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Tools for (asymptotic) tensor (sub)rank

Let T ∈ V := Cd ⊗Cd ⊗Cd be a tensor.

What are the asymptotic rank R̃(T ) and asymp. subrank Q̃(T )?

Need tools to answer this!

Fulvio’s talk: R̃(T ) = limk→∞
k
√
R(T⊠k) = limk→∞

k
√
R(T⊠k),

where R is the border rank.
The set σr of tensors T ∈ V with R(T ) ≤ r is an algebraic variety.
Let G = GLd ×GLd ×GLd . Observe (if d ≥ r):

σr = G · ⟨r⟩

where ⟨r⟩ =
∑r

i=1 ei ⊗ ei ⊗ ei is the rank-r unit tensor.
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Degeneration of tensors and representation theory

Christian’s talk: ∃ homogeneous polynomial F on C4 ⊗C4 ⊗C4

s.t.

▶ F (T ) = 0 whenever R(T ) ≤ 6, so also whenever R(T ) ≤ 6.

▶ F (MM2) ̸= 0, where MM2 = ⟨2, 2, 2⟩.
Thereby proving R(MM2) ≥ R(MM2) ≥ 7.
F was a highest weight vector labelled by the highest weight
(λ, µ, ν) with λ = µ = ν = (5, 5, 5, 5).

To prove lower bounds on R(T ), can try to separate it from σr , i.e.,
find a homogeneous polynomial f such that f (T ) ̸= 0 and f |σr ≡ 0.

F homogeneous of degree 20 in 43 = 64 variables; very complicated
to evaluate!
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Degeneration of tensors and representation theory

Without loss of generality: can assume f ∈ HWVλ,µ,ν ⊆ C[V ]n is a
highest weight vector for some (λ, µ, ν).
To separate T from G · ⟨r⟩, or more generally tensor T from T ′:

Do there exist (λ, µ, ν) and f ∈ HWVλ,µ,ν with f |G ·T ̸= 0 and
f |G ·T ′ ≡ 0?

Collect relevant (λ, µ, ν) for T into one object:

Define the semigroup of representations S(T ) ⊆ (Zd
≥0)

3 of T :
those (λ, µ, ν) where λ, µ, ν ⊢d n, and

∃f ∈ HWVλ,µ,ν ⊆ C[V ]n such that f |G ·T ̸= 0.
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Properties of semigroup of representations

Proposition (Monotonicity)

If T ⊵ T ′ (i.e., T ′ ∈ G · T) then S(T ) ⊇ S(T ′).

Proof.
If a highest weight vector does not vanish identically on
G · T ′ ⊆ G · T , then it does not vanish identically on G · T by
continuity.

Proposition (Semigroup property)

If (λ, µ, ν), (λ′, µ′, ν ′) ∈ S(T ), then (λ+ λ′, µ+ µ′, ν + ν ′) ∈ S(T ).

Proof.
If f , f ′ are highest weight vectors of the above types, then their
product f · f ′ (as polynomials) is a highest weight vector of type
(λ+ λ′, µ+ µ′, ν + ν ′). It does not vanish on all of G · T , since f
and f ′ do not, and G · T is irreducible.
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Moment polytope

S(T ) is nice, but still really hard to compute!
Define moment polytope:

∆(T ) =

{
1

n
(λ, µ, ν) ∈ S(T ) : n = |λ| = |µ| = |ν|

}
⊆ Rd×Rd×Rd .

In other words, normalize the points in S(T ) and take the closure.
Why ∆(T ) easier than S(T )?

Theorem
There exists a map µ : V \ {0} → Herm3

d such that

∆(T ) = spec↘ ◦µ(G · T ).

Here, µ is called the moment map, and

▶ Hermd consists of d × d Hermitian matrices,

▶ spec↘(H) is the sorted list of eigenvalues λ1 ≥ . . . ≥ λd of H.
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The moment map

How to compute µ(T ) ∈ Herm3
d?

First component: reinterpret T ∈ U ⊗ V ⊗W as a linear map
T1 : U

∗ → V ⊗W , then compute

µ1(T ) =
1

∥T∥2
T ∗
1T1.

Similar for µ2, µ3.

Why is this an equivalent description?

Can also define a moment polytope with respect to
H = SLd × SLd × SLd ; then ∆H(T ) = ∆(T )− 1

d (⃗1, 1⃗, 1⃗) is
obtained by shifting.
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Equivalence of the descriptions

Special case: 0 ∈ ∆H(X ).

Theorem (Kempf–Ness)

Let x = [v ] ∈ P(V ). Then the following are equivalent:

▶ 0 ∈ µ(H · x).
▶ Fx : H → R, Fx(h) = log∥h · v∥/∥v∥ is bounded from below.

▶ 0 ̸∈ H · v ⊆ V .

Key idea: Fx : SU(d)
3\H → R is a geodesically convex function

on SU(d)3\H, a symmetric space of non-positive curvature.
Therefore bounded below iff gradient vanishes (asymptotically).

By Mumford’s theorem, the third condition is equivalent to
“There exists some homogeneous invariant f ∈ C[V ]H such that
f (x) ̸= 0, i.e., x is semistable.”

i.e., C[V ]n contains the trivial H-representation for some n ≥ 1.
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Equivalence of the descriptions

What about other points? Shifting trick (Mumford, Brion):
The idea is: instead asking µ(g · x) = α, construct a bigger rep Ṽ
and x̃ such that

µ̃(x̃) ∼ µ(x)− α,

and ask if µ̃ can be 0.
Let α ∈ t∗+ be rational. Then α = λ/n for some highest weight λ
and n ≥ 1.
Let w ∈ Vλ∗ be a highest weight vector with weight −λ∗. Set

Ṽ = V⊗n ⊗ Vλ∗ , ṽ = (g · v)⊗n ⊗ w .

Then µ(w) = −λ, and

µ̃((g · v)n ⊗ w) = n µ(g · v) + µ(w) = n µ(g · v)− λ.

α ∈ ∆(G · x) if and only if 0 ∈ ∆(G · ((g · v)n ⊗ w)) for some
g ∈ G (generic suffices).



9/22

Properties of ∆(T )

Theorem
∆(T ) is convex.

Proof.
Use semigroup property of S(T ):
Let α = λ/n, β = µ/m ∈ ∆(T ) with λ, µ highest weights. Pick
highest weight vectors vλ ∈ C[V ]n and vµ ∈ C[V ]m, not identically
zero on orbit of T . Then vmλ · vnµ is a highest weight vector in
C[V ]2mn with weight mλ+ nµ, and hence

mλ+ nµ

2mn
=

α+ β

2
∈ ∆(T ).
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Properties of ∆(T )

Theorem
∆(T ) is a (rational) polytope, i.e., defined by finitely many linear
(rational) inequalities; equivalently, it has finitely many (rational)
extreme points.

Proof.
S(T ) is a finitely generated semigroup, see Derksen–Kemper’s
Computational Invariant Theory, section 4.2.
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An example: C2 ⊗C2 ⊗C2

Let V = C2 ⊗C2 ⊗C2 and G = GL3
2 acting via

(g1, g2, g3) · v = (g1 ⊗ g2 ⊗ g3)v

There are only finitely many orbits (6):

▶ e1 ⊗ e1 ⊗ e1 (product state),

▶ e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e2 and its permutations (maximally
entangled pairs),

▶ e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1 (W-state),

▶ e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 (GHZ-state, generic),
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GHZ-state polytope
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W-state polytope
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Interpreting generic tensor polytopes

Let G = GLa ×GLb ×GLc act on V = Ca ⊗Cb ⊗Cb. Then

∆(Ca ⊗Cb ⊗Cc) =

{
1

n
(λ, µ, ν) : g(λ, µ, ν) ̸= 0

}
where λ, µ, ν ⊢ n are partitions of n into at most a/b/c parts
respectively,
g(λ, µ, ν) are the Kronecker coefficients for Sn, i.e., Sν appears as
subrep of Sλ ⊗ Sµ. (See Christian’s talk on Schur–Weyl duality!)

So the polytope captures some (asymptotic) non-vanishing
Kronecker coefficients, which are notoriously hard to compute!
∆(V ) described by Klyachko, Berenstein–Sjamaar using Schubert
calculus, but hard to make explicit!
Walter–Vergne computed explicitly up to (a, b, c) = (4, 4, 4),
(3, 3, 9), (2, 4, 8), (2, 2, 3, 12), using a more practical version of a
method due to Ressayre.
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Taken from Michael Walter’s moment polytopes package:
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How to compute them?

Different approaches:

▶ Completely understand S(T ) (or even the ring of covariants
C[V ]U). Carried out for “small” examples around 1900
(Sylvester–Franklin, Hilbert, . . . ) (with some more recent
progress), but very impractical!

▶ Special cases (e.g. Littlewood–Richardson or Kronecker
polytope): recursive and combinatorially difficult.

▶ Ressayre’s method: non-Weyl-chamber facets of ∆(V )
correspond to admissible well-covering pairs.

▶ Scaling: can test if specific p ∈ ∆(T ). Not always efficient
(theoretically), but practically tractable. Unclear how to use to
give complete description of ∆(T ).

▶ Combinatorial description due to Franz.
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Franz’s description of ∆(X )

Let X be a G -closed subvariety of P(V ).

Write V = ⊕ω∈ΩVω for the weight decomposition of V and define
for v ∈ V ,

supp v = {ω ∈ Ω : vω ̸= 0}.

For x = [v ] ∈ X , define the Borel polytope

P(x) =
⋂

u∈U−

conv supp(u · v) ∩ t∗+.

Theorem (Franz)

∆(X ) ⊇ P(x), with equality for generic x ∈ X .

Proof relies heavily on the shifting trick.
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Franz’s description made practical

This yields an algorithm for computing ∆(X )!

▶ Pick a generic x = [v ] ∈ X .

▶ Initialize ∆ = conv supp v ∩ t∗+.
▶ For every S ⊆ Ω:

▶ Determine if there exists some u ∈ U− such that
supp(u · v) ⊆ S .

▶ If yes, update ∆ = ∆ ∩ conv S .

Observation
The question “is there u ∈ U− such that supp(u · v) ⊆ S” is asking
whether the polynomial system

(u · v)ω = 0, ω ∈ Ω \ S

has a solution in u! Can be solved using Gröbner bases.
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Franz’s description made practical

With many tricks, this can be made practical. Naively, need to
check 2|Ω| polynomial systems!

Ongoing work w/ van den Berg, Christandl, Lysikov, Walter and
Zuiddam (and a lot of CPU hours):
determined complete set of vertices/inequalities of polytopes for

▶ all v ∈ C3 ⊗C3 ⊗C3 under GL(3)3-action,

▶ interesting tensors in C4 ⊗C4 ⊗C4 under GL(4)3-action (e.g.
the 2× 2-matrix multiplication tensor),

▶ v ∈ Symk(Cd) for small k, d ,
e.g. k = 3 and d = 4 ↔ cubic surfaces in P3,

▶ 3- and 4-dimensional algebras.
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Asymptotic spectrum of tensors

As we saw in Itai’s talk:

Theorem (Strassen)

R̃(T ) = supφ φ(T ), Q̃(T ) = infφ φ(T ), where φ are spectral
points (points in the asymptotic spectrum of tensors).

Recall that φ are R≥0-valued functions on tensors such that

▶ φ(⟨r⟩) = r (normalization),

▶ φ(T ⊕ S) = φ(T ) + φ(S),

▶ φ(T ⊠ S) = φ(T )φ(S),

▶ φ(S) ≥ φ(T ) when S restricts to T .

Basic examples: flattening ranks, but these cannot be all.
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Quantum functionals

Only other points in asymptotic spectrum we know are due to
Christandl–Vrana–Zuiddam: for θ a probability distribution on
{1, 2, 3}, we define

Eθ(T ) = sup
(p1,p2,p3)∈∆(T )

3∑
i=1

θiH(pi ).

Then Fθ = 2Eθ is a universal spectral point.
Can prove this using properties of moment polytopes, and
connection to Kronecker coefficients.

If we had efficient membership testing for ∆(T ), we could compute
Fθ efficiently!
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Outlook

Interesting open questions:

▶ Efficient (polynomial-time) algorithms for membership in
∆(X )?

▶ Efficiently verifiable certificates for inequalities for ∆(X )?

▶ How big of a representation can compute the polytopes for?

▶ Interpretation of ∆(X ), e.g. for cubic surfaces? Know they can
be quite non-trivial for cubic surfaces with special singularities.

▶ Asymptotic properties: ∆(x⊠n) for tensors x ∈ Cd ⊗Cd ⊗Cd

and big n?

Thank you!


