Stability and moment polytopes of tensors

Harold Nieuwboer

University of Copenhagen

June 12th, 2024

Tensor Ranks & Tensor Invariants

this slide left blank intentionally

Tools for (asymptotic) tensor (sub)rank

Let $T \in V := \mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d$ be a tensor.

What are the asymptotic rank $\tilde{R}(T)$ and asymp. subrank $\tilde{Q}(T)$?

Need tools to answer this!

Fulvio's talk: $\tilde{R}(T) = \lim_{k \to \infty} \sqrt[k]{R(T^{\boxtimes k})} = \lim_{k \to \infty} \sqrt[k]{\underline{R}(T^{\boxtimes k})}$, where <u>R</u> is the **border rank**.

The set σ_r of tensors $T \in V$ with $\underline{R}(T) \leq r$ is an **algebraic variety**. Let $G = \operatorname{GL}_d \times \operatorname{GL}_d \times \operatorname{GL}_d$. Observe (if $d \geq r$):

$$\sigma_r = \overline{G \cdot \langle r \rangle}$$

where $\langle r \rangle = \sum_{i=1}^{r} e_i \otimes e_i \otimes e_i$ is the rank-*r* unit tensor.

Degeneration of tensors and representation theory

Christian's talk: \exists homogeneous polynomial F on $\mathbb{C}^4 \otimes \mathbb{C}^4 \otimes \mathbb{C}^4$ s.t.

- ▶ F(T) = 0 whenever $R(T) \le 6$, so also whenever $\underline{R}(T) \le 6$.
- $F(MM_2) \neq 0$, where $MM_2 = \langle 2, 2, 2 \rangle$.

Thereby proving $R(MM_2) \ge \underline{R}(MM_2) \ge 7$. *F* was a **highest weight vector** labelled by the highest weight (λ, μ, ν) with $\lambda = \mu = \nu = (5, 5, 5, 5)$.

To prove lower bounds on <u>R</u>(T), can try to separate it from σ_r , i.e., find a homogeneous polynomial f such that $f(T) \neq 0$ and $f|_{\sigma_r} \equiv 0$.

F homogeneous of degree 20 in $4^3 = 64$ variables; very complicated to evaluate!

Degeneration of tensors and representation theory

Without loss of generality: can assume $f \in HWV_{\lambda,\mu,\nu} \subseteq \mathbb{C}[V]_n$ is a highest weight vector for some (λ, μ, ν) .

To separate T from $\overline{G \cdot \langle r \rangle}$, or more generally tensor T from T':

Do there exist (λ, μ, ν) and $f \in HWV_{\lambda,\mu,\nu}$ with $f|_{G \cdot T} \neq 0$ and $f|_{G \cdot T'} \equiv 0$?

Collect relevant (λ, μ, ν) for T into one object:

Define the semigroup of representations $S(T) \subseteq (\mathbb{Z}_{\geq 0}^d)^3$ of T: those (λ, μ, ν) where $\lambda, \mu, \nu \vdash_d n$, and

 $\exists f \in \mathrm{HWV}_{\lambda,\mu,\nu} \subseteq \mathbb{C}[V]_n \text{ such that } f|_{G \cdot T} \neq 0.$

Properties of semigroup of representations

Proposition (Monotonicity) If $T \succeq T'$ (i.e., $T' \in \overline{G \cdot T}$) then $S(T) \supseteq S(T')$.

Proof.

If a highest weight vector does not vanish identically on $G \cdot T' \subseteq \overline{G \cdot T}$, then it does not vanish identically on $G \cdot T$ by continuity.

Proposition (Semigroup property)

If $(\lambda, \mu, \nu), (\lambda', \mu', \nu') \in S(T)$, then $(\lambda + \lambda', \mu + \mu', \nu + \nu') \in S(T)$.

Proof.

If f, f' are highest weight vectors of the above types, then their product $f \cdot f'$ (as polynomials) is a highest weight vector of type $(\lambda + \lambda', \mu + \mu', \nu + \nu')$. It does not vanish on all of $G \cdot T$, since f and f' do not, and $\overline{G \cdot T}$ is irreducible.

Moment polytope

S(T) is nice, but still really hard to compute! Define moment polytope:

$$\Delta(T) = \overline{\left\{\frac{1}{n}(\lambda,\mu,\nu) \in S(T) : n = |\lambda| = |\mu| = |\nu|\right\}} \subseteq \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d.$$

In other words, normalize the points in S(T) and take the closure. Why $\Delta(T)$ easier than S(T)?

Theorem

There exists a map $\mu \colon V \setminus \{0\} \to \operatorname{Herm}^3_d$ such that

$$\Delta(T) = \overline{\operatorname{spec}_{\searrow} \circ \mu(G \cdot T)}.$$

Here, μ is called the **moment map**, and

- ▶ Herm_d consists of d × d Hermitian matrices,
- ▶ spec₁(*H*) is the sorted list of eigenvalues $\lambda_1 \ge \ldots \ge \lambda_d$ of *H*.

The moment map

How to compute $\mu(T) \in \operatorname{Herm}_{d}^{3}$? First component: reinterpret $T \in U \otimes V \otimes W$ as a linear map $T_{1}: U^{*} \to V \otimes W$, then compute

$$\mu_1(T) = \frac{1}{\|T\|^2} T_1^* T_1.$$

Similar for μ_2, μ_3 .

Why is this an equivalent description?

Can also define a moment polytope with respect to $H = \operatorname{SL}_d \times \operatorname{SL}_d \times \operatorname{SL}_d$; then $\Delta^H(T) = \Delta(T) - \frac{1}{d}(\vec{1}, \vec{1}, \vec{1})$ is obtained by shifting.

Equivalence of the descriptions

Special case: $0 \in \Delta^H(X)$.

Theorem (Kempf-Ness)

Let $x = [v] \in \mathbb{P}(V)$. Then the following are equivalent:

- ▶ $0 \in \mu(\overline{H \cdot x}).$
- $F_x: H \to \mathbb{R}, F_x(h) = \log ||h \cdot v|| / ||v||$ is bounded from below. • $0 \notin \overline{H \cdot v} \subseteq V.$

Key idea: F_x : $\mathrm{SU}(d)^3 \setminus H \to \mathbb{R}$ is a **geodesically convex** function on $\mathrm{SU}(d)^3 \setminus H$, a symmetric space of non-positive curvature. Therefore bounded below iff gradient vanishes (asymptotically).

By Mumford's theorem, the third condition is equivalent to "There exists some homogeneous invariant $f \in \mathbb{C}[V]^H$ such that $f(x) \neq 0$, i.e., x is semistable."

i.e., $\mathbb{C}[V]_n$ contains the trivial *H*-representation for some $n \geq 1$.

Equivalence of the descriptions

What about other points? **Shifting** trick (Mumford, Brion): The idea is: instead asking $\mu(g \cdot x) = \alpha$, construct a bigger rep \tilde{V} and \tilde{x} such that

$$\tilde{\mu}(\tilde{x}) \sim \mu(x) - \alpha,$$

and ask if $\tilde{\mu}$ can be 0.

Let $\alpha \in \mathfrak{t}_+^*$ be rational. Then $\alpha = \lambda/n$ for some highest weight λ and $n \ge 1$.

Let $w \in V_{\lambda^*}$ be a highest weight vector with weight $-\lambda^*$. Set

$$ilde{V} = V^{\otimes n} \otimes V_{\lambda^*}, \quad ilde{v} = (g \cdot v)^{\otimes n} \otimes w.$$

Then $\mu(w) = -\lambda$, and

$$\tilde{\mu}((g \cdot v)^n \otimes w) = n \, \mu(g \cdot v) + \mu(w) = n \, \mu(g \cdot v) - \lambda.$$

 $\alpha \in \Delta(\overline{G \cdot x})$ if and only if $0 \in \Delta(\overline{G \cdot ((g \cdot v)^n \otimes w)})$ for some $g \in G$ (generic suffices).

Properties of $\Delta(T)$

Theorem $\Delta(T)$ is convex.

Proof.

Use semigroup property of S(T): Let $\alpha = \lambda/n$, $\beta = \mu/m \in \Delta(T)$ with λ, μ highest weights. Pick highest weight vectors $v_{\lambda} \in \mathbb{C}[V]_n$ and $v_{\mu} \in \mathbb{C}[V]_m$, not identically zero on orbit of T. Then $v_{\lambda}^m \cdot v_{\mu}^n$ is a highest weight vector in $\mathbb{C}[V]_{2mn}$ with weight $m\lambda + n\mu$, and hence

$$\frac{m\lambda+n\mu}{2mn}=\frac{\alpha+\beta}{2}\in\Delta(T).$$

Properties of $\Delta(T)$

Theorem

 $\Delta(T)$ is a (rational) polytope, i.e., defined by finitely many linear (rational) inequalities; equivalently, it has finitely many (rational) extreme points.

Proof.

S(T) is a finitely generated semigroup, see Derksen-Kemper's *Computational Invariant Theory*, section 4.2.

An example: $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$

Let
$$V = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$$
 and $G = \mathrm{GL}_2^3$ acting via $(g_1, g_2, g_3) \cdot v = (g_1 \otimes g_2 \otimes g_3)v$

There are only **finitely** many orbits (6):

- $e_1 \otimes e_1 \otimes e_1$ (product state),
- $e_1 \otimes e_1 \otimes e_2 + e_1 \otimes e_2 \otimes e_2$ and its permutations (maximally entangled pairs),
- $e_1 \otimes e_1 \otimes e_2 + e_1 \otimes e_2 \otimes e_1 + e_2 \otimes e_1 \otimes e_1$ (W-state),
- $e_1 \otimes e_1 \otimes e_1 + e_2 \otimes e_2 \otimes e_2$ (GHZ-state, generic),

GHZ-state polytope

W-state polytope

Interpreting generic tensor polytopes

Let
$$G = \operatorname{GL}_a \times \operatorname{GL}_b \times \operatorname{GL}_c$$
 act on $V = \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^b$. Then

$$\Delta(\mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c) = \left\{ \frac{1}{n} (\lambda, \mu, \nu) : g(\lambda, \mu, \nu) \neq 0 \right\}$$

where $\lambda, \mu, \nu \vdash n$ are partitions of *n* into at most a/b/c parts respectively,

 $g(\lambda, \mu, \nu)$ are the **Kronecker** coefficients for S_n , i.e., S_{ν} appears as subrep of $S_{\lambda} \otimes S_{\mu}$. (See Christian's talk on Schur–Weyl duality!)

So the polytope captures some (asymptotic) non-vanishing Kronecker coefficients, which are notoriously hard to compute! $\Delta(V)$ described by Klyachko, Berenstein–Sjamaar using Schubert calculus, but hard to make explicit!

Walter–Vergne computed explicitly up to (a, b, c) = (4, 4, 4), (3,3,9), (2,4,8), (2,2,3,12), using a more practical version of a method due to Ressayre.

Taken from Michael Walter's moment_polytopes package:

Vertices

- - - - - - - -

#	V_A	V_B	V_C
1	$(1/4 \ 1/4 \ 1/4 \ 1/4)$	(1/4 1/4 1/4 1/4)	$(1/4 \ 1/4 \ 1/4 \ 1/4)$
2	(1/4, 1/4, 1/4, 1/4)	(1/4, 1/4, 1/4, 1/4)	(1/3, 1/3, 1/3, 0)
3	(1/4, 1/4, 1/4, 1/4)	(1/4, 1/4, 1/4, 1/4)	(1/2, 1/2, 0, 0)
4	(1/4, 1/4, 1/4, 1/4)	(1/4, 1/4, 1/4, 1/4)	(1, 0, 0, 0)
5	(1/4, 1/4, 1/4, 1/4)	(1/3, 1/3, 1/3, 0)	(1/3, 1/3, 1/3, 0)
6	(1/4, 1/4, 1/4, 1/4)	(1/3, 1/3, 1/3, 0)	(1/2, 1/2, 0, 0)
7	(1/4, 1/4, 1/4, 1/4)	(1/3, 1/3, 1/3, 0)	(2/3, 1/6, 1/6, 0)
8	(1/4, 1/4, 1/4, 1/4)	(1/3, 1/3, 1/3, 0)	(2/3, 1/4, 1/12, 0)
9	(1/4, 1/4, 1/4, 1/4)	(1/3, 1/3, 1/3, 0)	(3/4, 1/12, 1/12, 1/12)
10	(1/4, 1/4, 1/4, 1/4)	(3/8, 3/8, 1/4, 0)	(5/8, 3/8, 0, 0)
11	(1/4, 1/4, 1/4, 1/4)	(3/8, 3/8, 1/4, 0)	(3/4, 1/8, 1/8, 0)
12	(1/4, 1/4, 1/4, 1/4)	(2/5, 3/10, 3/10, 0)	(7/10, 3/20, 3/20, 0)
13	(1/4, 1/4, 1/4, 1/4)	(5/12, 5/12, 1/6, 0)	(2/3, 1/6, 1/12, 1/12)
14	(1/4, 1/4, 1/4, 1/4)	(1/2, 1/6, 1/6, 1/6)	(1/2, 1/2, 0, 0)
15	(1/4, 1/4, 1/4, 1/4)	(1/2, 1/4, 1/8, 1/8)	(5/8, 3/8, 0, 0)
16	(1/4, 1/4, 1/4, 1/4)	(1/2, 1/4, 1/4, 0)	(1/2, 1/2, 0, 0)
17	(1/4, 1/4, 1/4, 1/4)	(1/2, 1/4, 1/4, 0)	(2/3, 1/6, 1/6, 0)
18	(1/4, 1/4, 1/4, 1/4)	(1/2, 1/4, 1/4, 0)	(3/4, 1/4, 0, 0)
19	(1/4, 1/4, 1/4, 1/4)	(1/2, 3/8, 1/8, 0)	(5/8, 1/8, 1/8, 1/8)
20	(1/4, 1/4, 1/4, 1/4)	(1/2, 1/2, 0, 0)	(1/2, 1/2, 0, 0)
21	(2/7, 2/7, 2/7, 1/7)	(4/7, 1/7, 1/7, 1/7)	(4/7, 3/7, 0, 0)
22	(7/24, 7/24, 5/24, 5/24)	(1/3, 1/3, 1/3, 0)	(3/4, 1/8, 1/8, 0)
23	(3/10, 3/10, 1/5, 1/5)	(2/5, 3/10, 3/10, 0)	(4/5, 1/10, 1/10, 0)
24	(3/10, 3/10, 3/10, 1/10)	(1/2, 1/2, 0, 0)	(11/20, 3/20, 3/20, 3/20)
25	(3/10, 3/10, 3/10, 1/10)	(1/2, 1/2, 0, 0)	(3/5, 1/5, 1/10, 1/10)
26	(1/3, 2/9, 2/9, 2/9)	(1/3, 1/3, 1/3, 0)	(2/3, 1/3, 0, 0)
27	(1/2 2/0 2/0 2/0)	(1/2 1/2 1/2 0)	(7/0 1/0 1/0 0)

15/22

How to compute them?

Different approaches:

- Completely understand S(T) (or even the ring of covariants C[V]^U). Carried out for "small" examples around 1900 (Sylvester–Franklin, Hilbert, ...) (with some more recent progress), but very impractical!
- Special cases (e.g. Littlewood–Richardson or Kronecker polytope): recursive and combinatorially difficult.
- Ressayre's method: non-Weyl-chamber facets of Δ(V) correspond to admissible well-covering pairs.
- Scaling: can test if specific p ∈ Δ(T). Not always efficient (theoretically), but practically tractable. Unclear how to use to give complete description of Δ(T).
- Combinatorial description due to Franz.

Franz's description of $\Delta(X)$

Let X be a G-closed subvariety of $\mathbb{P}(V)$.

Write $V = \oplus_{\omega \in \Omega} V_{\omega}$ for the weight decomposition of V and define for $v \in V$,

supp
$$v = \{\omega \in \Omega : v_\omega \neq 0\}.$$

For $x = [v] \in X$, define the **Borel polytope**

$$P(x) = \bigcap_{u \in U^-} \operatorname{conv} \operatorname{supp}(u \cdot v) \cap \mathfrak{t}_+^*.$$

Theorem (Franz)

 $\Delta(X) \supseteq P(x)$, with equality for generic $x \in X$. Proof relies heavily on the shifting trick.

Franz's description made practical

This yields an **algorithm** for computing $\Delta(X)$!

- Pick a generic $x = [v] \in X$.
- Initialize $\Delta = \operatorname{conv} \operatorname{supp} v \cap \mathfrak{t}_+^*$.
- For every $S \subseteq \Omega$:
 - Determine if there exists some u ∈ U⁻ such that supp(u · v) ⊆ S.
 - If yes, update $\Delta = \Delta \cap \operatorname{conv} S$.

Observation

The question "is there $u \in U^-$ such that $supp(u \cdot v) \subseteq S$ " is asking whether the polynomial system

$$(u \cdot v)_{\omega} = 0, \quad \omega \in \Omega \setminus S$$

has a solution in u! Can be solved using Gröbner bases.

Franz's description made practical

With many tricks, this can be made practical. Naively, need to check $2^{|\Omega|}$ polynomial systems!

Ongoing work w/ van den Berg, Christandl, Lysikov, Walter and Zuiddam (and a lot of CPU hours):

determined complete set of vertices/inequalities of polytopes for

- ▶ all $v \in \mathbb{C}^3 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$ under $GL(3)^3$ -action,
- ▶ interesting tensors in $\mathbb{C}^4 \otimes \mathbb{C}^4 \otimes \mathbb{C}^4$ under $\mathrm{GL}(4)^3$ -action (e.g. the 2 × 2-matrix multiplication tensor),

Asymptotic spectrum of tensors

As we saw in Itai's talk:

Theorem (Strassen)

 $\tilde{R}(T) = \sup_{\varphi} \varphi(T), \ \tilde{Q}(T) = \inf_{\varphi} \varphi(T), \ where \ \varphi \ are \ spectral points (points in the asymptotic spectrum of tensors).$

Recall that φ are $\mathbbm{R}_{\geq \mathbf{0}}\text{-valued}$ functions on tensors such that

•
$$\varphi(\langle r \rangle) = r$$
 (normalization),

$$\blacktriangleright \varphi(T \oplus S) = \varphi(T) + \varphi(S),$$

$$\blacktriangleright \varphi(T \boxtimes S) = \varphi(T)\varphi(S),$$

•
$$\varphi(S) \ge \varphi(T)$$
 when S restricts to T.

Basic examples: flattening ranks, but these cannot be all.

Quantum functionals

Only other points in asymptotic spectrum we know are due to Christandl–Vrana–Zuiddam: for θ a probability distribution on $\{1, 2, 3\}$, we define

$$E_{\theta}(T) = \sup_{(p_1, p_2, p_3) \in \Delta(T)} \sum_{i=1}^3 \theta_i H(p_i).$$

Then $F_{\theta} = 2^{E_{\theta}}$ is a universal spectral point. Can prove this using properties of moment polytopes, and connection to Kronecker coefficients.

If we had efficient membership testing for $\Delta(T)$, we could compute F_{θ} efficiently!

Outlook

Interesting open questions:

- Efficient (polynomial-time) algorithms for membership in Δ(X)?
- Efficiently verifiable certificates for inequalities for $\Delta(X)$?
- How big of a representation can compute the polytopes for?
- Interpretation of Δ(X), e.g. for cubic surfaces? Know they can be quite non-trivial for cubic surfaces with special singularities.
- Asymptotic properties: Δ(x^{⊠n}) for tensors x ∈ C^d ⊗ C^d ⊗ C^d and big n?

Thank you!