Stability and moment polytopes of tensors

Harold Nieuwboer

University of Copenhagen

June 12th, 2024

Tensor Ranks & Tensor Invariants

this slide left blank intentionally

Tools for (asymptotic) tensor (sub)rank

Let $\mathcal{T} \in V := \mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d$ be a tensor.

What are the asymptotic rank $\tilde{R}(T)$ and asymp. subrank $\tilde{Q}(T)$?

Need tools to answer this!

Fulvio's talk: $\tilde{R}(T) = \lim_{k \to \infty} \sqrt[k]{R(T^{\boxtimes k})} = \lim_{k \to \infty} \sqrt[k]{R(T^{\boxtimes k})}$, where R is the **border rank**.

The set σ_r of tensors $T \in V$ with $R(T) \leq r$ is an algebraic variety. Let $G = GL_d \times GL_d \times GL_d$. Observe (if $d > r$):

$$
\sigma_r = \overline{G \cdot \langle r \rangle}
$$

where $\langle r \rangle = \sum_{i=1}^r e_i \otimes e_i \otimes e_i$ is the rank- r unit tensor.

Degeneration of tensors and representation theory

Christian's talk: \exists homogeneous polynomial F on $\mathbb{C}^4 \otimes \mathbb{C}^4 \otimes \mathbb{C}^4$ s.t.

▶ $F(T) = 0$ whenever $R(T) \le 6$, so also whenever $R(T) \le 6$.

$$
\blacktriangleright \ \mathsf{F}(\mathrm{MM}_2) \neq 0, \ \text{where} \ \mathrm{MM}_2 = \langle 2, 2, 2 \rangle.
$$

Thereby proving $R(\text{MM}_2) > R(\text{MM}_2) > 7$.

 F was a highest weight vector labelled by the highest weight (λ, μ, ν) with $\lambda = \mu = \nu = (5, 5, 5, 5)$.

To prove lower bounds on $\underline{R}(\mathcal{T})$, can try to separate it from σ_r , i.e., find a homogeneous polynomial f such that $f(T) \neq 0$ and $f|_{\sigma_r} \equiv 0$.

F homogeneous of degree 20 in $4^3 = 64$ variables; very complicated to evaluate!

Degeneration of tensors and representation theory

Without loss of generality: can assume $f \in HWV_{\lambda,\mu,\nu} \subseteq \mathbb{C}[V]_n$ is a highest weight vector for some (λ, μ, ν) .

To separate $\mathcal T$ from $\overline{G\cdot\langle r\rangle}$, or more generally tensor $\mathcal T$ from $\mathcal T'$:

Do there exist (λ, μ, ν) and $f \in HWV_{\lambda, \mu, \nu}$ with $f|_{G \cdot \mathcal{T}} \neq 0$ and $f|_{G\cdot T'}\equiv 0$?

Collect relevant (λ, μ, ν) for T into one object:

Define the **semigroup of representations** $S(\mathcal{T})\subseteq(\mathbb{Z}_{\geq 0}^d)^3$ of \mathcal{T} : those (λ, μ, ν) where $\lambda, \mu, \nu \vdash_{d} n$, and

 $\exists f \in HWV_{\lambda,\mu,\nu} \subseteq \mathbb{C}[V]_n$ such that $f|_{G \cdot \mathcal{T}} \neq 0$.

Properties of semigroup of representations

Proposition (Monotonicity) If $T \trianglerighteq T'$ (i.e., $T' \in \overline{G \cdot T}$) then $S(T) \supseteq S(T')$.

Proof.

If a highest weight vector does not vanish identically on $G \cdot T' \subseteq \overline{G \cdot T}$, then it does not vanish identically on $G \cdot T$ by continuity.

Proposition (Semigroup property)

If $(\lambda, \mu, \nu), (\lambda', \mu', \nu') \in S(T)$, then $(\lambda + \lambda', \mu + \mu', \nu + \nu') \in S(T)$.

Proof.

If f, f' are highest weight vectors of the above types, then their product $f \cdot f'$ (as polynomials) is a highest weight vector of type $(\lambda + \lambda', \mu + \mu', \nu + \nu')$. It does not vanish on all of $G \cdot T$, since f and f' do not, and $\overline{G \cdot T}$ is irreducible.

Moment polytope

 $S(T)$ is nice, but still really hard to compute! Define moment polytope:

$$
\Delta(\mathcal{T}) = \overline{\left\{\frac{1}{n}(\lambda,\mu,\nu) \in \mathcal{S}(\mathcal{T}) : n = |\lambda| = |\mu| = |\nu|\right\}} \subseteq \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d.
$$

In other words, normalize the points in $S(T)$ and take the closure. Why $\Delta(T)$ easier than $S(T)$?

Theorem

There exists a map $\mu: V \setminus \{0\} \to \text{Herm}_d^3$ such that

$$
\Delta(T) = \overline{\text{spec}_{\scriptscriptstyle\searrow} \circ \mu(G\cdot T)}.
$$

Here, μ is called the **moment map**, and

- \blacktriangleright Herm_d consists of d \times d Hermitian matrices.
- **►** spec (H) is the sorted list of eigenvalues λ_1 > ... > λ_d of H.

The moment map

How to compute $\mu(\mathcal{T}) \in \mathrm{Herm}_d^3$? First component: reinterpret $T \in U \otimes V \otimes W$ as a linear map $\mathcal{T}_1: U^* \to V \otimes W$, then compute

$$
\mu_1(\,T\,) = \frac{1}{\|\,T\,\|^2}\,T_1^*\,T_1.
$$

Similar for μ_2 , μ_3 .

Why is this an equivalent description?

Can also define a moment polytope with respect to $H = \operatorname{SL}_d \times \operatorname{SL}_d \times \operatorname{SL}_d;$ then $\Delta^H(T) = \Delta(T) - \frac{1}{d}$ $\frac{1}{d}(\vec{1},\vec{1},\vec{1})$ is obtained by shifting.

Equivalence of the descriptions

Special case: $0 \in \Delta^H(X)$.

Theorem (Kempf–Ness)

Let $x = [v] \in P(V)$. Then the following are equivalent:

 \blacktriangleright 0 \in $\mu(\overline{H \cdot x})$.

 \blacktriangleright $F_x: H \to \mathbb{R}$, $F_x(h) = \log ||h \cdot v|| / ||v||$ is bounded from below. ▶ $0 \notin \overline{H\cdot v} \subseteq V$.

Key idea: $F_\mathsf{x} \colon \mathrm{SU}(d)^3 \backslash H \to \mathbb{R}$ is a **geodesically convex** function on $\mathrm{SU}(d)^3\backslash H$, a symmetric space of non-positive curvature. Therefore bounded below iff gradient vanishes (asymptotically).

By Mumford's theorem, the third condition is equivalent to "There exists some homogeneous invariant $f \in \mathbb{C}[V]^H$ such that $f(x) \neq 0$, i.e., x is semistable."

i.e., $\mathbb{C}[V]_n$ contains the trivial *H*-representation for some $n \geq 1$.

Equivalence of the descriptions

What about other points? Shifting trick (Mumford, Brion): The idea is: instead asking $\mu(g \cdot x) = \alpha$, construct a bigger rep \hat{V} and \tilde{x} such that

$$
\tilde{\mu}(\tilde{x}) \sim \mu(x) - \alpha,
$$

and ask if $\tilde{\mu}$ can be 0.

Let $\alpha \in \mathfrak{t}^*_+$ be rational. Then $\alpha = \lambda/n$ for some highest weight λ and $n > 1$.

Let $w \in V_{\lambda^*}$ be a highest weight vector with weight $-\lambda^*$. Set

$$
\tilde{V}=V^{\otimes n}\otimes V_{\lambda^*},\quad \tilde{v}=(g\cdot v)^{\otimes n}\otimes w.
$$

Then $\mu(w) = -\lambda$, and

$$
\tilde{\mu}((g \cdot v)^n \otimes w) = n \mu(g \cdot v) + \mu(w) = n \mu(g \cdot v) - \lambda.
$$

8/22

 $\alpha\in\Delta(\overline{G\cdot x})$ if and only if $0\in\Delta(\mathit{G}\cdot((g\cdot v)^{n}\otimes w))$ for some $g \in G$ (generic suffices).

Properties of $\Delta(T)$

Theorem $\Delta(T)$ is convex.

Proof.

Use semigroup property of $S(T)$: Let $\alpha = \lambda/n$, $\beta = \mu/m \in \Delta(T)$ with λ, μ highest weights. Pick highest weight vectors $v_{\lambda} \in \mathbb{C}[V]_n$ and $v_{\mu} \in \mathbb{C}[V]_m$, not identically zero on orbit of $\mathcal{T}.$ Then $v_\lambda^m\cdot v_\mu^n$ is a highest weight vector in $\mathbb{C}[V]_{2mn}$ with weight $m\lambda + n\mu$, and hence

$$
\frac{m\lambda+n\mu}{2mn}=\frac{\alpha+\beta}{2}\in \Delta(\mathcal{T}).
$$

Properties of $\Delta(T)$

Theorem

 $\Delta(T)$ is a (rational) polytope, i.e., defined by finitely many linear (rational) inequalities; equivalently, it has finitely many (rational) extreme points.

Proof.

 $S(T)$ is a finitely generated semigroup, see Derksen–Kemper's Computational Invariant Theory, section 4.2.

An example: $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$

Let
$$
V = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2
$$
 and $G = GL_2^3$ acting via
\n
$$
(g_1, g_2, g_3) \cdot v = (g_1 \otimes g_2 \otimes g_3)v
$$

There are only **finitely** many orbits (6):

- ▶ $e_1 \otimes e_1 \otimes e_1$ (product state),
- ▶ $e_1 \otimes e_1 \otimes e_2 + e_1 \otimes e_2 \otimes e_2$ and its permutations (maximally entangled pairs),
- ▶ $e_1 \otimes e_1 \otimes e_2 + e_1 \otimes e_2 \otimes e_1 + e_2 \otimes e_1 \otimes e_1$ (W-state),
- ▶ $e_1 \otimes e_1 \otimes e_1 + e_2 \otimes e_2 \otimes e_2$ (GHZ-state, generic),

GHZ-state polytope

W-state polytope

Interpreting generic tensor polytopes

Let
$$
G = GL_a \times GL_b \times GL_c
$$
 act on $V = \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^b$. Then
\n
$$
\Delta(\mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c) = \left\{ \frac{1}{n} (\lambda, \mu, \nu) : g(\lambda, \mu, \nu) \neq 0 \right\}
$$

where $\lambda, \mu, \nu \vdash n$ are partitions of *n* into at most $a/b/c$ parts respectively,

 $g(\lambda, \mu, \nu)$ are the **Kronecker** coefficients for S_n , i.e., S_ν appears as subrep of $S_\lambda \otimes S_\mu$. (See Christian's talk on Schur–Weyl duality!)

So the polytope captures some (asymptotic) non-vanishing Kronecker coefficients, which are notoriously hard to compute! ∆(V) described by Klyachko, Berenstein–Sjamaar using Schubert calculus, but hard to make explicit!

Walter–Vergne computed explicitly up to $(a, b, c) = (4, 4, 4)$, (3, 3, 9), (2, 4, 8), (2, 2, 3, 12), using a more practical version of a method due to Ressayre.

Taken from Michael Walter's moment_polytopes package:

Vertices

.

15/22

How to compute them?

Different approaches:

- \triangleright Completely understand $S(T)$ (or even the ring of covariants $\mathbb{C}[V]^{U}$). Carried out for "small" examples around 1900 (Sylvester–Franklin, Hilbert, . . .) (with some more recent progress), but very impractical!
- ▶ Special cases (e.g. Littlewood–Richardson or Kronecker polytope): recursive and combinatorially difficult.
- ▶ Ressayre's method: non-Weyl-chamber facets of $\Delta(V)$ correspond to admissible well-covering pairs.
- ▶ Scaling: can test if specific $p \in \Delta(T)$. Not always efficient (theoretically), but practically tractable. Unclear how to use to give **complete** description of $\Delta(T)$.
- ▶ Combinatorial description due to Franz.

Franz's description of $\Delta(X)$

Let X be a G-closed subvariety of $\mathbb{P}(V)$.

Write $V = \bigoplus_{\omega \in \Omega} V_{\omega}$ for the weight decomposition of V and define for $v \in V$.

$$
\text{supp } v = \{ \omega \in \Omega : v_{\omega} \neq 0 \}.
$$

For $x = [v] \in X$, define the **Borel polytope**

$$
P(x) = \bigcap_{u \in U^-} \operatorname{conv} \operatorname{supp}(u \cdot v) \cap \mathfrak{t}_+^*.
$$

Theorem (Franz)

 $\Delta(X) \supset P(x)$, with equality for generic $x \in X$. Proof relies heavily on the shifting trick.

Franz's description made practical

This yields an **algorithm** for computing $\Delta(X)$!

- ▶ Pick a generic $x = [v] \in X$.
- ► Initialize $\Delta = \text{conv} \operatorname{supp} v \cap \mathfrak{t}^*_+$.
- \blacktriangleright For every $S \subseteq \Omega$:
	- ▶ Determine if there exists some $u \in U^-$ such that $supp(u \cdot v) \subseteq S$.
	- ▶ If yes, update $\Delta = \Delta \cap \text{conv } S$.

Observation

The question "is there $u \in U^-$ such that $\mathsf{supp}(u \cdot v) \subseteq S$ " is asking whether the polynomial system

$$
(u\cdot v)_{\omega}=0,\quad \omega\in\Omega\setminus S
$$

has a solution in u ! Can be solved using Gröbner bases.

Franz's description made practical

With many tricks, this can be made practical. Naively, need to check $2|\Omega|$ polynomial systems!

Ongoing work w/ van den Berg, Christandl, Lysikov, Walter and Zuiddam (and a lot of CPU hours):

determined complete set of vertices/inequalities of polytopes for

- ▶ all $v \in \mathbb{C}^3 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$ under $\mathrm{GL}(3)^3$ -action,
- ▶ interesting tensors in $\mathbb{C}^4 \otimes \mathbb{C}^4 \otimes \mathbb{C}^4$ under $\mathrm{GL}(4)^3$ -action (e.g. the 2×2 -matrix multiplication tensor),
- ▶ $v \in \text{Sym}^k(\mathbb{C}^d)$ for small k, d , e.g. $k=3$ and $d=4 \leftrightarrow$ cubic surfaces in \mathbb{P}^3 ,
- ▶ 3- and 4-dimensional algebras.

Asymptotic spectrum of tensors

As we saw in Itai's talk:

Theorem (Strassen)

 $\tilde{R}(T) = \sup_{\omega} \varphi(T)$, $\tilde{Q}(T) = \inf_{\varphi} \varphi(T)$, where φ are spectral points (points in the asymptotic spectrum of tensors).

Recall that φ are $\mathbb{R}_{\geq 0}$ -valued functions on tensors such that

$$
\blacktriangleright \varphi(\langle r \rangle) = r \text{ (normalization)},
$$

$$
\blacktriangleright \varphi(T \oplus S) = \varphi(T) + \varphi(S),
$$

$$
\blacktriangleright \varphi(T \boxtimes S) = \varphi(T)\varphi(S),
$$

$$
\blacktriangleright \varphi(S) \ge \varphi(T) \text{ when } S \text{ restricts to } T.
$$

Basic examples: flattening ranks, but these cannot be all.

Quantum functionals

Only other points in asymptotic spectrum we know are due to Christandl–Vrana–Zuiddam: for θ a probability distribution on ${1, 2, 3}$, we define

$$
E_{\theta}(T) = \sup_{(p_1,p_2,p_3)\in\Delta(T)} \sum_{i=1}^3 \theta_i H(p_i).
$$

Then $F_{\theta} = 2^{E_{\theta}}$ is a universal spectral point. Can prove this using properties of moment polytopes, and connection to Kronecker coefficients.

If we had efficient membership testing for $\Delta(T)$, we could compute F_{θ} efficiently!

Outlook

Interesting open questions:

- ▶ Efficient (polynomial-time) algorithms for membership in $\Delta(X)$?
- \blacktriangleright Efficiently verifiable certificates for inequalities for $\Delta(X)$?
- ▶ How big of a representation can compute the polytopes for?
- ▶ Interpretation of $\Delta(X)$, e.g. for cubic surfaces? Know they can be quite non-trivial for cubic surfaces with special singularities.
- ▶ Asymptotic properties: $\Delta(x^{\boxtimes n})$ for tensors $x\in \mathbb{C}^d\otimes \mathbb{C}^d\otimes \mathbb{C}^d$ and big n?

Thank you!