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Tools for (asymptotic) tensor (sub)rank

Let T € V:=C9®C?® C? be a tensor.
What are the asymptotic rank R(T) and asymp. subrank Q(T)?

Need tools to answer thisl!

Fulvio's talk: R(T) = lim_ee </R(TZF) = limy_se0 &/R(TEK),
where R is the border rank.
The set o, of tensors T € V with R(T) < r is an algebraic variety.

Let G = GLg x GLg x GL4. Observe (if d > r):

or=G-(r)

where (r) =>"7_; & ® €; ® ¢; is the rank-r unit tensor.
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Degeneration of tensors and representation theory

Christian’s talk: 3 homogeneous polynomial F on C* ® C* @ C*
s.t.

» F(T) =0 whenever R(T) <6, so also whenever R(T) < 6.
> F(MM;) # 0, where MM, = (2,2, 2).
Thereby proving R(MM,) > R(MM;) > 7.
F was a highest weight vector labelled by the highest weight
(A, p,v) with A= p =v = (5,5,5,5).

To prove lower bounds on R(T), can try to separate it from oy, i.e.,
find a homogeneous polynomial f such that f(T) # 0 and f|,, = 0.

F homogeneous of degree 20 in 43 = 64 variables; very complicated
to evaluate!
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Degeneration of tensors and representation theory

Without loss of generality: can assume f € HWV, ,,, C C[V], is a
highest weight vector for some (A, p, v).

To separate T from G - (r), or more generally tensor T from T

Do there exist (A, u,v) and f € HWV,, , , with f|g.7 # 0 and
f|G-T’ =07

Collect relevant (A, i, v) for T into one object:

Define the semigroup of representations S(T7) C (Zdzo)3 of T:
those (A, i, v) where \, u, v F4 n, and

3f € HWVy ., € C[V], such that f|g.7 # 0.
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Properties of semigroup of representations

Proposition (Monotonicity)
IFT> T (ie, T'€ G-T)then S(T) D S(T).

Proof.

If a highest weight vector does not vanish identically on

G-T'C G- T, then it does not vanish identically on G - T by
continuity. L]

Proposition (Semigroup property)
If O\, v), (Nop/ V') € S(T), then A+ N, u+u/,v+1v') € S(T).

Proof.

If £, f are highest weight vectors of the above types, then their
product f - f' (as polynomials) is a highest weight vector of type
A+ N, pu+ p;v+ 1), It does not vanish on all of G- T, since f
and f’ do not, and G - T is irreducible. O
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Moment polytope

S(T) is nice, but still really hard to compute!
Define moment polytope:

1
A(T) = {n()\,u, v)eS(T):n=|\=|ul = \y\} C RYxRIxRY.
In other words, normalize the points in S(T) and take the closure.
Why A(T) easier than S(T)?

Theorem
There exists a map yi: V' \ {0} — Herm? such that

A(T) =spec_ou(G-T).

Here, 1 is called the moment map, and
» Hermy consists of d x d Hermitian matrices,

» spec. (H) is the sorted list of eigenvalues A\1 > ... > Ay of H.
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The moment map

How to compute z(T) € Herm3?

First component: reinterpret T € U® V ® W as a linear map
T, :U" = V® W, then compute

1

m(T) = 17

Similar for pg, p3.

Why is this an equivalent description?

Can also define a moment polytope with respect to

H = SLy x SLy x SLg; then AP(T) = A(T) - L(1,1,1) is
obtained by shifting.
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Equivalence of the descriptions

Special case: 0 € AP(X).

Theorem (Kempf—Ness)

Let x = [v] € P(V). Then the following are equivalent:
» 0¢€ u(H- x).
> F.: H— R, F(h) =logl|lh-v|/| V]| is bounded from below.
» 0ZH-vCV.

Key idea: Fy: SU(d)*\H — R is a geodesically convex function

on SU(d)3\H, a symmetric space of non-positive curvature.
Therefore bounded below iff gradient vanishes (asymptotically).

By Mumford's theorem, the third condition is equivalent to
“There exists some homogeneous invariant f € C[V]" such that
f(x) #0, i.e., x is semistable.”

i.e., C[V], contains the trivial H-representation for some n > 1.
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Equivalence of the descriptions

What about other points? Shifting trick (Mumford, Brion): y
The idea is: instead asking (g - x) = «, construct a bigger rep V
and X such that

(%) ~ p(x) — o,
and ask if ji can be 0.

Let o € £ be rational. Then o = A\/n for some highest weight A
and n > 1.

Let w € V)~ be a highest weight vector with weight —A\*. Set

V=V2 V., iv=(@g v)*"ow.
Then pu(w) = —X, and

fi((g-v)"@w)=npu(g-v)+uw)=nu(g-v)—A

a € A(G-x)ifand only if 0 € A(G - ((g - v)" ® w)) for some

g € G (generic suffices). 8/22



Properties of A(T)

Theorem
A(T) is convex.

Proof.

Use semigroup property of S(T):

Let o = A/n, B =pu/me A(T) with A, i highest weights. Pick
highest weight vectors vy € C[V], and v, € C[V], not identically
zero on orbit of T. Then v{" - v/ is a highest weight vector in

o
C[V]2mn with weight mA 4+ nu, and hence

mA+nu_a+B€

A(T). O
2mn 2
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Properties of A(T)

Theorem

A(T) is a (rational) polytope, i.e., defined by finitely many linear
(rational) inequalities; equivalently, it has finitely many (rational)
extreme points.

Proof.

S(T) is a finitely generated semigroup, see Derksen—Kemper's
Computational Invariant Theory, section 4.2. O
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An example: C? @ C? @ C?
Let V= C?® C?® C? and G = GL3 acting via

(81,82,8) v=(81®@ 8 ®g3)v

There are only finitely many orbits (6):
> e ® e ® e (product state),

> g ®e Qe+ e ® e ® e and its permutations (maximally
entangled pairs),

> eRe®eate®ea®e +e®e e (W-state),
> e ®e ®el+ e ® e ® e (GHZ-state, generic),
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GHZ-state polytope
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1.00

W-state polytope
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Interpreting generic tensor polytopes

Let G = GL, x GLp x GLc acton V =C? @ CP @ CP. Then

AP CloC) = {}T(A,u,u) cg(A\p,v) # 0}

where A\, i1, v | n are partitions of n into at most a/b/c parts
respectively,

g(\, p,v) are the Kronecker coefficients for S, i.e., S, appears as
subrep of Sy ® S,,. (See Christian's talk on Schur—Weyl duality!)

So the polytope captures some (asymptotic) non-vanishing
Kronecker coefficients, which are notoriously hard to compute!
A(V) described by Klyachko, Berenstein—Sjamaar using Schubert
calculus, but hard to make explicit!

Walter—Vergne computed explicitly up to (a, b, ¢) = (4,4,4),
(3,3,9), (2,4,8), (2,2,3,12), using a more practical version of a
method due to Ressayre.
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Taken from Michael Walter's moment_polytopes package:

Vertices

(1/4,
(1/4,
(1/4,
(1/4,
(1/4,
(1/4,
(1/4,
(1/4,
(1/4,
(1/4,
(1/4, 1/4,
(2/7, 2/7, 2/7, 1/7)
(7/24, 7/24, 5/24, 5/24)
(3/10, 3/10, 1/5, 1/5)
(3/10, 3/10, 3/160, 1/10)
(3/10, 3/10, 3/10, 1/10)
(1/3, 2/9, 2/9, 2/9)

172 9/0 o6 Hsan

1/4,
1/4,
1/4,
1/4,
1/4,
1/4,
1/4,
1/4,
1/4,
1/4,

(174, 1/4, 1/4,
(174, 1/4, 1/4,
(174, 1/4, 1/4,
(174, 1/4, 1/4,
(1/3, 1/3, 1/3, 0)
(1/3, 1/3, 1/3, 0)
(1/3, 1/3, 1/3, 0)
(1/3, 1/3, 1/3, 0)
(1/3, 1/3, 1/3, 0)
(3/8, 3/8, 1/4, 0)
(3/8, 3/8, 1/4, 0)
(2/5, 3/10, 3/10, 0)
(5/12, 5/12, 1/6, 0)
(1/2, 1/6, 1/6, 1/6)
(1/2, 1/4, 1/8, 1/8)
(1/2, 1/4, 1/4, 0)
(1/2, 1/4, 1/4, 0)
(1/2, 1/4, 1/4, 0)
(1/2, 3/8, 1/8, 0)
(1/2, 1/2, 6, 0)
(4/7, 1/7, 1/7, 1/7)
(1/3, 1/3, 1/3, 0)
(2/5, 3/10, 3/10, 0)
(1/2, 1/2, 0, 0)
(1/2, 1/2, 0, 0)
(1/3, 1/3, 1/3, 0)

(172 172 172 )y

(1/4, 1/4, 1/4, 1/4)
(1/3, 1/3, 1/3, 0)
(1/2, 1/2, 6, 0)

(1, 0, 0, 0)

(1/3, 1/3, 1/3, 0)
(1/2, 1/2, 0, 0)

(2/3, 1/6, 1/6, 0)
(2/3, 1/4, 1/12, 0)
(3/4, 1/12, 1/12, 1/12)
(5/8, 3/8, 0, 0)

(3/4, 1/8, 1/8, 0)
(7/10, 3/20, 3/20, 0)
(2/3, 1/6, 1/12, 1/12)
(1/2, 1/2, 6, 0)

(5/8, 3/8, 0, 0)

(1/2, 1/2, o, 0)

(2/3, 1/6, 1/6, 0)
(3/4, 1/4, 0, 0)

(5/8, 1/8, 1/8, 1/8)
(1/2, 1/2, 0, 0)

(4/7, 3/7, 0, 0)

(3/4, 1/8, 1/8, 0)
(4/5, 1/10, 1/10, 0)
(11720, 3/20, 3/20, 3/20)
(3/5, 1/5, 1/160, 1/10)
(2/3, 1/3, 0, 0)

(7/0 1/6 1/0 o\



How to compute them?

Different approaches:

| 4

Completely understand S(T) (or even the ring of covariants
C[V]Y). Carried out for “small" examples around 1900
(Sylvester—Franklin, Hilbert, ...) (with some more recent
progress), but very impractical!

Special cases (e.g. Littlewood—Richardson or Kronecker
polytope): recursive and combinatorially difficult.

Ressayre's method: non-Weyl-chamber facets of A(V)
correspond to admissible well-covering pairs.

Scaling: can test if specific p € A(T). Not always efficient
(theoretically), but practically tractable. Unclear how to use to
give complete description of A(T).

Combinatorial description due to Franz.
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Franz's description of A(X)

Let X be a G-closed subvariety of P(V).

Write V = &,cq V., for the weight decomposition of V' and define
forveV,
suppv = {w € Q: v, # 0}.

For x = [v] € X, define the Borel polytope

P(x) = ﬂ conv supp(u - v) Nt
ueU~—

Theorem (Franz)

A(X) D P(x), with equality for generic x € X.

Proof relies heavily on the shifting trick.
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Franz's description made practical

This yields an algorithm for computing A(X)!
» Pick a generic x = [v] € X.
» Initialize A = convsuppv Nt}.

» For every S C Q:
» Determine if there exists some u € U~ such that

supp(u-v) CS.
» If yes, update A = AnNconvS.

Observation
The question “is there u € U~ such that supp(u - v) C S" is asking

whether the polynomial system
(U-v)y=0, weQ\S

has a solution in u! Can be solved using Grobner bases.
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Franz's description made practical

With many tricks, this can be made practical. Naively, need to
check 212 polynomial systems!

Ongoing work w/ van den Berg, Christandl, Lysikov, Walter and
Zuiddam (and a lot of CPU hours):

determined complete set of vertices/inequalities of polytopes for
> all v € C3 ® C3 ® €3 under GL(3)3-action,

> interesting tensors in C* ® C* ® C* under GL(4)3-action (e.g.
the 2 x 2-matrix multiplication tensor),

> v € SymX(C9) for small k,d,
e.g. k=3 and d = 4 < cubic surfaces in P3,
» 3- and 4-dimensional algebras.
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Asymptotic spectrum of tensors

As we saw in ltai's talk:

Theorem (Strassen)
R(T) = sup,, (T), Q(T) = inf, ©(T), where ¢ are spectral
points (points in the asymptotic spectrum of tensors).
Recall that ¢ are R>g-valued functions on tensors such that
» o((r)) = r (normalization),
> p(T@S)=¢(T)+¢(5),
> p(TRS)=p(T)e(S),
» ©(S) > ¢(T) when S restricts to T.

Basic examples: flattening ranks, but these cannot be all.
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Quantum functionals

Only other points in asymptotic spectrum we know are due to
Christandl-Vrana—Zuiddam: for 6 a probability distribution on
{1,2,3}, we define

3
Eo(T) = sup 0:H(pi).
(P1,p2,p3)EA(T) ;

Then Fy = 2F¢ is a universal spectral point.
Can prove this using properties of moment polytopes, and
connection to Kronecker coefficients.

If we had efficient membership testing for A(T), we could compute
Fy efficiently!
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Outlook

Interesting open questions:

| 4

>
>
>

Efficient (polynomial-time) algorithms for membership in
A(X)?

Efficiently verifiable certificates for inequalities for A(X)?
How big of a representation can compute the polytopes for?

Interpretation of A(X), e.g. for cubic surfaces? Know they can
be quite non-trivial for cubic surfaces with special singularities.

Asymptotic properties: A(x*") for tensors x € C¢ @ C? ® €
and big n?

Thank you!

22/22



