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CYBER SECURITY IN THE AGE
OF LARGE-SCALE ADVERSARIES

QuSoft

Seek to leverage laws of QM for information processing... ]
communication cryptography
networks algorithms
quantum bits computation complexity

Quantum Information

error correction
entropy entanglement

tensor networks quantum simulation

What do you find interesting?

..but also toolbox and language for studying quantum physics.
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Physics vs Information:
Thermodynamics

[Irreversibili’ry (2" law) vs coarse graining ] Boltzmann, Gibbs, ...

[Thermodynamics of computation: Cost of erasing a bit? ]

! €rose.
(A > ) ° J W 2 KT In(2) | Landauer
o o

Most logic gates are irreversible. Is there a
fundamental cost to computing? No!

Bennett (1973): | Efficient reversible computing is possible! ]

)
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Physics vs Information:
Computation

Simulating quantum physics difficult for classical computers.
Hilbert space is exponentially large

[Why dont we build a quantum compufer?] Feynman, Deutsch, ...

N = pq in time
poly(log N)

Shor's algorithm (1984): quantum computers may
offer vast speedups for classical problems

Google “quantum supremacy” experiment (2019)

Today, quantum simulation still one of most promising applications.
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Physics vs Information:
Language and Toolbox

Quantum information is different: No cloning, uncertainty principle, Bell
violations, entanglement, decoherence, ...

QI offers language and toolbox to study and exploit these phenomena.
Examples:

Uncertainty principle = quantum cryptography
Bell violations = device-independent control

Entanglement =» many-body physics

In recent years, exciting research at interface of
quantum information and many—body physics, from
condensed-matter theory to QFT and gravity...

Plan

Goal: Discuss language, toolbox, key concepts of quantum
information. Survey applications in many-body physics.

We will start with slides and then switch to the black board.
Throughout I will mention exercises that we can discuss during the
tutorials. If you dont feel like taking notes: gi.rub.de/drstp2024

Please interrupt! If too slow (or too fast), please let me know.
© If not detailed enough, please ask.
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1. States, Channels, Entropy
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Quantum states

eigenvalues
/
/
Density operators on some p= Z Py [V, <V |
d-dimensional Hilbert space: X \

\
eigenvectors

Pure states:  p = |Wx<|
Mixed states: model ensembles

/“States of qubit: Bloch ball "\ P=> P
= i

(e.g. thermal states) and subsystems

<
el )




En’rropy p =2, py W,

Von Neumann entropy: ‘ S(p) = -tr plog. p ’

only depends on nonzero J

eigenvalues: S(p) = S(UpU") [0 £ S(p) < log(d) ]

/
pure p=1/Md
“maximally
mixed state”
“First law of entanglement” of p:

[ S(p + 8p) = S(p) + tr[dp K] + ]
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Renyi entropies and replica trick

Von Neumann entropy often difficult to compute = Renyi entropies:

1
‘ Sa(p) = In log fr[p"]]
Sa(p) = -log tr(p?] equal if p “flat" spectrum
Si(p) = S(p) I\ \
So(p) = log #nonzero eigenvalues —\

log(d) 2 So(p) 2 S(p) 2 S(p) 2 .. 2 0

Easy fo calculate for integer n>l:

[’rr[pz] = tr[p®2F] ] where F Ixy> = lyx> | swap trick

[’rr[p”] = tr[p®" C,] ] where [Cn [X1X 500> = [XpX300. %> ]
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Joint systems

Reduced states of global states pss are given by partial frace:

Pa = tra(Pas) [«IIPAIGI) = ). <ablpsola’ >]

1
Maximally entangled state (Bell/EPR pair): ‘ |Phs) = 7 (loo) + |11>)J

—> Spn= —‘?:QOOXOO\«« looxul + (uxe[ < [1Xul)

T
— c\>{_\ = JZ C loXol + UXI\) ="~ maximally mixed

Thus, pure states can have mixed reduced states. Conversely:

[ Fact: Any state p, has a purification pag = I\|JAB><LUABI.]
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Correlations

We say that a state is correlated if not a product:

[ <0,0'p> # <Op><0’p> ]

for some pair of observables

[ Pra# Pa® po)

Correlations can have quantum or classical origin:
®&—®

/ \ o—®
A B

Max. classically correlated:

Maximally entangled state:

+ 1
(B3a) = = (100) + 1) 3ne = (100)(00] + [11)(11])

How to quantify correlations? 12/60




Mutual information

Quantum channels

. . 20
Mutual information: l I(A:B) = S(A) + S(B) - S(AB)J What are the most general transformations of quantum states?
Y . . 1
I(A:B) = 2 log(d) iff maximally entangled |bag) = 7 g\m p o p,
I(A:B) = log(d) if maximally classically correlated In = 1 3 [xx) (xx
d% p > Uput
Pinskers inequality bounds correlation functions: Quantum channel: Any combination of unitary evolution, pP>p®C
partial traces, adding auxiliary systems.
| [{0a0%) - (0n)(0})] < |0A1[04]/21n(2) T(A:B) | Paiee > Pa
Strong subadditivity (SSA): l I(A:BC) 2 I(A:B) J Data processing inequality:
. R wif pA’B’ obtained from pAB by
[ I(A:B) 2 I(A:B) ] quantum channels A->A, B->B’.
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Application: Holevo bound
How many bits can we communicate by sending 1 qubit?
Sender Receiver
] o0 [
{0,1}" > x —| encoder p(, ) decoder ——y
1 qubit state L
Challenge: Do not know optimal states nor optimal decoder! But note: 2 * Enfanglemenf
=27") x){x| ® (x)’ =27") [xx){xx
|pxs 2 ixep T [Py =2 L)
..if can decode perfectly. Using the data processing inequality:
n=I(X:Y) <I(X:B)=5(B) - pyS(p(x)) < log 2 = 1’
X
[ n ¢ 1 = no quantum advantage! ] 15/60 16/60




Entanglement in pure states

We say that a state |W,p> is entangled if it is not a product:

‘ Wae> # [Yp> ® |dp> J

Why? If a pure state is classical, it must be a product: |ab> = la> ® |b>.
- If it is not a product, it must be "quantumly correlated”.

-------------------

bl -2 LT g.8.50 Where does the entanglement come from?

-----------
-----------------
----------------
-----------------

Typically due to to local interactions. > at low
energies, enfanglement between A and B
concentrated near common boundary, “area law”

oooooo

o [.Heqdrick] ..... ’B='AC
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Schmidt decomposition
e Schmidt rank

Was) = > _silei) ®|fi)
i=1/ \\

/ orthogonal
Schmidt coefficients, >0

orthogonal

pAzis? |ei><ei\J

\ ps = > 5 If)
i=1

(ﬂl]

=> Reduced states have same eigenvalues, entropies, ... and
characterize entanglement:

[I\UAB> product < r=1 & p,pure & pg pure]

= Any two purifications of p, are related by unitary on B
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Extensions and Monogamy

Even if ppg mixed: | Papure = Pag = Pa ® Ps ’

This implies that pure state entanglement is monogamous:

AB pure = AB uncorrelated with C

Monogamy: AB and AC cannot both
be pure entangled.

J
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Entanglement entropy

Schmidt decomposition suggests to quantify entanglement by the
entropy of reduced states = Entanglement entropy:

_ _ < log da
0< | Sg=5S(A)=5(B) |09

/ N

product state maximally entangled

Interpretation: Optimal conversion rate with Bell pairs:

[ [Wag)™" (/00) +[11)) "

=> entanglement transformations “reversible”
for pure states

=> Bell pair = unit of entanglement
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Application: Page curve

Suppose a is created from infalling
matter and we watch it evaporate.

R = Hawking radiation emitted up fo some time
B = black hole = later Hawking radiation

A semiclassical calculation suggests entropy of radiation
increases until the end. But in a unitary theory, radiation

Application: Page curve ? ?
Model: | black hole = random unitary elife Gl
unitary

time = relative size of radiation R 1 T

pure initial state
2 |Wg> is a random pure state

( Page theorem: For typical states, bee
will be pure once BH has evaporated... e
Sg = min(b,r) - O(1)
o .
entropy ra Intuitively, early radiation is entangled with o Uy b4
4 black hole, while late radiation is entangled
N\ with early radiation.
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Derivation of the Page formula Entanglement as a resource
Idea: Lower-bound average Renyi-2 entropy S,(R) using swap trick. What is entanglement good for? Four examples where entanglement
enables otherwise impossible capabilities:
—r  I+F
Key formula: | W™ = d(d+1) | for random W=|W><W| in dimension d ~
1) Superdense coding: communicate 2 bits by sending 1 qubit
Apply this to |W> = |Wge>:
Wz _ Isg ® Ipr + Fas ® Frr
BR ~ dgdg (dgdg + 1) 2) Teleportation: communicate 1 qubit by sending 2 bits
= tr w; _ fr@FRR < tr (Igg ® Fm; J;FBB ® Ipr) 1 . 1 3) Violating Bell inequalities: produce non-classical correlations
swap trick dBdR dx  ds
P \4) Quantum cryptography: distill a shared secret key )

—> S2(R) > -log frkllg > —log (i + l) >min(b,r) -1
dr ds

23/60

It is also necessary for any quantum computational speedup.
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Superdense coding

If Alice and Bob share EPR pair, they can use it fo communicate
2 bits by sending 1 qubit!

| (00)

)= (j00) +|11)) /V/2 = (10 1)|dg)

)= (]00) - [11)) V2 = (Z®1)|D,g)
|¢<lo)) (110) + 01)) /VZ = (X @ T)| )
105"7) = (110) - 01)) /V/2 = (XZ ® T)|djs)

z X
+
[P s)- <
Bell basis = Z

» measurement > X

| (01)
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Teleportation

If Alice and Bob share EPR pair, they can use it fo communicate
1 qubit by sending 2 bifs!

Bell basis
measurement |

Why does it work? If outcome x=z=0, post-measurement state:

LIJ—M> = ((¢;—AA|®IB)(|\UM)®‘¢;B>)

> Z( iwe (ila®Is)(|Wm) © [k)a © [K)s )

A
+ 1
G < ZIMaBNJM) *NJB)
22?

B (XL 26/60

Bell inequalities as games  “goriiion

Shimony-Holt
Alice and Bob play game: winning condition:
Referee X adb
x / \2’ ! ’
. o o o
Alice Bob o ( &®
o\ /b ( o o
Referee \ | l

Classical strategy: a=a(x), b=b(y)
a(0)@b(0) ® a(0)ob(1) @ a(l)®b(0) ® a(l)®b(l) = 0

= will get at least one answer wrong: | Pwin £ %

This is a Bell inequality - a bound on classical correlations!
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Nonlocality and quantum cryptography

If Alice and Bob share EPR pair, they can do better and achieve

/'

Tsirelson: optimal . crazy buf true:
optimal strategy is “unique” (rigidity)

=> can certify entanglement from correlations alone! ©

Application: | In quantum key distribution, Alice and Bob want

to create a key secret from everyone else.

1) Alice and Bob play nonlocal game to ensure state is [P+5g>, by rigidity
2) Then |Wpge> = [D*pp> ® > by monogamy

3) Now measure to get random secret bit
28/60




Bonus: Entanglement in

mixed states

We say that a state is separable if it is a mixfure of product states:

LPAB =2 pipy @ PS)]

Otherwise, the state is called entangled.

Separable states are precisely those that can be created by
Local Operations and Classical Communication (LOCC).

Alice’s laboratory Bob’s laboratory
. classical .

arbitrary quantum arbitrary quantum
operations message operations

That is, fo create entanglement need to exchange quantum bits.

Entanglement in mixed states is hard

Recall that a state is separable if mixture of product states:

Pas = 2 Pi Py ®p@

Bad news: NP-hard to check this condition

= no entanglement measure is faithful and easy to compute

A practical problem - it means meaningful calculations are difficult...

Similarly, multipartite entanglement.
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Bound entanglement PPT criterion
Can create any entangled state by LOCC given enough Bell pairs. Idea: Necessary for separability < sufficient for entanglement
Bad news: Transformation ®n ®m Partial transpose (PT): |<ab|pABr|a'b’> = <ab'|pAB|a'b>J
[usually irreversible. J |Was) (|OO) + |1 1))
conversion rates not equal %
If pas Separable then pap™is again a density operator.
There even exist "bound entangled” states such that no Bell pairs can _ Yo gl r S p0® @ (00T
be obtained from any number of copies! Pas Zi:p.pA Pe” = Pre Zi:p.pA (Ps)
. . . r . .
3 (Zoo of enfanglement measures: entanglement PPT criterion: [pAB negative eigenvalues = pPag enfangled]
cost E, distillable entanglement E, ...
(LYY T (fem
. o _|_ o __QLl
eq. @X@t(=7Z |0 -] T+ | Liof
| olo| |
31/60 32/60




Negativity

Partial transpose has tr=1. Thus, has negative eigenvalues < sum of
absolute eigenvalues is > 1.

Negativity: (N(p) = (& I - 1)/2]

Logarithmic negativity: [EN(p) = log , Ixil]

How to calculate?

1) Compute “Renyi negativities” tr (pas)>" and let n > V2
2) Use replica trick: tr (pag")?" = tr (pas")®2" (C,, ® Cy71)

=>» Feasible in QFT and AdS/CFT!

Bonus: Entanglement vs monogamy

Say pag has k-extension if there is state 0 on AB,...B, with

[pAB:O-ABlz"':O-ABk] ==

If pag Separable then has k-extension for all k.

PAB:ZPiPS)@?Pg) = UABI---BK:ZPiPS)®Pg)®---®P§)

Conversely, if k-extension then O(1/k) to separable.

Criterion: [ Pag Separable < has k-extension for all k]

=> Entanglement is monogamous also for mixed state!
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Bonus: De Finetti theorem Bonus: Squashed entanglement
Suppose that A;..A, is permutation-symmetric. Then 2 While mutual information is not a good entanglement measure, we can
reduced states are close to mixtures of product states: A X /};— construct one using the conditional mutual information:

@@

De Finetti Theorem: | Pa,. A ™ fdop(cr) G®kJ ifk <n

=> another version of monogamy

Physics application: Mean-field Hamiltonians have product ground states!
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[ I(A:BIC) = I(A:BC) - I(A:C)J

Squashed entanglement: ‘ Eso(A:B) = ¥2 min I(A:B|C) ]

Pasc

Properties: | 1) g < E,, < 12 I(A:B) < log min(dy, ds)
2) For pure states: Ey = ¥2 I(AB) = S¢
3) Separable < E, =0
4) Monogamy: E.(A:B) + Ey(A:C) < E;((A:BC)
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3. Quantum Channels and Dynamics

Recall: Quantum channels

A—/8 T —B

Quantum channel: Any combination of unitary evolution,
partial traces, adding auxiliary systems.

Such maps even send states p,z to states pgg:

AB [ Per = (T ® id)(pAR)]

R >R

Examples:
Basis measurement:

[M(p) = 2, <xlplx> Ix><x| ] [ Dip) = (1-f)p + f I/d ]

Depolarizing noise:

37/60 38/60
Tools for quantum channels Local dynamics vs local Hamiltonians
Choi state: characterizes channel completely! Relativistic systems have sharp light cones (as do quantum circuits).
A local Hamiltonian dynamics still have
: B
(=@ TUOW) | by
A b(t) — ethbe—th
Stinespring extension: Isometry V such that: M. 00 T B
[ ] o o [ ] e o e o o e o
(7(0) = tre(vpv) | A v 8 b
=> complementary channel: [ (p) = frB(VpV*)]
Question: Are local dynamics (evolutions with sharp or
fuzzy light cones) always generated by local Hamiltonians?

[Togefher: Solve dynamics problems by (pure) state reasoning! © ]

39/60

40/60




Some interesting 1D dynamics

For example, can lattice translations be realized by a Hamiltonian?

ey

This can even arise on the boundary of a 2D Hamiltonian dynamics:

(@)
: o BT P P Floquet dynamics consisting of

Application: Information flow """

... RWW]

Consider dynamics of an infinite spin chain in 1D:

U tL tR R’

Step 1: Cut chain arbitrarily info halves.

] ] ¢ L ] 4 layers of SWAP gates. Step 2: Consider Choi state |Q gr>
o & éOb @ L] o . 7 P net flow of quantum
s % % F(Ns s 4 Trividl in the bulk, but has a Step 3: Compute [ A = % (I(L:R) - I(R":L)) ] information, “index”
Y ¥ Y W chiral edge”.
‘\ “, ‘a, In both situations, there is a clear information flow. Amazingly, A is quantized and characterizes the dynamics!
| | | How could we define this in general?
[Poerar .
41/60 integer 42/60
° . . . —_— — B
Quantum error correction Decoupling criterion ALY g

When building quantum computers, we want to protect against errors.
To achieve this, redundantly encode “logical” into “physical” qubits:

logical physical

—>| encoding

A\ 4

errors ——

Surprisingly, similar situations arise in fundamental physics:

diary throw into [ black hole llect
Black holes —— 2 ) 2.5,| collect some | _
black hole d.of. radiation
boundary
AdS/CFT: bulk L. | trace over
/ d.of elEEna "| part of bdry

Questions: | 1) When can we in principle correct? J

. S
2) How to correct in practice? 230

The question: Given a channel T5s5 When can we reverse it?

Decoupling criterion: Can reverse Tp5 if and only iFJ [QA'E = Qpx ® Xe ]

the complementary channel T¢5¢ is constant.
I(A:E) =0

= a very strong kind of “no cloning” statement

Idea: If reversible, there exists state [x> and isometry W such that:

B W — A —A>
A— v — F = X—»F
E —E
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Application: Hayden-Preskill protocol

We again model an evaporating black hole by random unitary. After Page
time, assume black hole maximally entangled with old radiation.

Now suppose Alice throws her A B’
diary into black hole.

How much further radiation |Qugrr> = Y
do we need to collect so l l
B :
that we can recover diary? A B R R’
That is, when can we decode A from RR'? [Need Qg = Qn ® Qp! ]

Answer- Little more than size of diary - independent of
R™ A J size of black hole! Black hole after Page time is

like a mirror, information comes right out.
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Tool: Decoupling Theorem

Similar questions had been studied in information theory, where it was
observed that random codes are often close to optimal.

A 0> kl)}
| |
V = U random |Qpige> = U
unitary l l
é lls A B E

When can we decode A from B? [Need Que = Qn @ Q¢! ]

Decoupling Inequality: Let page State, Uge random. Then:

d -S,(ABE
JdUBE "fl’B(UBE Pase Uge') - Pa ® IE/dEIIIZ < —2E_ 2 2( )
B

o760

4. Many-Body Entanglement
and Tensor Networks
(= blackboard)
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5. Quantum Information in QFT
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Quantum information & field theory

Do quantum information tools apply to quantum field theory?

Challenge: Notions such as subsysfems,
enfropy, approximation, circuits more subtle!

Why bother?

1. New insights: Bekenstein bound from relative entropy,
renormalization as error correction, c-theorem from entropy...

2. Quantum computers will be useful for simulating q. physics...

Can we simulate QFTs, or even theories of quantum gravity?
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Subsystems in relativistic QFT

— 7 — > [Headrick]
— —y

Causal domain of A: D(A) = {p : every maximal causal curve
through p intersects A}

2 is Cauchy slice if acausal and D(Z) = everything.

Time slice axiom: 2 & global state < Hilbert space H
AC X2 & reduced state in D(A) © “H =H,® Hg"
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Correlations in QFT

Consider e.g. free scalar field with mass m in Minkowski space:

EH = Jd3x m(x)? + (Vd(x))? + m? ¢(x)2]

Correlation functions: |<$(x)> = O

UV divergence

-
Ix_yl_z if |X-Y| < E
<H(x)d(y)> o ‘[ expl-Ix-yl/E) if Ix-yl > &

E ~1/m correlation length
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Entanglement in QFT

Ix-yl-2 if Ix-yl < E

Correlation functions: |<d(xX)p(y)> o«
=0 if Ix-yl » &

Thus, might expect that entanglement
entropy satisfies an area law:

ES(A) o« oAl / 8&
UV cutoff

More generally, might expect that all divergences arise from local
integrals over entangling surface 9A.

[Headrick]
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Entanglement in QFT [ H # Hy ® Hg ]

Observables in A, B commute, but Hilbert space does not factorize.

States not directly described by density operators
=> Entanglement entropies not obviously well-defined

What can be said rigorously?

Reeh-Schlieder: not

[“{OA 1Qpp>} dense"]

Relative entropies & various entanglement measures can be rigorously
defined and computed/bounded

Bisognano-Wichmann: *modular Hamiltonian” of Rindler wedge s

Entanglement Entropy in QFT?

We will proceed cavalierly since we must anyways regulate
entanglement entropy to obtain finite answer.

General strategy: UV regulate and compute universal quantities

[coefﬁcien’r of log(|A|/8)] “
[Fliss]

[ relative entropy ]

[mu’rual information I(A:B)]

IfA, B don't touch: “HAB =Hy® HB”
=> rigorously defined in QFT!
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Euclidean path integrals

Let us consider states that are prepared by Euclidean path integrals.
E.g., unnormalized thermal state:

; ¢201
B I—
o=

For B > oo, obtain vacuum state.

=>» Reduced state of A € 3:

— A
= %o
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Rindler decomposition

Rindler wedges correspond to A = [0,e0) and B = (-0,0].
Lorentz boost generator K acts by
rotations in Euclidean signature >Pa=

Similarly, Schmidt decomposition: [lQAB> = 2, Wi |i'>|i>]
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Entanglement entropy and replica trick

Using the replica frick, it is easy to compute Renyi entropies:

{sn(p) = lin log :_[[2;1 = lin (log Z, - n log ZI)J

where Z,, = tr[p"] = tr[p®" C ] is calculated by the following path integral:

branched covering

Entanglement entropy for single interval

[Fliss]
Can be explicitly computed for spherical °

regions in conformal field theory.

Cardy-Calabrese: In 1+1d CFT with central charge c,

c 1 L c L
Sn—g(l+g)logg s:glogg

Z,=(0.(21)0-(z2))crr/z,
58/60

[Fliss] 57/60
Application: c-theorem Summary
Can use entanglement entropy to construct RG monotone
Cuv 2 C1R
and re-prove c-theorem.

Suppose we deform "UV CFT” by relevant operator. Then:

{S(L «<E)= c%log Z} {S(L >E) = %"nog 65 J

[Claim: c(L) = 3 L dS/dL interpolates cyy, ¢z and decreases with L.]

Key idea: Use strong subadditivity S(AB) + S(BC) > S(ABC) + S(B).
Here:

S(x) +S(y) 2 S(L') +S(L)]

- 25(VD) N

Whirlwind tour through some key concepts and tools of quantum
information, motivated by applications to theoretical physics.

States, Channels, Entropy
Entanglement of Pure and Mixed States
Tools for Quantum Dynamics

Quantum Information and QFT

No time for quantum computing: circuits, algorithms, complexity, ... ®

Slides: https://qgi.rub.de/drstp2024

60/60




