

### Physics vs Information: Language and Toolbox



Quantum information is different: No cloning, uncertainty principle, Bell violations, entanglement, decoherence, ...

QI offers language and toolbox to study and exploit these phenomena. Examples:

Uncertainty principle → quantum cryptography Bell violations → device-independent control

Entanglement **→** many-body physics

In recent years, exciting research at interface of quantum information and many—body physics, from condensed-matter theory to QFT and gravity...



7/60

# 1. States, Channels, Entropy

Lecture Notes "Quantum Information Theory" <u>https://qi.rub.de/qi-book-draft.pdf</u>

Mixed states: model ensembles

 $\rho = \sum p_i \rho_i$ 

(e.q. thermal states) and subsystems

Chasical

States of qubit: Bloch ball

 $\rho = |\Psi \rangle \langle \Psi|$ 

Pure states:









 $\left[ \begin{array}{c} I+F\\ d(d+1) \end{array} \right]$  for random  $\Psi = |\Psi > \langle \Psi|$  in dimension d

 $d_{\rm B}^2 d_{\rm D}^2$ 

Apply this to  $|\Psi\rangle = |\Psi_{BR}\rangle$ :

Key formula:

$$\overline{\Psi_{BR}^{\otimes 2}} = \frac{\mathbf{I}_{BB} \otimes \mathbf{I}_{RR} + \mathbf{F}_{BB} \otimes \mathbf{F}_{RR}}{\mathbf{d}_{B} \mathbf{d}_{R} (\mathbf{d}_{B} \mathbf{d}_{R} + 1)}$$
$$\implies \quad \text{tr} \Psi_{R}^{2} = \text{tr} \overline{\Psi_{BR}^{\otimes 2}} \mathbf{F}_{RR} \leq \frac{\text{tr} (\mathbf{I}_{BB} \otimes \mathbf{F}_{RR} + \mathbf{F}_{BB})}{\mathbf{d}_{R}^{2} \mathbf{d}_{R}^{2}}$$

$$\implies$$
  $S_2(R) \ge -\log tr \Psi_R^2 \ge -\log \left(\frac{1}{d_R} + \frac{1}{d_B}\right) \ge \min(b, r) -$ 

Jensen inequality

swap trick

 $\otimes \mathbf{I}_{\mathsf{R}\mathsf{R}}$ )

1













43/60

2) How to correct in practice?

or  $|\Omega_{A'AFF}\rangle = |\Phi^+_{AA'}\rangle \otimes |\chi_{FF}\rangle$ 

Exercise: Show this.

i.e.

information, "index"

42/60

 $\Omega_{A'E} = \Omega_{A'} \otimes \chi_E$ 

I(A':E) = 0

44/60

#### Application: Hayden-Preskill protocol

We again model an evaporating black hole by random unitary. After Page time, assume black hole maximally entangled with old radiation.



#### Tool: Decoupling Theorem

Similar questions had been studied in information theory, where it was observed that random codes are often close to optimal.



The following result addresses these kind of problems:

Decoupling Inequality: Let  $\rho_{ABE}$  state,  $U_{BE}$  random. Then:  $\int dU_{BE} \left\| \operatorname{tr}_{B} \left( U_{BE} \, \rho_{ABE} \, U_{BE}^{\dagger} \right) - \rho_{A} \otimes \left. \mathbf{I}_{E} / d_{E} \right\|_{1}^{2} \leq \frac{d_{AE}}{d_{P}} 2^{-S_{2}(ABE)}$ 

Literature: my TASI lecture notes

# 5. Quantum Information in QFT

Literature: Harlow (<u>https://arxiv.org/abs/1409.1231</u>), Headrick (<u>https://arxiv.org/abs/1907.08126</u>), Witten survey, my Kavli school slides 48/60



### Entanglement in QFT

 $H \neq H_A \otimes H_B$ 

Observables in A, B commute, but Hilbert space does not factorize. cf. divergence across entangling surface States not directly described by density operators Entanglement entropies not obviously well-defined What can be said rigorously?

 $\rightarrow$  algebraic QFT literature, Witten's review

**Reeh-Schlieder:** 

Confusing? No,  $O_{\triangle}$  will **not** be unitary!

 $(O_A | \Omega_{AB})$  dense

Homework: Show that in finite dim any  $|\Psi_{AB}\rangle$  can be written as  $O_A | \Phi_{AB}^+ \rangle$ .

Relative entropies & various entanglement measures can be rigorously defined and computed/bounded e.g., still makes sense to distill EPR pairs!

Bisognano-Wichmann: "modular Hamiltonian" of Rindler wedge

53/60

## Euclidean path integrals

Let us consider states that are prepared by Euclidean path integrals. E.g., unnormalized thermal state: [Headrick]  $\phi = \phi_1$  $\langle \phi_0 | e^{-\beta H} | \phi_1 \rangle = \beta$  $\rho = e^{-\beta H}$  $\phi = \phi_0$ For  $\beta \rightarrow \infty$ , obtain vacuum state. path integral on  $[0,\beta] \times \Sigma$ [Headrick] **→** Reduced state of  $A \subseteq \Sigma$ :  $\phi = \phi_1^A$  $\phi = \phi_0^A$  $\rho_A = tr_B e^{-\beta H}$ (0,0) path integral on plane with half-slit 55/60

### Entanglement Entropy in QFT?

We will proceed cavalierly since we must anyways regulate entanglement entropy to obtain finite answer.

General strategy: UV regulate and compute universal quantities



### **Rindler decomposition**



[Headrick]  $\phi = \phi_1^A$ (0,0) - $\phi = \phi_0^A$ 

Euclidean path integral

Rindler wedges correspond to  $A = [0, \infty)$  and  $B = (-\infty, 0]$ .





Using the replica trick, it is easy to compute Renyi entropies:

$$\left(S_n(\rho) = \frac{1}{1-n} \log \frac{\operatorname{tr}[\rho^n]}{\operatorname{tr}[\rho]^n} = \frac{1}{1-n} (\log Z_n - n \log Z_1)\right)$$

where  $Z_n = tr[p^n] = tr[p^{\otimes n} C_n]$  is calculated by the following path integral: **branched covering** (Fliss) 57/60 **Application: c-theorem** Casini-Huerta

Can use entanglement entropy to construct RG monotone and re-prove c-theorem.

c<sub>UV</sub> ≥ c<sub>IR</sub>

59/60

 $= \frac{c_{IR}}{3} \log \frac{L}{\varepsilon'}$ 

Suppose we deform "UV CFT" by relevant operator. Then:

$$S(L \ll \xi) = \frac{C_{UV}}{3} \log \frac{L}{\varepsilon}$$

Claim: 
$$c(L) = 3 L dS/dL$$
 interpolates  $c_{UV}$ ,  $c_{IR}$  and decreases with L

Key idea: Use strong subadditivity S(AB) + S(BC) ≥ S(ABC) + S(B). Here:

$$\underbrace{\mathsf{S}(\mathsf{x}) + \mathsf{S}(\mathsf{y}) \geq \mathsf{S}(\mathsf{L}') + \mathsf{S}(\mathsf{L})}_{= 2\mathsf{S}(\sqrt{\mathsf{L}\mathsf{L}'})}$$

➔ Exercise

