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Different notions of rank

For a tensor T € F™*M™X"M there are many notions of rank
e tensor rank: R(T) =min{r| T </}
e flattening rank: e.g. rk(F™m* — F" @ F")
® border rank: R(T) =min{r| T € o,}
® subrank: Q(T)=min{r|/, < T}
[ ]

Today we will focus on another notion:



Setting of today

Work over algebraically closed F, e.g. F = C.

Variety: the common zero set of a bunch of polynomial equations
{x=01,....xn) €F"|p1(x) =+ = pe(x) = 0}

We already saw some examples of varieties in the previous
lectures...



Dimension

o
o (@] /-\/
dim 0 dim 1 dim 2
For an affine variety X C FV, the dimension of
X is

dim X = the length of a maximal chain of irreducible subvarieties
of X.

The codimension of X ¢ FN is codimX = N — dim X.



Things to know about dimension

for a linear space you already know how to compute
dimensions from linear algebra

if X =J; Y; then dim X = maxdim Y;
if Y C X thendimY <dimX
the dimension is additive for cartesian products

A variety defined by as the common zero locus of just one
equation X = {f = 0} C FN is an hypersurface and
dimX =N -1



An example

Let X = {((Xl,XQ)7 (yl,yg)) ‘ X1y1 = 0,X1y2 + yox1 = 0} C F2 x 2.
We need to solve the system

x1y1 =0, x1=0o0ry; =0
=
x1y2 +y1xe =0 x1y2 +y1x2e =0

e if x; =0 then eq. 2 becomes y1xo = 0. This gives
* {((x1,%),(y1,%2)) | 1 = 0,y1 = 0} = F! x F! or
* {((0,0), (y1,¥2))} = {0} x F*.
In both cases we have 2 parameters of freedom, so the
dimension of both components is 2

® if y; = 0 then the solutions are {y; = x; = 0} = F! x F! and
{y1 =0,y, = 0} = F2 x {0}. Again dim 2.
Hence, X = {x1 = x2c =0} U{y1 = y» = 0} U {x1 = y1 = 0},
dimX =2 and codimX =4 —2 = 2.



The geometric rank of a tensor
Kopparty-Moskowitz-Zuiddam 2022

Let T = (t;jx) € F™ @ F™ ® F™. Fix the 3" factor and take
Al = (ti,j,1)7 o ,An3(t,"j7n3) e Fm™.

The is
GR(T) := codim{(x,y) € F*xF™ | xT Ajy = --- = x" A,y = 0}.

The codimension of the solutions of a system of quadratic
equations:
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Example
Consider the W-state
T=agaReata®@ea®e +e e ecF**?
(10 1] 1 O
~\[1 0]’|0 0|/
To compute GR(T) we need to consider x” A;y = 0 and
xTAy =0, ie.

o o ()0 m e s 2)-

x1y2 +xoy1 =0 and x1y1 = 0.

In the previous example we computed
codim{(x, y) | x1y2 + xoy1 = x1y1 = 0.} =2 = GR(T).



Let us look at the definition again

Let T = (tjjx) € F™ ® F™ @ F™. Fix the 3" factor and take
Al = (tf,j,l)u c 7An3(ti,j,n3) efFm QF™,

GR(T) := codim{(x,y) € F"xF™ |x"Ajy = --- = x" A,y = 0}.
Fix the 1% factor and take slices By = (t1j k), - -, Bn = (tnj.k)-
We can look at

codim{(x,y) € F™ x F®|x"Bjy = --- = x" B, y =0}

Do they have the same codimension?



Is GR well defined?
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To answer this question, it is convenient to look at T € [Fm>m2xns
also as a multilinear map

T:F" xF”?xF" > F

(6., 2) = Yt kX2
ik

In this way we can rephrase the geometric rank as

GR(T) = codim{(x,y) € F™ x F™ | T(x,y, z) = 0Vz}
= codim{(x,y) € F™ x F™| T(x,y,-) = 0},

where T(x,y,-) is the vector containing the slices.



Notice that

{(x,y)|xTAjy =0forall i} = X {y € F|xTA;y =0 for all i}.

x€lfmn
Moreover, for fixed x we have
XTAl
dim{y € F™ |xT A;y = 0 for all i} = dim ker : = corank Big M.
TA
x" Ans

What is this big matrix? Call it T(x,-,-).

Define W; = {x € F™ | corankT (x,-,-) = i} and notice that the
W; are a partition of F™. So {(x,y)|x"A;y = 0 for all i} equals

Ut y) € Wi x F™ [xT Ay = - = xT Apy = 0}

1

Hence, dim{(x,y)|xT Ay =0 for all i} = max{dim W; + i}.



W; = {x € F™ | corankT (x,-,-) =i}
Now, since we are looking for codimension, we have
GR(T) = codim{(x,y)| T(x,y,-) = 0}
= n + np — max{dim W; + i}

= mini{n1 + ny — (dim W; + i)}
= mini/{n —dim{x|rkT(x,-,") =ny— i} +ny— i}
= minj{codim{x |tk T(x,-,-) =j}+j}.

It only depends on x! So if we start with
codim{(x,z)| T(x,-,z) = 0} we get the same!

= GR well defined!



On the big matrix

We were looking at

XTAl Zi tit1xi .. Zi ti ny,1Xi
XTAn3 Z,’ tl',].,n3XI' e Z,‘ ti,ng,n3Xi
= [XTBl XTan] ,

where A, = (t; ) and Bs = (tis).

That is why we were simply calling it T(x,-, ).



GR for many factors

The geometric rank can be defined for an arbitrary number of
factors. For T € Fm* > GR(T) is the codimension of

{(Xl, - ,Xk—l) eF™M x ... x M1 | T(Xl, - ,Xk_l,Xk) = OVXk}.



What happens in the case of matrices?

In all notions seen so far (R(T), Q(T)...) when restricting to the
case of matrices, all these notions correspond to the well known
rank of matrices rk.

Does this happens also for GR?
Take T = (tjj) € F™ x F". We have
GR(T) = codim{(x,y)|Vx T(x,y) =0}

:n—dim{yEF”|Ztuyjz--o:Zthyj:O}
J Jj
=n—dim{y|Ty =0} =n—dimkerT =rkT.



Properties of GR

if S < T then GR(S) < GR(T)
e first prove that (A,/,/)- T has GR less or equal than GR(T),
then chain with (/,B,1)- T and (/,1,C)- T
GR(S @ T) = GR(S) + GR(T), for
S c leXmQXm3’ T c Fnlxann3
® If Sand T have slices A;,...,Amn, and By, ..., B,, then

S@® T hasslices A; @ 0 and 0 @ B; and the variables do not
interact with each others.

sub additive element wise

® Since S+ T<S®Tand GR(S® T) = GR(S) + GR(T).
GR is not submultiplicative under kronecker product ( e.g.
Mnnn)



Example M»,,

We already saw that Mpoo ~ Mh11 K Mo X Myqs.
It is easy to prove that GR(Mi12) = GR(Mi21) = GR(Ma211) = 1:

Mo = e @ (1 ® €1 + &2 ® &) only one slice = GR =1

Let us compute now GR of M> 5

1 000 0100 0 00O 0 00O
0 010 0 001 0 00O 0 00O
0 00 O’fO OOO"|1 00O07]01 00
0 00O 0 00O 0 010 0 001

We need to find the dimension of

{x1y1 + Xxoy3 = x1y2 + Xoya = x3y1 + Xay3 = x3y2 + xays = 0}.

This is given by 3 pieces each having dimension 5
— GR(M272’2) =3.



GR(1,)
Recall that I, = >"7_; i ® e ® ¢; € F"*"*" and let us compute
GR(},).

For r = 1 we have to look at {xy =0} = {x =0} U {y =0}. So
dim{(x,y) € F xF|xy =0} =1, therefore GR() =2 —-1=1.

In general we have GR(/,) = r.
Indeed, I, = ®&"/; and we have additivity under direct sum, So

GR(/y) = rGR(h) =r.

You can also directly compute that {(x,y)|xiy1 = - = x,y, = 0}
has dimension r and so GR(/,) =2r —r =r.



Comparing GR with other ranks

We want to prove that

Q(T) < GR(T) < SR(T).

® Assume Q(T) =s,so Is < T. We just computed that
GR(/s) = s and we know that GR is monotone under
restriction: GR(/s) < GR(T). So

Q(T) = s = GR(l) < GR(T).

e First, notice that if SR(T) =1 then GR(T) = 1. Hence
codim{(x,y) | x"Ax =0} =nm+nm —(m+n—-1)=1=
GR(T). Assume SR(T) =r,so T =7 T; where each T;
has slice rank 1.So GR(T;) =1 for all i. We conclude by
element wise subadditivity.



Application to hypergraphs

Undirected uniform hypergraph H := (V, E)
V={1,...,n} and E C 2" such that #e =3 Vec E.

We associate to H a tensor T = (t;jx) € F™"*" as follows:

, )1 if {i,j,k}€Eori=j=k
Pk 0 otherwise.

The independence number of H is «a := # largest set of vertices
containing no edges of H.
The value « can be bounded by

® subrank (hard to compute)

® geometric rank (easy to compute).



Some more applications

For T € F"™<"*n the border subrank is defined as

@ = max r such that /, € GL, x GL, x GL,- T

and
GR(T) > Q(T).

As a consequence, the authors prove that Q(M, ) = [3/4n?].



Some references on the topic

S. Kopparty, G Moshkovitz, J Zuiddam: Geometric rank of tensors
and subrank of matrix multiplication. Discrete Analysis, 2023.

A more geometric perspectivre

® R Geng and J M Landsberg. On the geometry of geometric
rank. Algebra and Number Theory, 16(5):1141-1160, 2022.

® R Geng. Geometric rank and linear determinantal varieties.
European Journal of Mathematics 9.2 (2023): 23.



Let us focus on symmetric tensors

An important class of tensors F"*"*" is the one of symmetric
tensors.
A tensor T = (tjj k) € F™"*" is symmetric if

tij.k = to(i)o(j).o(k), Torall o € Gs.

Symmetric tensors actually form a vector space that is usually
denoted as

Sym3F" = {T € F™"™"| T is symmetric}.

® The W-state T = o R e1Rei+e10eoRe+e1RQe e is
symmetric.



Symmetric rank

All notions of tensors seen so far can be adapted for the particular
case of symmetric tensors. For T € Sym>F” we can look at

R(-) = min{r| T = Z Ui ®v;®w;}  tensor rank
i—1

but also at

Rsym(+) := min{r [ T = Z vi®v;i®v;}  Waring rank
i=1

We have
R < Rsym.

Understanding when equality holds is the well-known Comon’s
problem.



Symmetric geometric rank
Also for the geometric rank we can consider its symmetrization.
Recall that for T € Sym3F”,

GR(T) = codim{(x,y) € F"xF" | XTAly = = xT Ay = o).

XTA,-ywaA,-x

Denote by A; ..., A, the slices of T € Sym3(F"). The symmetric
geometric rank of T is

SGR(T) := codim{x € F"|x" Ajx = --- = x" A,x = 0}.



Symmetric geometric rank |

For T € Sym3(F"), A; slice of T
SCGR(T) := codim{x € F"|xT Ajx = --- = xT A,x = 0},
not very revealing...

But hey, symmetric tensors are homogeneous polynomials!

Sym3]F" 1) C[Xl, cee ,Xn](3)
T = (t,',j,k) — Z tijkXixjxx =: F.
Moreover,

oF
ox;’

XTA,'X =



Example

TAx 2 9F

for x = o

T=e®ReRet+terReR®e + e Qe ® e, or equivalently
F = x1x1x0 + x1x0X1 + XoX1X1 = 3X12X2.

T=ea®(e®e +e ®e) + eoRkea®e
= ®A 4+ e® A
01 10
cacll ] el
F F
8— =bx1xp =3 XTA1X 6— = 3X12 =3. XTA2X
Oxy Oxo

xT Aix is equal to 2E B F up to a non zero scalar.
1



Symmetric geometric rank Il

Let F be the homogeneous polynomial associated to T,

SGR(T) := codim{x € F" | xTAix=-=x"Ax = 0}
OF OF
:codim{xeF” o -..:axnzo}.




Symmetric geometric rank Il

Let F be the homogeneous polynomial associated to T,

SGR(T) := codim{x € F" | xTAix=-=x"Ax = 0}
OF OF
:codim{xeF” o -..:axnzo}.

Recall:
® The zero locus Xg = {F =0} C F" of F is an hypersurface.

® A point p € F" is singular for Xg if F(p) =0 and %}Eip) =0
for all i.

gXFn =0}

® The singular locus of Xg is Sing(F) = {dXO =



Symmetric geometric rank Il

Let F be the homogeneous polynomial associated to T,

SGR(T) := codim{x € F" | xTAjx = --- = xT A,x =0}
F F
:codim{xeF” gxl --.:gxnzo}.
( SGR(T) := codimpn(Sing(F)).

Already well defined!
Already generalizable to an arbitrary number of factors.



Relation between GR and SGR

For a T € Sym[F3 C F"™*"™%" we have
SGR(T) < GR(T).

Inclusion can be strict! Take
T=eReaRatadalet+ea®e ®e =3xix=F.

0 1 10
el 2=

xT Aty = x1y2 + xy1 = 0

— GR(T)=2.
xTAyy = x1y1 =0 )

For GR solve {

xTAix = 2x1x0 = 0

= SGR(T)=1.
XTAzx:xlzzo (7)

For SGR solve {

Reference: J Lindberg, P Santarsiero: The symmetric geometric
rank of symmetric tensors. arXiv preprint, arXiv:2303.17537, 2023.



Questions?

Thank you for the attention!
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