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Noisy Intermediate-Scale Quantum computing

Today’s quantum computers are:

Noisy: they experience fairly significant errors, uncorrected by quantum
error-correction
Intermediate-Scale: they are at or beyond the capacity of classical computing
to simulate, but not large enough to implement full fault-tolerance (say
50-1000 qubits)

Preskill (2018) coined the acronym NISQ for this era of quantum computing.

What can we do in the NISQ era?

With an error rate of 0.005 per 2-qubit gate (as achieved e.g. by Google’s
quantum hardware), 1000 gates =⇒ Pr[no error] = 0.007
Breaking RSA-2048: 2.7× 109 Toffoli gates [Gidney and Ekera ’19]

To bridge this gap we need different applications and error mitigation.



Variational quantum algorithms

One of the most prominent families of quantum algorithms in the NISQ era is
variational algorithms.

These algorithms optimise over a family of quantum circuits to solve a problem.



The variational quantum eigensolver [Peruzzo et al ’14]

VQE is an approach to find the ground state of a quantum Hamiltonian H.

Based on the variational principle of quantum mechanics: for all states |ψ〉,

〈ψ|H|ψ〉 > E0

where E0 is the ground energy of H.

So if we optimise over quantum circuits from some family (variational
ansatz) to produce states |ψ〉, the lowest energy found is an upper bound on
E0.

We also hope that |ψ〉 is a good approximation to the ground state itself.

We use the quantum computer to produce energies 〈ψ|H|ψ〉 and a classical
optimisation loop to optimise over parameters of the quantum circuit.



The variational quantum eigensolver [Peruzzo et al, 2014]

This overall framework leaves a lot of questions open:

What is a good family of circuits to optimise over?

How can we efficiently measure the energy of |ψ〉 with respect to H?

What is a good method to optimise over the variational ansatz?

How best to represent H on the quantum computer in the first place?

The art of a variational quantum algorithm designer is answering these questions.



Encoding the Hamiltonian onto a quantum computer

Various families of quantum Hamiltonians are particularly interesting:

k-local Hamiltonians: H =
∑

i Hi, and each Hi acts nontrivially on 6 k qubits
e.g. Ising model H =

∑
〈i,j〉 ZiZj, Heisenberg model H =

∑
〈i,j〉XiXj + YiYj + ZiZj

Fermionic Hamiltonians (e.g. molecules):

H =
∑

i,j

hija
†
i aj +

∑
i,j,k,l

hijkla
†
i aja
†
kal

Here a†i , ai are fermionic creation and annihilation operators, which can be
represented on a quantum computer by (e.g.) the Jordan-Wigner transform:

a†i 7→ Z1 ⊗ Z2 ⊗ · · · ⊗ Zi−1 ⊗ |1〉〈0|, ai 7→ Z1 ⊗ Z2 ⊗ · · · ⊗ Zi−1 ⊗ |0〉〈1|



Some variational ansätze
A variational ansatz (quantum circuit family) usually consists of a quantum
circuit with a certain structure, where some of the gates are parametrised by real
numbers.

For example, a hardware-efficient ansatz (e.g. [Kandala et al 2017]):
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Some variational ansätze

Some ansätze are targeted at quantum simulation. For example the Hamiltonian
Variational ansatz [Wecker et al ’15]:

Assume that:
we want to find the ground state of H =

∑
j Hj

we can write H = HA + HB

we have an efficient quantum algorithm for preparing the ground state of
HA.

Then:

1 Prepare the ground state of HA

2 For each of L layers l, implement
∏

k eitlkHk for some times tlk ∈ R

Intuition for this comes from the quantum adiabatic theorem: as L→∞, this
ansatz provably can represent the ground state of H.



Energy measurements

To apply the VQE framework, we need to measure energies Eψ = 〈ψ|H|ψ〉.

If we can write H =
∑

j Hj for some “simple” terms Hj (for example, Pauli
matrices) we can measure Ej := 〈ψ|Hj|ψ〉 for each j and compute the overall
energy as a sum

Computing Ej ± ε can be achieved using O(1/ε2) measurements

Terms that commute can be measured simultaneously, which can reduce the
complexity substantially (e.g. diagonal terms can be measured in the
computational basis)

Many works have looked at optimising measurement strategies, e.g. [Crawford et al
’21, Gokhale et al ’19, Bonet-Monroig et al ’20]



Classical optimiser

A key ingredient in the VQE loop is the classical numerical optimiser used to
minimise the energy. This has to satisfy some desiderata:

Ability to cope with noisy energy measurements
(Ideally) no need for gradient information

Many optimisers have been used, e.g.:

SPSA (Simultaneous Perturbation Stochastic Approximation) [Spall ’92]:
evaluate the energy in a random line at the current position, and go downhill
Model Gradient Descent [Sung et al ’20]: fit a quadratic model around the
current parameters and minimise it (BayesMGD [Stanisic et al ’21]: use Bayes’
rule to maintain uncertainty in model; analytic descent [Koczor and Benjamin
’22]: use the particular form of energies)
Coordinate Descent (sequential minimal optimisation [Nakanishi et al ’20],
Rotosolve [Ostaszewski et al ’21], Jacobi diagonalisation [Parrish et al ’19])



Energies as trigonometric polynomials

Assume variational gates are of the form eiθA, λj(A) ∈ {−M, . . . ,M}.
Then the energy E(θ) is of the form

〈ψ|e−iθAV†HVeiθA|ψ〉 =
∑

j,k∈{−M,...,M}

eiθ(j−k)〈ψ|PkV†HVPj|ψ〉 =
∑

l∈{−2M,...,2M}

eilθwl

which is a trigonometric polynomial in θ of degree 2M.
So it can be determined completely by evaluating it at 4M + 1 points and
then (e.g.) minimised directly! (Coordinate descent)
For the special case of Pauli matrices A:

E(θ) = e−2iθw−2 + w0 + e2iθw2,
dE
dθ

= −2ie−2iθw−2 + 2ie2iθw2

so we can, for example, find dE
dθ by computing E(±π/4) to learn w±2 (the

parameter shift rule)



The quantum approximate optimisation algorithm [Farhi et al ’14]

We can apply the VQE framework to solve classical optimisation problems by
setting

H =
∑

x∈{0,1}n

C(x)|x〉〈x|

where C(x) is a cost function. The ground state of H is then the lowest-cost x.

[Farhi et al ’14] proposed the following variational method to find the ground state:

1 Start with |+n〉
2 Apply eiγH

3 Apply eiβ
∑

j Xj

Repeat steps 2 and 3 (with different parameters) p times. Then optimise over the
parameters β1, . . . ,βp, γ1, . . . ,γp.



Notes on QAOA

Why should we imagine that QAOA works?
Intuition from the adiabatic theorem:

1 We start in the ground state of HA := −
∑

j Xj and want to get to the ground
state of HB := H

2 If we smoothly change HA → HB slowly enough, we remain in the ground state
3 Discretising this process gives terms of the form eiθHA , eiθHB

4 So if we take large enough p, QAOA can find the ground state of H.

QAOA essentially encompasses Grover’s search algorithm [Jiang et al ’17]:
1 Let H correspond to unstructured search (everything has cost 1 except the

marked item, which has cost 0)
2 The mixer term eiβ

∑
j Xj is analogous to the Grover diffusion operator

An essentially identical algorithm (without the classical optimisation step) was
developed by [Hogg ’00]



Applying QAOA to MAX-CUT
A particularly simple example of a combinatorial optimisation problem where
QAOA can be applied is MAX-CUT.

We are given a graph G = (V,E) with n vertices and asked to find a cut
(partition of the vertices into sets A and B) that maximises the number of
edges across the cut

To map this to a Hamiltonian:
Let x ∈ {0, 1}n correspond to a cut (xi = 1⇔ i ∈ B)
Define

Cij(x) =

{
1 if xi = xj

0 if xi 6= xj

and set C(x) =
∑

(i,j)∈E Cij(x)
We have 〈x|ZiZj|x〉 = 2Cij(x) − 1. So set

H =
∑

(i,j)∈E

ZiZj



Performance of QAOA for MAX-CUT

Easy to implement – all operations are 2-qubit gates, all terms in H commute

Provable bounds on the approximation ratio (e.g. p = 1, 3-regular graphs: cut
∼ 0.69x size of optimal cut)

Numerical evaluation on random graphs for large enough p outperforms the
classical Goemans-Williamson algorithm [Crooks ’18]

. . . but for some graphs, choosing p = O(1) cannot outperform
Goemans-Williamson [Bravyi et al ’19]

Provably hard to simulate on a classical computer (subject to computational
complexity assumptions) [Farhi and Harrow ’16]



Some variants of QAOA

Recursive QAOA (RQAOA) [Bravyi et al ’19]:
1 Run QAOA
2 Measure correlations 〈ZiZj〉 in the output state
3 Find the maximally correlated pair of bits and fix one of them
4 Recursively solve the resulting problem on n − 1 bits.

Warm start QAOA [Egger et al ’21]:
1 Run another algorithm to produce an initial (product) distribution on x ∈ {0, 1}n
2 Use the corresponding distribution as initial state for QAOA instead of |+〉⊗n.



Challenges for variational quantum algorithms

Lack of theoretical justification for performance

Difficulty of training
NP-hard to find optimal variational parameters for a quantum circuit, even for
problems which are efficiently solvable classically [Bittel and Kliesch ’21]
(Actually worse than this: QCMA-hard to find optimal parameters for VQE)
VQE iterations on real hardware can be slow (round trip to cloud⇒ each
iteration may take seconds)
Barren plateaus

Difficulty of finding a good variational ansatz

Complexity of actually implementing variational ansatz on hardware



Barren plateaus [McClean et al ’18]

For most input parameters, and a sufficiently expressive variational ansatz,
function values are exponentially close to their mean:

If we have a truly random state |ψ〉 ∈ C2n
, and trH = 0, trH2 = O(m2n) then

µ :=

∫
〈ψ|H|ψ〉dψ = trH

∫
|ψ〉〈ψ|dψ =

trH
2n = 0

and∫
(〈ψ|H|ψ〉− µ)2 dψ =

∫
〈ψ|H|ψ〉2dψ = trH⊗2

∫
|ψ〉〈ψ|⊗2dψ = trH⊗2

(
I + F

2n(2n + 1)

)
and the latter quantity is O(trH2/22n) = O(m2−n).



Barren plateaus 2 [McClean et al ’18]

Imagine we have a family of states |ψ〉 which forms an (approximate)
2-design:

E|ψ〉∼D
[
|ψ〉〈ψ|⊗2] ≈ ∫ |ψ〉〈ψ|⊗2dψ

Then
Var(E) = E|ψ〉∼D (〈ψ|H|ψ〉− µ)2 = O(m2−n).

So for “most” portions of the parameter space, the energy is exponentially
close to 0.

Many “hardware efficient” ansätze form approximate 2-designs.

Similar statements can be shown for gradients and other relevant quantities.



Concrete estimates for VQE complexities

How complicated a circuit do we need to solve post-classical problems?

5× 5 Fermi-Hubbard model: may be able to represent the ground state using
a variational ansatz with circuit depth several hundred 2-qubit gates [Cade et
al ’20]

Antiferromagnetic Heisenberg model on the Kagome lattice with 50 qubits:
2-qubit gate circuit depth < 200 [Bosse and AM ’21, Kattemölle and van Wezel ’21]

One layer of QAOA for the Sherrington-Kirkpatrick model on n vertices
(MAX-CUT on the complete graph): 2-qubit gate depth ∼ n.

Characteristics of the hardware are important, e.g. gate topology, clock speed.



Some implementations on quantum hardware

Problem Ansatz Platform Size Reference
He-H+ UCC Optics 2 qubits [Peruzzo et al ’14]
BeH2 HEA IBM 6 qubits [Kandala et al ’18]

MAX-CUT QAOA Google 23 qubits [Harrigan et al ’20]
Hydrogen chain Hartree-Fock Google 12 qubits [Arute et al ’20]
Fermi-Hubbard HVA Google 16 qubits [Stanisic et al ’21]

These different implementations use varying optimisers and achieve varying
levels of accuracy. The most complex use 100–200 2-qubit gates.

Many smaller-scale implementations of QAOA have been run.



Error mitigation

In the NISQ world, we don’t have access to full fault-tolerance. However, we can
improve the performance of our quantum hardware by error mitigation.

Assume that we want to estimate a := trAρ, where ρ is the desired state
produced by the quantum circuit.

Some techniques that have been developed to improve accuracy of ã ≈ a:

Zero-noise extrapolation [Temme et al ’17]: compute ã1, . . . , ãn with different
noise rates, and extrapolate the results to noise rate 0

Probabilistic error cancellation [Temme et al ’17]: expand an ideal quantum
circuit as a linear combination of noisy quantum circuits

Virtual distillation [Huggins et al ’21, Koczor ’21]: produce M copies of ρ̃, and use
these to compute tr(Aρ̃M)/ tr(ρ̃M)



Error mitigation (2)

Error mitigation by training [Czarnik et al ’20, AM and Stanisic ’21]: use a family of
quantum circuits which can be simulated efficiently classically to infer a map
trAρ̃ 7→ trAρ

Readout noise inversion (e.g. [Kandala et al ’17, Maciejewski et al ’20]): handle
measurement errors by learning the noise map and inverting it

Dynamical decoupling (e.g. [Pokharel et al ’18]): add a sequence of single-qubit
gates designed to cancel out errors from interaction between the system and
a bath

Postselection on a symmetry (e.g. [Cade et al ’20]): discard runs where a
property which should hold is violated

. . . and more! VQE may also experience a level of inherent noise tolerance.



Summary and future directions

Variational quantum algorithms are an intriguing way to push the limits of
near-term quantum hardware.
A lot of interesting proposals have been developed, but much more remains
to be done

Some interesting future directions:
More convincing evidence that QAOA etc could outperform classical algs
Find better theoretical justification for the performance and trainability of
variational algorithms
Develop better classical optimisers
Evade the known barriers to variational algorithms working
Design new error mitigation schemes
Find NISQ algorithms directly and render variational algorithms obsolete!


