisfy certain inequalities on correlations, which
can be overcome by using EPR pairs. CHSH simplified his argument and gave an inequality equivalent to
Ineq. (14.2).

14.3 Quantum strategies

In a quantum strategy, we imagine that the two players are described by quantum mechanics. Thus they
start out by sharing an arbitrary joint state |Ψ⟩ ∈ CdA ⊗ CdB of two quantum systems, where the first
quantum system is in Alice’ possession and the second in Bob’s possession, and upon receiving their questions
x, y ∈ {0, 1} they each perform some quantum circuit on their respective quantum system, depending on x
and y, respectively, to finally obtain some outcomes a, b ∈ {0, 1}. We can model this by letting Alice and Bob
apply certain unitaries U(x) and V (y), respectively, and then having each measure in the standard basis, as
in the following figure:

1Equivalently, we can consider answer functions f and g that are correlated random variables.
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|Ψ⟩

U(x)

“a′′

V (y)

“b′′

While it might not be immediately obvious, any classical strategy is also a quantum strategy. You can show
this as an exercise.

14.3.1 Beating the classical bound

On Homework Problem 2.1 you discussed the following situation:

|Ψ⟩

Rα

“a′′

Rβ

“b′′

where |Ψ⟩ = 1√
2
(|00⟩+ |11⟩) is an EPR pair and Rθ denotes the rotation matrix Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. You

found the following:

Pr(a = b) = cos2(α− β), Pr(a ̸= b) = sin2(α− β).

Now suppose Alice chooses an angle αx depending on the question x ∈ {0, 1} that she receives, and Bob
chooses an angle βy depending on the question y ∈ {0, 1} that he receives. Then the winning probability is

pwin =
1

4

(
cos2(α0 − β0) + cos2(α0 − β1) + cos2(α1 − β0) + sin2(α1 − β1)

)
If we choose the angles α0 = 0, α1 =

π
4 , β0 = π

8 , β1 = −π
8 , as in the following picture

π
8

π
8

π
8

α0

α1

β0

β1

then we obtain

|α0 − β0| = |α0 − β1| = |α1 − β0| =
π

8
, |α1 − β1| =

π

4
+
π

8
=
π

2
− π

8
.

Thus:

pwin = cos2
(π
8

)
=

(
1

2

√
2 +

√
2

)2

=
1

4

(
2 +

√
2
)
=

1

2
+

1

2
√
2
≈ 85%. (14.3)

This is not only a theoretical prediction but it has actually been demonstrated in practice, first by Aspect
et al in the 80s, and pretty recently in 2014 by Hansen et al in a very convincing fashion (avoiding many
‘loopholes’ that were neglected at the time by Aspect et al).
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14.3.2 Digression: Measurements vs observables

We would like to show that the quantum strategy discussed in Section 14.3.1 is optimal, but this requires
some preparation. Let us recap the notion of a quantum measurement. For a single qubit in state |ψ⟩, we
know that if we measure (in the standard basis), as in the following circuit,

|ψ⟩
“j′′

then we obtain outcome j ∈ {0, 1} with probability

Pr(outcome “j”) = |⟨j|ψ⟩|2. (14.4)

More generally, suppose we first apply a unitary and then measure, as in the following:

|ψ⟩ U

“j′′

Then |uj⟩ := U † |j⟩ for j ∈ {0, 1} is an orthonormal basis and the probability of outcome j ∈ {0, 1} is

Pr(outcome “j”) = |⟨j|U |ψ⟩|2 = |⟨uj |ψ⟩|2, (14.5)

as you showed on Homework Problem 1.3. Note that Eq. (14.5) looks like Eq. (14.4), except that the standard
basis {|j⟩} is replaced by the basis {|uj⟩}. Accordingly, the above is called measurement in the basis {|uj⟩}.
For example, when U = U † = H, we already know this under the name Hadamard measurement. We can
analogously measure a qudit (Cd) in an arbitrary orthonormal basis.

When we have two qubits or qudits and we measure both,

|Ψ⟩

“j′′

“k′′

then we know that the joint probability of outcomes is

Pr(outcomes “j” and “k”) = |⟨j, k|Ψ⟩|2.

As in the above we can also apply unitaries before measuring, as in the following:

|Ψ⟩

U

“j′′

V

“k′′

Then, setting |uj⟩ := U † |j⟩ and |vk⟩ := V † |k⟩, the joint probability of outcomes is

Pr(outcomes “j” and “k”) = |⟨uj ⊗ vk|Ψ⟩|2. (14.6)

We say that we measure the qudit in the basis {|uj⟩} and the second in the basis {|vk⟩}.
Often we would like to associate measurement outcomes with some arbitrary real numbers. That is, when

measuring a qudit in a basis {|uj⟩}, we would like to label the j-th outcome by some arbitrary real number aj
(in particular, we might allow the same number to appear multiple times). Mathematically this can be
described as follows: Given a state |ψ⟩, we first sample j from the probability distribution pj = |⟨uj |ψ⟩|2 and
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then we apply the function j 7→ aj , to obtain a real-valued random variable, which we call the (measurement)
outcome. Then the expectation value of this random variable is by the law of the unconscious statistician:

E(outcome) =
∑
j

pjaj =
∑
j

|⟨uj |ψ⟩|2aj =
∑
j

⟨ψ|uj⟩ ⟨uj |ψ⟩ aj = ⟨ψ|
∑
j

aj |uj⟩⟨uj | |ψ⟩ = ⟨ψ|A|ψ⟩ ,

where we introduced the operator

A =
∑
j

aj |uj⟩⟨uj | .

We call A the observable associated with the given basis {|uj⟩} and outcomes {aj}. Mathematically, observables
are simply Hermitian operators with eigenbasis {|uj⟩} and corresponding eigenvalues {aj}. Any Hermitian
operator can be interpreted as an observable as above (in general the eigenbasis is not defined uniquely in
case some eigenvalues aj are repeated, but this poses no problem if all we want is to compute probabilities,
as in the above). The fact that the expectation value can be computed by the simple formula

E(outcome) = ⟨ψ|A|ψ⟩

is the main appeal of using observables.
For example, the Pauli Z matrix

Z =

(
1 0
0 −1

)
= |0⟩⟨0| − |1⟩⟨1| = (+1) |0⟩⟨0|+ (−1) |1⟩⟨1| ,

corresponds to measuring in the standard basis and labeling outcome 0 by +1 and 1 by −1, that is, aj = (−1)j ,
while the Pauli X matrix

X =

(
0 1
1 0

)
= |+⟩⟨+| − |−⟩⟨−| = (+1) |+⟩⟨+|+ (−1) |−⟩⟨−| ,

corresponds to performing a Hadamard basis measurement and labeling the outcomes again by ±1.
How about if we have a two-qudit system and we measure observable A =

∑
j aj |uj⟩⟨uj | on the first qudit

and observable B =
∑

k bk |vk⟩⟨vk| on the second qudit? Then, using Eq. (14.6),

E(product of the two outcomes) =
∑
j,k

ajbk|⟨uj ⊗ vk|Ψ⟩|2 =
∑
j,k

ajbk ⟨Ψ|uj ⊗ vk⟩ ⟨uj ⊗ vk|Ψ⟩ = ⟨Ψ|A⊗B|Ψ⟩ .

Thus, if we measure the first qubit using A and the second qubit using B, then the expectation value of
the product of the outcomes is precisely computed by tensor product A⊗B of the two observables. Note
that A ⊗ B is an observable on the two-qudit system, with eigenvectors |uj⟩ ⊗ |vk⟩ and corresponding
eigenvalues ajbk. The formula

E(product of the two outcomes) = ⟨Ψ|A⊗B|Ψ⟩

makes working with observables very convenient.
We just discussed how the tensor product observables gives a pleasant way of accessing the product of

outcomes. However, in the winning condition (14.1) of the CHSH game we do not care about the product of
the outcomes, but rather of their XOR, i.e., a⊕ b. Fortunately it is easy to convert one to the other, since
(−1)a(−1)b = (−1)a⊕b. Thus, we shall model a general quantum strategy for the CHSH game by a state |Ψ⟩
along with observables A(x) and B(y) with eigenvalues {±1}, one for each x, y ∈ {0, 1}. As an exercise, write
down the observables corresponding to the quantum strategy above. You should find

A(0) = Z, A(1) = X, B(1) = H, B(0) = ZHZ =
1√
2

(
1 −1
−1 −1

)
. (14.7)

Note also that

1√
2
(B(0) +B(1)) = Z and

1√
2
(B(1)−B(0)) = X, (14.8)
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but the relevance of this will become clear only later. Since

E(product of two outcomes) = Pr(same)−Pr(different)

and hence

Pr(same) =
1

2
(1 +E(product of two outcomes)),

Pr(different) =
1

2
(1−E(product of two outcomes)),

the probability of winning can be computed as

pwin =
1

8
(1 + ⟨Ψ|A(0)⊗B(0)|Ψ⟩+ 1 + ⟨Ψ|A(0)⊗B(1)|Ψ⟩+ 1 + ⟨Ψ|A(1)⊗B(0)|Ψ⟩+ 1− ⟨Ψ|A(1)⊗B(1)|Ψ⟩)

=
1

2
+

1

8
⟨Ψ|A(0)⊗B(0) +A(0)⊗B(1) +A(1)⊗B(0)−A(1)⊗B(1)|Ψ⟩ . (14.9)

14.3.3 Bonus: Tsirelson’s bound for the CHSH game

We can write Eq. (14.9) as

pwin =
1

2
+

1

8
⟨Ψ|H|Ψ⟩ ,

if we introduce the Hermitian operator

H = A(0)⊗B(0) +A(0)⊗B(1) +A(1)⊗B(0)−A(1)⊗B(1)

= A(0)⊗
(
B(0) +B(1)

)
+A(1)⊗

(
B(0)−B(1)

)
. (14.10)

This formula is very convenient for finding the maximum winning probability. Indeed, note that if we fix the
strategy then the state |Ψ⟩ that maximizes the winning probability is simply the eigenvector for the largest
eigenvalue of H. But how large can this largest eigenvalue be? Tsirelson solved this problem in 1980, here we
give a variant of his argument. Consider the vectors

|α⟩ =
[
(A(0)⊗ I) |Ψ⟩
(A(1)⊗ I) |Ψ⟩

]
and |β⟩ =

[
(I ⊗ (B(0) +B(1)) |Ψ⟩
(I ⊗ (B(0)−B(1))) |Ψ⟩

]
which are both in CdA ⊗ CdB ⊕ CdA ⊗ CdB ∼= C2dAdB . Clearly, we have

⟨α|β⟩ = ⟨Ψ|H|Ψ⟩ ,

but also

∥α∥2 = ⟨α|α⟩ = ⟨Ψ|(A(0)⊗ I)2 + (A(1)⊗ I)2|Ψ⟩ = 2

∥β∥2 = ⟨β|β⟩ = ⟨Ψ|(I ⊗ (B(0) +B(1))2 + (I ⊗ (B(0)−B(1))2|Ψ⟩ = 4,

using that A(0)2 = A(1)2 = B(0)2 = B(1)2 = I. That is, ∥α∥ =
√
2 and ∥β∥ = 2. Therefore, it follows by

the Cauchy-Schwarz inequality that

pwin =
1

2
+

1

8
⟨Ψ|H|Ψ⟩ = 1

2
+

1

8
⟨α|β⟩ ≤ 1

2
+

1

8
∥α∥∥β∥ =

1

2
+

√
8

8
=

1

2
+

1

2
√
2
. (14.11)

This shows that any quantum strategy must satisfy the so-called Tsirelson bound :

pwin ≤ 1

2
+

1

2
√
2
.

This is exactly achieved by the strategy in Section 14.3.1, as we observe from Eq. (14.3). Thus, the strategy
described earlier is optimal!
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14.3.4 Outlook: Device-independent quantum cryptography

When the two players perform the optimal strategy described above then not only do their answers satisfy
the winning condition but the marginal distributions are in fact completely random. In particular, a ∈ {0, 1}
is a uniformly random bit. This follows, e.g., from our discussion in the exercise class, where we showed that

Pr(a = 0, b = 0) =
1

2
cos2(α− β), Pr(a = 0, b = 1) =

1

2
sin2(α− β),

Pr(a = 1, b = 0) =
1

2
sin2(α− β), Pr(a = 1, b = 1) =

1

2
cos2(α− β).

You can also easily verify this by hand, e.g., in the next exercise class.
The randomness obtained in this way is also private. We will only discuss this in a very heuristic sense

and you are not expected to follow the details, but I would still like to give you an impression. Suppose
that apart from Alice and Bob, there is also an evil eavesdropper (Evan) who would like to learn about the
random bits generated in this way. Their joint state can be described by a pure state |ψ⟩ABE . If Alice and
Bob indeed share the maximally entangled state 1√

2
(|00⟩+ |11⟩) (or for that matter any “pure” state) then it

must be the case that |ψ⟩ABE = |Γ⟩AB ⊗ |ψ⟩E . We will hopefully see how to formalize this statement later in
the course. It follows that the measurement outcomes of Alice and Bob, hence in particular the random bit a,
are completely uncorrelated from any measurement that Evan can do on his E system.

All this means that the referee can use the players’ answers to generate private randomess – they simply
lock Alice and Bob (best thought of as quantum devices) into his laboratory, ensure that the devices cannot
communicate, and interrogate them with questions, as in the following picture:

Alice Bob the “environment”

But of course, the referee cannot in general trust Alice and Bob to actually play the strategy above! So
this observation might seem not very useful at first glance. . .

However, what if the optimal strategy for winning the CHSH game was actually unique? In this case, the
referee could test Alice and Bob with randomly selected questions and check that they pass the test every
time. After a while, the referee might be confident that the players are in fact able to win the CHSH game
every time. But then, by uniqueness of the winning strategy, the referee should in fact know the precise
strategy that Alice and Bob are pursuing! The referee in this case would not have to put any trust in Alice
and Bob – they would prove their worth by winning the CHSH game every time around.

This remarkable idea for generating private random bits was first proposed by Colbeck. (Note that we
need private random bits in the first place to generate the random questions – thus this protocol proposes to
achieve a task known as randomness expansion. Private random bits cannot be generated without an initial
seed of random bits.) The argument sketched so far is of course not rigorous at all: ignoring questions of
robustness, we need to take into account that Alice and Bob may not behave the same way every time we
play the game, may have a (quantum) memory, etc.

These challenges can be circumvented and secure randomness expansion protocols using completely
untrusted devices do exist (see, e.g. the 2016 article Certified randomness in quantum physics by Acín and
Masanes). This general line of research is known as device-independent quantum cryptography, since it does
not rely on assumptions on the inner workings of the devices involved, but only on their observed correlations.
Other applications include device-independent quantum key distribution.

14.4 Bonus: Rigidity of the quantum winning strategy

We will now argue that the optimal winning strategy for the CHSH game is indeed essentially unique (the
argument will clarify what this means precisely), as alluded to in the previous section. This is known as the
rigidity property of the CHSH game, or the fact that the EPR pair state 1√

2
(|00⟩+ |11⟩) can be self-tested

(via the CHSH game).
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The basic idea is simple: When we proved Tsirelson’s inequality, the only ingredient that we used is the
Cauchy-Schwarz inequality for carefully-chosen vectors |α⟩ and |β⟩. Suppose that we have a quantum strategy
that achieves the optimal winning strategy. In this case, the Cauchy-Schwarz inequality in Ineq. (14.11) holds
with equality. This is the case if and only if |α⟩ = |β⟩√

2
(as discussed on the first problem set, the vectors should

be proportional; but we know their norm and inner product, which fixes the proportionality constant), i.e.,

(A(0)⊗ I) |Ψ⟩ = (I ⊗ B(0) +B(1)√
2

) |Ψ⟩ ,

(A(1)⊗ I) |Ψ⟩ = (I ⊗ B(0)−B(1)√
2

) |Ψ⟩ .
(14.12)

As a warmup, let us assume that we know that we are dealing with two qubits and that the observables
A(x), B(y) are as described in Section 14.3.1 above. In this case, Eq. (14.12) determines the state |Ψ⟩
uniquely! Indeed, using Eqs. (14.7) and (14.8), Eq. (14.12) read

(Z ⊗ I) |Ψ⟩ = (I ⊗ Z) |Ψ⟩ , or equivalently (Z ⊗ Z) |Ψ⟩ = |Ψ⟩ , (14.13)
(X ⊗ I) |Ψ⟩ = (I ⊗X) |Ψ⟩ , or equivalently (X ⊗X) |Ψ⟩ = |Ψ⟩ , (14.14)

If |Ψ⟩ = Ψ00 |00⟩+Ψ01 |01⟩+Ψ10 |10⟩+Ψ11 |11⟩ is a general two-qubit state then Eq. (14.13) implies that
Ψ01 = −Ψ01 and Ψ10 = −Ψ10, hence Ψ01 = Ψ10 = 0, and Eq. (14.14) implies that Ψ00 = Ψ11. Together, it
follows that |Ψ⟩ = 1√

2
(|00⟩+ |11⟩) (up to an irrelevant overall phase).

Of course, if we consider an arbitrary winning strategy then we do not know what the A(x), B(y) look
like either – apart from that they are Hermitian and have eigenvalues ±1, hence they square to the identity.
Thus let us consider a general strategy, given by a state |Ψ⟩ ∈ CdA ⊗ CdB and observables A(x), B(y) with
eigenvalues ±1, and let us assume that it achieves the optimal winning probability, so that Eq. (14.12) holds.
In the strategy in Section 14.3.1, we found that A(0) = Z and A(1) = X, and likewise for (B(0)±B(1))/

√
2

(Eqs. (14.7) and (14.8)). The Pauli matrices have the property that X2 = Z2 = I and they “anticommute”,
meaning that XZ = −ZX. The key idea is to show that these relations are implied by Eq. (14.12), hence
hold for a general quantum strategy that achieves the optimal winning probability. Indeed, we already know
that A(0)2 = A(1)2 = I and the (B(0)±B(1))/

√
2 anticommute, since

B(0) +B(1)√
2

B(0)−B(1)√
2

=
B(1)B(0)−B(0)B(1)

2
= −B(0)−B(1)√

2

B(0) +B(1)√
2

,

where we used that B(y)2 = I for y ∈ {0, 1}. The point now is we can use Eq. (14.12) to see that

(A(0)A(1)⊗ I) |Ψ⟩ =
(
I ⊗ B(0)−B(1)√

2

B(0) +B(1)√
2

)
|Ψ⟩

= −
(
I ⊗ B(0) +B(1)√

2

B(0)−B(1)√
2

)
|Ψ⟩ = −(A(1)A(0)⊗ I) |Ψ⟩ ,

meaning that the A(x)’s anticommute on the state |Ψ⟩:

(A(0)A(1)⊗ I) |Ψ⟩ = (−A(1)A(0)⊗ I) |Ψ⟩ . (14.15)

Suppose for a moment that this holds on the level of operators, i.e., that

A(0)A(1) = −A(1)A(0). (14.16)

Now suppose that |ϕ⟩ is an eigenvector of A(0) with eigenvalue λ, then

A(0)A(1) |ϕ⟩ = −A(1)A(0) |ϕ⟩ = −λA(1) |ϕ⟩ ,

so A(1) |ϕ⟩ is an eigenvector of A(0) with eigenvalue −λ. By assumption, A(0) has only eigenvalues ±1 (it
squares to the identity). Moreover, A(1)2 = I, so if we apply A(1) twice we return to the original eigenvector
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that we started with. This means that A(1) exchanges the two eigenspaces of A(0); in particular that they
must have the same multiplicity mA. This implies that there is a unitary UA : CdA → C2 ⊗ CmA such that

UAA(0)U
†
A = Z ⊗ I and UAA(1)U

†
A = X ⊗ I.

Similarly, we already discussed that the operators (B(0)±B(1))/
√
2 anticommute with each other, and using

Eq. (14.12) and the fact that A(x)2 = I for x ∈ {0, 1} we find that they square to the identity on the state
|Ψ⟩: (

I ⊗
(
B(0)±B(1)√

2

)2
)
|Ψ⟩ = |Ψ⟩ . (14.17)

Let us also assume for the moment that this holds on the level of operators, i.e.,

I ⊗
(
B(0) +B(1)√

2

)2

= I ⊗
(
B(0)−B(1)√

2

)2

= I. (14.18)

Thus, by the same argument as above we can find a unitary UB : CdB → C2 ⊗ CmB such that

UB
B(0) +B(1)√

2
U †
B = Z ⊗ I and UB

B(0)−B(1)√
2

U †
B = X ⊗ I.

In other words, up to a change of basis, the two operators look precisely as in Eqs. (14.7) and (14.8)! Now,
Eq. (14.12) implies that

(Z ⊗ I ⊗ Z ⊗ I)(UA ⊗ UB) |Ψ⟩ = (UA ⊗ UB) |Ψ⟩
(X ⊗ I ⊗X ⊗ I)(UA ⊗ UB) |Ψ⟩ = (UA ⊗ UB) |Ψ⟩

where (UA ⊗ UB) |Ψ⟩ is a state in C2 ⊗ CmA ⊗ C2 ⊗ CmB . Now it follows from the above that

(UA ⊗ UB) |Ψ⟩ =W

(
1√
2
(|00⟩+ |11⟩)⊗ |γ⟩

)
,

where W is the unitary that rearranges the tensor factors in the obvious way and |γ⟩ is some arbitary state
in CmA ⊗ CmB . This is exactly what we wanted to show: After a change of basis, Alice and Bob share a
maximally entangled pair of qubits (along with possibly some irrelevant state |γ⟩ on some other system), and
the observables act as in the strategy of Section 14.3.1 on this pair of qubits.

We still need to overcome one last hurdle. Namely, in the above argument we used that Eqs. (14.16)
and (14.18), but in fact we only know these identities to hold on the state |Ψ⟩, see Eqs. (14.15) and (14.17).

Why are we satisfied with anticommutativity on the state, and how does it impact the argument? We can
expand

|Ψ⟩ =
r∑
i=1

si |ei⟩ ⊗ |fi⟩ ,

where the |ei⟩ and |fi⟩ are orthonormal and si > 0. This is called the Schmidt decomposition and we will
discuss it in more detail in a later lecture. If r = dA = dB, then it is not hard to see that Eqs. (14.15)
and (14.17) imply Eqs. (14.16) and (14.18), respectively. In general, however, this is not the case, but we
can consider the subspace HA := span{|ei⟩} of CdA and HB := span{|fi⟩} of CdB . Then, |Ψ⟩ ∈ HA ⊗HB,
the A(x)’s are block-diagonal with respect to HA ⊕H⊥

A, and the B(y)’s are block-diagonal with respect to
HB⊕H⊥

B (the latter follows from Eq. (14.12)). Thus we may restrict Alice’s Hilbert space and the observables
A(x)’s to the subspace HA, and Bob’s Hilbert space and the observables B(y)’s to HB, and the restricted
observables satisfy Eqs. (14.16) and (14.18), so the argument we gave above applies. In this way we can arrive
at the following rigidity theorem for the CHSH game:
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Theorem 14.1: Rigidity of the CHSH game

Consider an optimal quantum strategy for the CHSH game given by observables A(x), B(y) for x, y ∈
{0, 1} with A(x)2 = I and B(y)2 = I, and a state |Ψ⟩ ∈ CdA ⊗ CdB . Then there are isometries
VA : C2 ⊗ CmA → CdA and VB : C2 ⊗ CmB → CdB and a state |γ⟩ ∈ CmA ⊗ CmB s.th.

1. |Ψ⟩ = (VA ⊗ VB)(|Φ⟩ ⊗ |γ⟩), where |Φ⟩ = 1√
2
(|00⟩+ |11⟩) is the EPR pair,

2. V †
AA(0)VA = Z ⊗ I, V †

AA(1)VA = X ⊗ I, and similarly for B(y).

There is also a robust version of this result: if a quantum strategy achieves an almost optimal winning
probability, then it is close to the strategy of Section 14.3.1 in some precise sense. This then is the
“proper” rigidity theorem for the CHSH game. For a beautiful proof of this result using approximate group
representation theory, see Vidick’s 2018 UCSD summer school notes Quantum multiplayer games, testing and
rigidity.

There are many further aspects that one could discuss. For example, how do winning probabilities and
optimal strategies behave when one plays many instances of a game – either in multiple rounds (sequentially)
or even at the same time (in parallel)? It is clear that if p is the optimal winning probability for a single
instance then for n instances the winning probability is at least pn – but conceivably one might be able to do
better by using strategies that exploit correlations or entanglement in a clever way. . .

14.5 Bonus: Non-signaling strategies

It is interesting to ask “why” it is not possible to win the CHSH game perfectly. One systematic way of
studying this is to note that in both the classical and the quantum setting, a choice of strategy determines
a conditional probability distribution p(a, b|x, y), where a, b, x, y ∈ {0, 1}, which is the only data needed to
compute the winning probability:

pwin =
1

4

∑
x,y

∑
a,b s.th. a⊕b=xy

p(a, b|x, y)

Abstracting away, what property should the conditional distribution p(a, b|x, y) satisfy? Since Alice and
Bob are locked away from each other in separate rooms and cannot learn about each other’s questions, we
should require that the marginal distribution of Alice’s output,

p(a|x, y) :=
∑
b

p(a, b|x, y),

should not depend on Bob’s question y. Similarly the marginal distribution of Bob’s output,

p(b|x, y) :=
∑
a

p(a, b|x, y),

should not depend on Alice’s question x. Conditional probability distributions with this property are called
non-signaling. It is easy to verify that this holds for both classical and quantum strategies.

Is non-signaling responsible for the fact that we cannot win the CHSH game perfectly? It turns out that
the answer is “no”. Consider the following conditional probability distribution, which is known as the PR
(Popescu-Rohrlich) box :

p(a, b|x, y) =

{
1
2 if a⊕ b = xy,

0 otherwise.

Clearly under this distribution Alice and Bob win the CHSH game with 100% probability. On the other hand,
it is easy to see that this distribution is non-signaling in the sense defined above. Indeed, note that for all
a, b, x, y ∈ {0, 1} it holds that p(a|x, y) = 1

2 (for every a, x, y there is exactly one b such that a⊕ b = xy), and
likewise p(b|x, y) = 1

2 .
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Are PR boxes ‘real’? Clearly one has to go beyond quantum mechanics to realize them, but perhaps our
understanding of physics is incomplete and they are still ‘physical’, and explained by some more generalized
theory of nature? One interesting clue is from complexity theory. Consider the inner product function
IP(x,y) := ⊕n

i=1xiyi on pairs of bit strings x, y ∈ {0, 1}n. If Alice receives x and Bob receives y then to
compute this function it is known that to compute IP(x,y) they in general need to send n bits of information.
This is quite natural, since every bit xi and yi can in principle affect the output. In fact, even if they are
allowed to use entanglement and if they are allowed to send qubits instead of bits they need to send Ω(n)
qubits to compute the inner product function. However, using a perfect winning strategy for the CHSH game
(e.g., using PR boxes) one can compute the inner produt by exchanging a single bit of information. Alice and
Bob simply run their winning strategy for the CHSH game n times, with questions xi and yi. Then they
obtain answers ai and bi on their side that satisfy

IP(x,y) =
n∑
i=1

xiyi =

n∑
i=1

ai ⊕ bi = (

n∑
i=1

ai)⊕ (

n∑
i=1

bi).

Thus, a single bit of information – either the XOR of Alice’s outcomes,
∑n

i=1 ai, or the XOR of Bob’s outcomes,∑n
i=1 bi, suffices for the other party to compute the inner product exactly. In fact, using a similar idea

Alice and Bob could jointly compute any function f(x,y) of two bitstrings x,y ∈ {0, 1}n (one being Alice’s
input, the other Bob’s ipnut) by exchanging a single bit of informatinon. This seems very counterintuitive,
and perhaps not something we would expect to be true in our universe! If you like, you could see this as
complexity-theoretic philosophical motivation why one might believe that there is no perfect winning strategy
for the CHSH game. . .
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Chapter 15

The quantum road ahead

See the course Advanced Quantum Information and Computation in the coming summer
semester!
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