Grand Unification of Quantum Algorithms

András Gilyén

Alfréd Rényi Institute of Mathematics Budapest, Hungary

Quantum Computing Summer School, Physikzentrum Bad Honnef, Germany 2022 August 14-19

Quantum algorithm design

Quantum algorithm design

Many quantum algorithms have a common structure!

Motivating example - the quantum matrix inversion (HHL) algorithm

We want to solve large systems of linear equations

Ax = b.

A quantum computer can nicely work with exponential sized matrices! Given $|b\rangle$, we can prepare a solution $\propto A^{-1}|b\rangle$.

Motivating example - the quantum matrix inversion (HHL) algorithm

We want to solve large systems of linear equations

Ax = b.

A quantum computer can nicely work with exponential sized matrices! Given $|b\rangle$, we can prepare a solution $\propto A^{-1}|b\rangle$.

Matrix arithmetic on a quantum computer using block-encoding

Input matrix : A; Implementation : $U = \begin{bmatrix} A & . \\ . & . \end{bmatrix}$; Algorithm : $U' = \begin{bmatrix} f(A) & . \\ . & . \end{bmatrix}$.

In HHL $f(x) = \frac{1}{x}$. Use Singular Value Transformation to approximate it!

Motivating example - the quantum matrix inversion (HHL) algorithm

We want to solve large systems of linear equations

Ax = b.

A quantum computer can nicely work with exponential sized matrices! Given $|b\rangle$, we can prepare a solution $\propto A^{-1}|b\rangle$.

Matrix arithmetic on a quantum computer using block-encoding

Input matrix : A; Implementation : $U = \begin{bmatrix} A & . \\ . & . \end{bmatrix}$; Algorithm : $U' = \begin{bmatrix} f(A) & . \\ . & . \end{bmatrix}$.

In HHL $f(x) = \frac{1}{x}$. Use Singular Value Transformation to approximate it!

More examples

- Optimal Hamiltonian simulation [Low et al.], quantum walks [Szegedy]
- ▶ Fixed point [Yoder et al.] and oblivious amplitude amplification [Berry et al.]
- HHL, regression [Chakraborty et al.], SDPs & LPs [Brandão et al.], ML [Kerendis et al.]

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \iff A = (\langle 0 |^a \otimes I) U (| 0 \rangle^a \otimes I).$$

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I) U (| 0 \rangle^a \otimes I).$$

Any complex matrix A with operator norm $||A|| \le 1$ can be block-encoded.

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \iff A = (\langle 0 |^a \otimes I) U (| 0 \rangle^a \otimes I).$$

Any complex matrix A with operator norm $||A|| \le 1$ can be block-encoded.

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \iff A = (\langle 0 |^a \otimes I \rangle U (|0\rangle^a \otimes I).$$

Any complex matrix A with operator norm $||A|| \le 1$ can be block-encoded.

One can efficiently construct block-encodings of

• an efficiently implementable unitary U,

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I \rangle U (|0\rangle^a \otimes I).$$

Any complex matrix A with operator norm $||A|| \le 1$ can be block-encoded.

- an efficiently implementable unitary U,
- a sparse matrix with efficiently computable elements,

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \iff A = (\langle 0 |^a \otimes I \rangle U (|0\rangle^a \otimes I).$$

Any complex matrix A with operator norm $||A|| \le 1$ can be block-encoded.

- an efficiently implementable unitary U,
- a sparse matrix with efficiently computable elements,
- a matrix stored in a clever data-structure in a QRAM,

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \iff A = (\langle 0 |^a \otimes I \rangle U (|0\rangle^a \otimes I).$$

Any complex matrix A with operator norm $||A|| \le 1$ can be block-encoded.

- an efficiently implementable unitary U,
- a sparse matrix with efficiently computable elements,
- a matrix stored in a clever data-structure in a QRAM,
- a density operator ρ given a unitary preparing its purification.

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} \iff A = (\langle 0 |^a \otimes I \rangle U (|0\rangle^a \otimes I).$$

Any complex matrix A with operator norm $||A|| \le 1$ can be block-encoded.

- an efficiently implementable unitary U,
- a sparse matrix with efficiently computable elements,
- a matrix stored in a clever data-structure in a QRAM,
- a density operator ρ given a unitary preparing its purification.
- a POVM operator M given we can sample from the rand.var.: $Tr(\rho M)$,

Suppose that \overline{A} is *s*-sparse and $|A_{ij}| \le 1$ for all *i*, *j* indices.

Suppose that *A* is *s*-sparse and $|A_{ij}| \le 1$ for all *i*, *j* indices. Given "sparse-access" we can efficiently implement unitaries preparing "rows"

Suppose that *A* is *s*-sparse and $|A_{ij}| \le 1$ for all *i*, *j* indices. Given "sparse-access" we can efficiently implement unitaries preparing "rows"

$$R: |0\rangle|0\rangle|i
angle
ightarrow |0
angle \sum_{k} rac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}}|i
angle|k
angle + |1
angle|i
angle$$
garbage $angle$,

Suppose that *A* is *s*-sparse and $|A_{ij}| \le 1$ for all *i*, *j* indices. Given "sparse-access" we can efficiently implement unitaries preparing "rows"

$$R: |0\rangle|0\rangle|i
angle
ightarrow |0
angle \sum_{k} rac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}}|i
angle|k
angle + |1
angle|i
angle|$$
garbage $angle$,

and "columns"

$$C: |0\rangle|0\rangle|j
angle
ightarrow |0
angle \sum_{\ell} rac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell\rangle|j
angle + |2
angle|j
angle$$
garbage

Suppose that A is *s*-sparse and $|A_{ij}| \le 1$ for all *i*, *j* indices. Given "sparse-access" we can efficiently implement unitaries preparing "rows"

$$R: |0\rangle|0\rangle|i
angle
ightarrow |0
angle \sum_{k} rac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}}|i
angle|k
angle + |1
angle|i
angle|garbage
angle,$$

and "columns"

$$C: |0
angle|0
angle |j
angle
ightarrow |0
angle \sum_{\ell} rac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell
angle |j
angle + |2
angle |j
angle | ext{garbage}
angle,$$

They form a block-encoding of A/s:

 $\langle 0|\langle 0|\langle i|R^{\dagger}C|0\rangle|0\rangle|j\rangle$

Suppose that A is s-sparse and $|A_{ij}| \le 1$ for all *i*, *j* indices. Given "sparse-access" we can efficiently implement unitaries preparing "rows"

$$R: |0
angle|0
angle|i
angle
ightarrow |0
angle \sum_{k} rac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}}|i
angle|k
angle + |1
angle|i
angle$$
garbage $angle$,

and "columns"

$$C: |0
angle|0
angle |j
angle
ightarrow |0
angle \sum_{\ell} rac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell
angle |j
angle + |2
angle |j
angle |garbage
angle,$$

They form a block-encoding of A/s:

 $\overline{\langle 0|\langle 0|\langle i|R^{\dagger}\overline{C}|0
angle|0
angle|j
angle=ig(R|0
angle|0
angle|i
angleig)^{\dagger}\cdotig(C|0
angle|0
angle|j
angleig)}$

Suppose that A is *s*-sparse and $|A_{ij}| \le 1$ for all *i*, *j* indices. Given "sparse-access" we can efficiently implement unitaries preparing "rows"

$$R: |0\rangle|0\rangle|i
angle
ightarrow |0
angle \sum_{k} rac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}}|i
angle|k
angle + |1
angle|i
angle|$$
garbage $angle$,

and "columns"

$$C: |0
angle|0
angle|j
angle
ightarrow |0
angle \sum_{\ell} rac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell
angle|j
angle + |2
angle|j
angle|$$
garbage $angle$,

They form a block-encoding of A/s:

$$\langle 0|\langle 0|\langle i|R^{\dagger}C|0\rangle|0\rangle|j\rangle = (R|0\rangle|0\rangle|i\rangle)^{\dagger} \cdot (C|0\rangle|0\rangle|j\rangle) = \left(\sum_{k} \frac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}}|i\rangle|k\rangle\right)^{\dagger} \left(\sum_{\ell} \frac{\sqrt{A_{\ell j}}}{\sqrt{s}}|\ell\rangle|j\rangle\right)$$

Suppose that A is *s*-sparse and $|A_{ij}| \le 1$ for all *i*, *j* indices. Given "sparse-access" we can efficiently implement unitaries preparing "rows"

$$R: |0\rangle|0\rangle|i
angle
ightarrow |0
angle \sum_{k} rac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}}|i
angle|k
angle + |1
angle|i
angle$$
garbage $angle$,

and "columns"

$$C: |0\rangle|0\rangle|j
angle
ightarrow |0
angle \sum_{\ell} rac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell\rangle|j
angle + |2
angle|j
angle|$$
garbage $angle$,

They form a block-encoding of A/s:

$$\langle 0|\langle 0|\langle i|R^{\dagger}C|0\rangle|0\rangle|j\rangle = (R|0\rangle|0\rangle|i\rangle)^{\dagger} \cdot (C|0\rangle|0\rangle|j\rangle) = \left(\sum_{k} \frac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}}|i\rangle|k\rangle\right)^{\dagger} \left(\sum_{\ell} \frac{\sqrt{A_{\ell j}}}{\sqrt{s}}|\ell\rangle|j\rangle\right) = \frac{A_{ij}}{s}$$

Implementing arithmetic operations on block-encoded matrices

• Given block-encodings A_i we can implement convex combinations.

Implementing arithmetic operations on block-encoded matrices

- Given block-encodings A_i we can implement convex combinations.
- ► Given block-encodings *A*, *B* we can implement block-encoding of *AB*.

Implementing arithmetic operations on block-encoded matrices

- Given block-encodings A_i we can implement convex combinations.
- ► Given block-encodings *A*, *B* we can implement block-encoding of *AB*.

Linear combination of (non-)unitary matrices [Childs and Wiebe '12, Berry et al. '15] Suppose that $U = \sum_{i} |i \rangle \langle i| \otimes U_i$, and $P : |0\rangle \mapsto \sum_{i} \sqrt{p_i} |i\rangle$ for $p_i \in [0, 1]$.

Implementing arithmetic operations on block-encoded matrices

- Given block-encodings A_i we can implement convex combinations.
- ► Given block-encodings *A*, *B* we can implement block-encoding of *AB*.

Linear combination of (non-)unitary matrices [Childs and Wiebe '12, Berry et al. '15]

Suppose that $U = \sum_i |i| \langle i| \otimes U_i$, and $P : |0\rangle \mapsto \sum_i \sqrt{p_i} |i\rangle$ for $p_i \in [0, 1]$. Then $(P^{\dagger} \otimes I) U(P \otimes I)$ is a block-encoding of $\sum_i p_i U_i$.

Implementing arithmetic operations on block-encoded matrices

- Given block-encodings A_i we can implement convex combinations.
- ► Given block-encodings *A*, *B* we can implement block-encoding of *AB*.

Linear combination of (non-)unitary matrices [Childs and Wiebe '12, Berry et al. '15]

Suppose that $U = \sum_i |i| \langle i| \otimes U_i$, and $P : |0\rangle \mapsto \sum_i \sqrt{p_i} |i\rangle$ for $p_i \in [0, 1]$. Then $(P^{\dagger} \otimes I)U(P \otimes I)$ is a block-encoding of $\sum_i p_i U_i$. In particular if $(\langle 0| \otimes I)U_i(|0\rangle \otimes I) = A_i$, then it is a block-encoding of

$$\sum_i p_i A_i$$

Our main theorem about QSVT

Let $\mathbf{P}: [-1,1] \rightarrow [-1,1]$ be a degree-*d* odd polynomial map.

Our main theorem about QSVT

Let $P: [-1,1] \rightarrow [-1,1]$ be a degree-d odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} = \begin{bmatrix} \sum_{i \in i} |w_i| \langle v_i| & . \\ . & . \end{bmatrix}$$

Our main theorem about QSVT

Let $P: [-1,1] \rightarrow [-1,1]$ be a degree-d odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} = \begin{bmatrix} \sum_{i \in i} |w_i| \langle v_i| & . \\ . & . \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i \in i} |P(\varsigma_i)| |w_i| \langle v_i| & . \\ . & . \end{bmatrix},$$

Our main theorem about QSVT

Let $P: [-1,1] \rightarrow [-1,1]$ be a degree-d odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} = \begin{bmatrix} \sum_{i \in i} |w_i \rangle \langle v_i| & . \\ . & . \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i \in i} |P(\varsigma_i)| |w_i \rangle \langle v_i| & . \\ . & . \end{bmatrix},$$

where $\Phi(\mathcal{P}) \in \mathbb{R}^d$ is efficiently computable and U_{Φ} is the following circuit:

Our main theorem about QSVT

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} = \begin{bmatrix} \sum_{i \in i} |w_i \rangle \langle v_i| & . \\ . & . \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i \in i} |P(\varsigma_i)| |w_i \rangle \langle v_i| & . \\ . & . \end{bmatrix},$$

where $\Phi(\mathcal{P}) \in \mathbb{R}^d$ is efficiently computable and U_{Φ} is the following circuit:

Alternating phase modulation sequence $U_{\Phi} :=$

Our main theorem about QSVT

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} = \begin{bmatrix} \sum_{i \in i} |w_i \rangle \langle v_i| & . \\ . & . \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i \in i} |P(\varsigma_i)| |w_i \rangle \langle v_i| & . \\ . & . \end{bmatrix},$$

where $\Phi(\mathcal{P}) \in \mathbb{R}^d$ is efficiently computable and U_{Φ} is the following circuit:

Alternating phase modulation sequence $U_{\Phi} :=$

Simmilar result holds for even polynomials.

Direct implementation of HHL / the pseudoinverse

Singular value decomposition and pseudoinverse

Suppose $A = W\Sigma V^{\dagger}$ is a singular value decomposition. Then the pseudoinverse of *A* is $A^{+} = V\Sigma^{+}W^{\dagger}$,
Singular value decomposition and pseudoinverse

Suppose $A = W\Sigma V^{\dagger}$ is a singular value decomposition. Then the pseudoinverse of *A* is $A^{+} = V\Sigma^{+}W^{\dagger}$, (note $A^{\dagger} = V\Sigma W^{\dagger}$) where Σ^{+} contains the inverses of the non-zero elements of Σ .

Singular value decomposition and pseudoinverse

Suppose $A = W\Sigma V^{\dagger}$ is a singular value decomposition. Then the pseudoinverse of *A* is $A^{+} = V\Sigma^{+}W^{\dagger}$, (note $A^{\dagger} = V\Sigma W^{\dagger}$) where Σ^{+} contains the inverses of the non-zero elements of Σ .

Singular value decomposition and pseudoinverse

Suppose $A = W\Sigma V^{\dagger}$ is a singular value decomposition. Then the pseudoinverse of *A* is $A^{+} = V\Sigma^{+}W^{\dagger}$, (note $A^{\dagger} = V\Sigma W^{\dagger}$) where Σ^{+} contains the inverses of the non-zero elements of Σ .

Singular value decomposition and pseudoinverse

Suppose $A = W\Sigma V^{\dagger}$ is a singular value decomposition. Then the pseudoinverse of *A* is $A^+ = V\Sigma^+ W^{\dagger}$, (note $A^{\dagger} = V\Sigma W^{\dagger}$) where Σ^+ contains the inverses of the non-zero elements of Σ .

Singular value decomposition and pseudoinverse

Suppose $A = W\Sigma V^{\dagger}$ is a singular value decomposition. Then the pseudoinverse of *A* is $A^{+} = V\Sigma^{+}W^{\dagger}$, (note $A^{\dagger} = V\Sigma W^{\dagger}$) where Σ^{+} contains the inverses of the non-zero elements of Σ .

Degree / complexity: $O\left(\kappa \log\left(\frac{1}{\varepsilon}\right)\right)$

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain *M* via a product of two reflection operators.

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two reflection operators. We can understand his algorithm as

Markov chain: *M*; Updates:
$$U = \begin{bmatrix} M & \cdot \\ \cdot & \cdot \end{bmatrix}$$
; Walk: $W^n = \begin{bmatrix} T_{2n}(M) & \cdot \\ \cdot & \cdot \end{bmatrix}$

(T_d is the *d*-th Chebyshev polynomial of the first kind.)

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two reflection operators. We can understand his algorithm as

Markov chain: *M*; Updates:
$$U = \begin{bmatrix} M & \cdot \\ \cdot & \cdot \end{bmatrix}$$
; Walk: $W^n = \begin{bmatrix} T_{2n}(M) & \cdot \\ \cdot & \cdot \end{bmatrix}$

(T_d is the *d*-th Chebyshev polynomial of the first kind.) If we choose $\phi_j = \frac{\pi}{2}$ for all $j \in \{1, ..., d\}$, we get $P = \pm T_d$ in QSVT.

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two reflection operators. We can understand his algorithm as

Markov chain: *M*; Updates:
$$U = \begin{bmatrix} M & \cdot \\ \cdot & \cdot \end{bmatrix}$$
; Walk: $W^n = \begin{bmatrix} T_{2n}(M) & \cdot \\ \cdot & \cdot \end{bmatrix}$

(T_d is the *d*-th Chebyshev polynomial of the first kind.) If we choose $\phi_j = \frac{\pi}{2}$ for all $j \in \{1, ..., d\}$, we get $P = \pm T_d$ in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two reflection operators. We can understand his algorithm as

Markov chain: *M*; Updates:
$$U = \begin{bmatrix} M & \cdot \\ \cdot & \cdot \end{bmatrix}$$
; Walk: $W^n = \begin{bmatrix} T_{2n}(M) & \cdot \\ \cdot & \cdot \end{bmatrix}$

(T_d is the *d*-th Chebyshev polynomial of the first kind.) If we choose $\phi_j = \frac{\pi}{2}$ for all $j \in \{1, ..., d\}$, we get $P = \pm T_d$ in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

Simulate *t* classical steps using $\propto \sqrt{t}$ quantum operations.

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two reflection operators. We can understand his algorithm as

Markov chain: M; Updates:
$$U = \begin{bmatrix} M & \cdot \\ & \cdot \end{bmatrix}$$
; Walk: $W^n = \begin{bmatrix} T_{2n}(M) & \cdot \\ & \cdot \end{bmatrix}$

(T_d is the *d*-th Chebyshev polynomial of the first kind.) If we choose $\phi_j = \frac{\pi}{2}$ for all $j \in \{1, ..., d\}$, we get $P = \pm T_d$ in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

Simulate *t* classical steps using $\propto \sqrt{t}$ quantum operations. I.e., implement

$$U' = \left[egin{array}{cc} \mathbf{M}^t & \cdot \ \cdot & \cdot \end{array}
ight].$$

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two reflection operators. We can understand his algorithm as

Markov chain: *M*; Updates:
$$U = \begin{bmatrix} M & \cdot \\ & \cdot \end{bmatrix}$$
; Walk: $W^n = \begin{bmatrix} T_{2n}(M) & \cdot \\ & \cdot \end{bmatrix}$

(T_d is the *d*-th Chebyshev polynomial of the first kind.) If we choose $\phi_j = \frac{\pi}{2}$ for all $j \in \{1, ..., d\}$, we get $P = \pm T_d$ in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

Simulate *t* classical steps using $\propto \sqrt{t}$ quantum operations. I.e., implement

$$U' = \left[egin{array}{cc} M^t & . \ . & . \end{array}
ight].$$

Proof: x^t can be ε -apx. on [-1, 1] with a degree- $\sqrt{2t \ln(2/\varepsilon)}$ polynomial.

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1,1] \rightarrow [-1,1]$ be a degree-*d* even/odd polynomial map.

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* even/odd polynomial map. If *H* is Hermitian, then P(H) coincides with the singular value transform.

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* even/odd polynomial map. If *H* is Hermitian, then P(H) coincides with the singular value transform.

Removing parity constraint for Hermitian matrices

Let $P: [-1, 1] \rightarrow [-\frac{1}{2}, \frac{1}{2}]$ be a degree-*d* polynomial map. Suppose that *U* is an *a*-qubit block-encoding of a Hermitian matrix *H*.

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* even/odd polynomial map. If *H* is Hermitian, then P(H) coincides with the singular value transform.

Removing parity constraint for Hermitian matrices

Let $P: [-1, 1] \rightarrow [-\frac{1}{2}, \frac{1}{2}]$ be a degree-*d* polynomial map. Suppose that *U* is an *a*-qubit block-encoding of a Hermitian matrix *H*. We can implement

$$U' = \begin{bmatrix} P(H) & . \\ . & . \end{bmatrix},$$

using d times U and U^{\dagger} , 1 controlled U, and O(ad) extra two-qubit gates.

Proof: let $P_{even}(x) := P(x) + P(-x)$ and $P_{odd}(x) := P(x) - P(-x)$ then

 $P(H) = \frac{1}{2}(P_{even}(H) + P_{odd}(H))$ implement using QSVT + LCU

Single qubit quantum control using σ_z phases?

Single qubit quantum control using σ_z phases?

$$R(x) := \begin{bmatrix} x & -\sqrt{1-x^2} \\ -\sqrt{1-x^2} & -x \end{bmatrix}; \quad e^{i\phi_0\sigma_z}R(x)e^{i\phi_1\sigma_z}\cdot\ldots\cdot R(x)e^{i\phi_d\sigma_z} = (*)?$$

Single qubit quantum control using σ_z phases?

$$R(x) := \begin{bmatrix} x & -\sqrt{1-x^2} \\ -\sqrt{1-x^2} & -x \end{bmatrix}; \quad e^{i\phi_0\sigma_z}R(x)e^{i\phi_1\sigma_z}\cdot\ldots\cdot R(x)e^{i\phi_d\sigma_z} = (*)?$$

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let $d \in \mathbb{N}$; for all $\Phi \in \mathbb{R}^{d+1}$ we have

$$(*) = i^d \left[\begin{array}{cc} P_{\mathbb{C}}(x) & Q_{\mathbb{C}}(x)i\sqrt{1-x^2} \\ Q_{\mathbb{C}}^*(x)i\sqrt{1-x^2} & P_{\mathbb{C}}^*(x) \end{array} \right],$$

where $P_{\mathbb{C}}, Q_{\mathbb{C}} \in \mathbb{C}[x]$ are such that

Single qubit quantum control using σ_z phases?

$$R(x) := \begin{bmatrix} x & -\sqrt{1-x^2} \\ -\sqrt{1-x^2} & -x \end{bmatrix}; \quad e^{i\phi_0\sigma_z}R(x)e^{i\phi_1\sigma_z}\cdot\ldots\cdot R(x)e^{i\phi_d\sigma_z} = (*)?$$

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let $d \in \mathbb{N}$; for all $\Phi \in \mathbb{R}^{d+1}$ we have

$$(*) = i^{d} \left[\begin{array}{cc} P_{\mathbb{C}}(x) & Q_{\mathbb{C}}(x)i\sqrt{1-x^2} \\ Q_{\mathbb{C}}^*(x)i\sqrt{1-x^2} & P_{\mathbb{C}}^*(x) \end{array} \right],$$

where $P_{\mathbb{C}}, Q_{\mathbb{C}} \in \mathbb{C}[x]$ are such that (i) $\deg(P_{\mathbb{C}}) \leq d$ and $\deg(Q_{\mathbb{C}}) \leq d - 1$, and

Single qubit quantum control using σ_z phases?

$$R(x) := \begin{bmatrix} x & -\sqrt{1-x^2} \\ -\sqrt{1-x^2} & -x \end{bmatrix}; \quad e^{i\phi_0\sigma_z}R(x)e^{i\phi_1\sigma_z}\cdot\ldots\cdot R(x)e^{i\phi_d\sigma_z} = (*)?$$

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let $d \in \mathbb{N}$; for all $\Phi \in \mathbb{R}^{d+1}$ we have

$$(*) = i^d \left[\begin{array}{cc} P_{\mathbb{C}}(x) & Q_{\mathbb{C}}(x)i\sqrt{1-x^2} \\ Q_{\mathbb{C}}^*(x)i\sqrt{1-x^2} & P_{\mathbb{C}}^*(x) \end{array} \right],$$

where $P_{\mathbb{C}}, Q_{\mathbb{C}} \in \mathbb{C}[x]$ are such that (i) $\deg(P_{\mathbb{C}}) \leq d$ and $\deg(Q_{\mathbb{C}}) \leq d - 1$, and (ii) $P_{\mathbb{C}}$ has parity- $(d \mod 2)$ and $Q_{\mathbb{C}}$ has parity- $(d - 1 \mod 2)$, and

Single qubit quantum control using σ_z phases?

$$R(x) := \begin{bmatrix} x & -\sqrt{1-x^2} \\ -\sqrt{1-x^2} & -x \end{bmatrix}; \quad e^{i\phi_0\sigma_z}R(x)e^{i\phi_1\sigma_z}\cdot\ldots\cdot R(x)e^{i\phi_d\sigma_z} = (*)?$$

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let $d \in \mathbb{N}$; for all $\Phi \in \mathbb{R}^{d+1}$ we have

$$(*) = i^{d} \begin{bmatrix} P_{\mathbb{C}}(x) & Q_{\mathbb{C}}(x)i\sqrt{1-x^2} \\ Q_{\mathbb{C}}^*(x)i\sqrt{1-x^2} & P_{\mathbb{C}}^*(x) \end{bmatrix},$$

where $P_{\mathbb{C}}, Q_{\mathbb{C}} \in \mathbb{C}[x]$ are such that

(i) $\deg(P_{\mathbb{C}}) \leq d$ and $\deg(Q_{\mathbb{C}}) \leq d - 1$, and

(ii) $P_{\mathbb{C}}$ has parity-(d mod 2) and $Q_{\mathbb{C}}$ has parity-(d - 1 mod 2), and

(iii) $\forall x \in [-1, 1]$: $|P_{\mathbb{C}}(x)|^2 + (1 - x^2)|Q_{\mathbb{C}}(x)|^2 = 1$.

Real quantum signal processing

Theorem: Focusing on the real part [Low, Yoder, Chuang (2016)]

Let $d \in \mathbb{N}$, and $P \in \mathbb{R}[x]$ be of degree *d*. There exists $\Phi \in \mathbb{R}^d$ such that

$$\prod_{j=1}^{d} \left(R(x) e^{i\phi_j \sigma_z} \right) = \begin{bmatrix} P_{\mathbb{C}}(x) & . \\ . & . \end{bmatrix},$$

where $\Re[P_{\mathbb{C}}] = P$ if and only if

Real quantum signal processing

Theorem: Focusing on the real part [Low, Yoder, Chuang (2016)]

Let $d \in \mathbb{N}$, and $P \in \mathbb{R}[x]$ be of degree *d*. There exists $\Phi \in \mathbb{R}^d$ such that

$$\prod_{j=1}^{d} \left(R(x) e^{i\phi_j \sigma_z} \right) = \begin{bmatrix} P_{\mathbb{C}}(x) & . \\ . & . \end{bmatrix},$$

where $\Re[P_{\mathbb{C}}] = P$ if and only if (i) *P* has parity-(*d* mod 2), and

Real quantum signal processing

Theorem: Focusing on the real part [Low, Yoder, Chuang (2016)]

Let $d \in \mathbb{N}$, and $P \in \mathbb{R}[x]$ be of degree d. There exists $\Phi \in \mathbb{R}^d$ such that

$$\prod_{j=1}^{d} \left(R(x) e^{i\phi_j \sigma_z} \right) = \begin{bmatrix} P_{\mathbb{C}}(x) & . \\ . & . \end{bmatrix},$$

where $\mathfrak{R}[P_{\mathbb{C}}] = P$ if and only if

- (i) P has parity-($d \mod 2$), and
- (ii) for all $x \in [-1, 1]$: $|P(x)| \le 1$.

Implementing the real part of a polynomial map

Direct implementation

$$-\underline{e^{i\phi_d\sigma_z}} - \underline{R(x)} - \underline{e^{i\phi_{d-1}\sigma_z}} - \cdots - \underline{R(x)} - \underline{e^{i\phi_0\sigma_z}} - = \begin{bmatrix} P_{\mathbb{C}}(x) & . \\ . & . \end{bmatrix}$$

Implementing the real part of a polynomial map

Direct implementation

$$-\underline{e^{i\phi_d\sigma_z}} - \underline{R(x)} - \underline{e^{i\phi_{d-1}\sigma_z}} - \cdots - \underline{R(x)} - \underline{e^{i\phi_0\sigma_z}} - = \begin{bmatrix} P_{\mathbb{C}}(x) & . \\ . & . \end{bmatrix}$$

Indirect implementation

Implementing the real part of a polynomial map

Direct implementation

$$-\underline{e^{i\phi_d\sigma_z}} - \underline{R(x)} - \underline{e^{i\phi_{d-1}\sigma_z}} - \cdots - \underline{R(x)} - \underline{e^{i\phi_0\sigma_z}} - = \begin{bmatrix} P_{\mathbb{C}}(x) & . \\ . & . \end{bmatrix}$$

Indirect implementation

Real implementation

1×1 case

Input:
$$\begin{bmatrix} x & . \\ . & . \end{bmatrix}$$
 Modulation: $\begin{bmatrix} e^{i\phi} & \\ & e^{-i\phi} \end{bmatrix}$ Output: $\begin{bmatrix} P(x) & . \\ . & . \end{bmatrix}$

1×1 case

Input:
$$\begin{bmatrix} x & . \\ . & . \end{bmatrix}$$
 Modulation: $\begin{bmatrix} e^{i\phi} & \\ & e^{-i\phi} \end{bmatrix}$ Output: $\begin{bmatrix} P(x) & . \\ . & . \end{bmatrix}$

2×2 case (higher-dimensional case is similar)

Input unitary	Modulation	Output circuit
x . . . y .	$\begin{bmatrix} e^{i\phi} & & \\ & e^{-i\phi} & \\ & & e^{i\phi} & \\ & & e^{-i\phi} \end{bmatrix}$	$\begin{bmatrix} P(x) & . & \\ . & . & \\ & P(y) & . \end{bmatrix}$

1×1 case

Input:
$$\begin{bmatrix} x & . \\ . & . \end{bmatrix}$$
 Modulation: $\begin{bmatrix} e^{i\phi} \\ e^{-i\phi} \end{bmatrix}$ Output: $\begin{bmatrix} P(x) & . \\ . & . \end{bmatrix}$

2×2 case (higher-dimensional case is similar)

1×1 case

Input:
$$\begin{bmatrix} x & . \\ . & . \end{bmatrix}$$
 Modulation: $\begin{bmatrix} e^{i\phi} & \\ & e^{-i\phi} \end{bmatrix}$ Output: $\begin{bmatrix} P(x) & . \\ . & . \end{bmatrix}$

2×2 case (higher-dimensional case is similar)

Fast QMA gap amplification [Marriott-Watrous'05] [Nagaj et al.'09]

The language class QMA

The language *L* belongs to the class QMA if for every input length |x| there exists a quantum verifier $V_{|x|}$, and numbers $0 \le b_{|x|} < a_{|x|} \le 1$ satisfying $\frac{1}{a_{|x|} - b_{|x|}} = O(\text{poly}(|x|))$, such that for all

- $x \in L$ there exists a witness $|\psi\rangle$ such that upon measuring the state $V_{|x|}|x\rangle|0\rangle^{m}|\psi\rangle$ the probability of finding the (|x| + 1)st qubit in state $|1\rangle$ has probability at least $a_{|x|}$,
- $x \notin L$ for any state $|\phi\rangle$ upon measuring the state $V_{|x|}|x\rangle|0\rangle^m|\phi\rangle$ the probability of finding the (|x|+1)st qubit in state $|1\rangle$ has probability at most $b_{|x|}$.

Fast QMA gap amplification [Marriott-Watrous'05] [Nagaj et al.'09]

The language class QMA

The language *L* belongs to the class QMA if for every input length |x| there exists a quantum verifier $V_{|x|}$, and numbers $0 \le b_{|x|} < a_{|x|} \le 1$ satisfying $\frac{1}{a_{|x|} - b_{|x|}} = O(\text{poly}(|x|))$, such that for all

- $x \in L$ there exists a witness $|\psi\rangle$ such that upon measuring the state $V_{|x|}|x\rangle|0\rangle^{m}|\psi\rangle$ the probability of finding the (|x| + 1)st qubit in state $|1\rangle$ has probability at least $a_{|x|}$,
- $x \notin L$ for any state $|\phi\rangle$ upon measuring the state $V_{|x|}|x\rangle|0\rangle^m|\phi\rangle$ the probability of finding the (|x|+1)st qubit in state $|1\rangle$ has probability at most $b_{|x|}$.

Fast QMA amplification [Nagaj et al.'09]

We can modify the verifier circuit $V_{|x|}$ such that the acceptance probability thresholds become

 $a' := 1 - \varepsilon$ and $b' := \varepsilon$ using singular value transformation of degree O

$$\frac{1}{\sqrt{a_{|x|}} - \sqrt{b_{|x|}}} \log\left(\frac{1}{\varepsilon}\right) \bigg).$$

Fast QMA gap amplification [Marriott-Watrous'05] [Nagaj et al.'09]

The language class QMA

The language *L* belongs to the class QMA if for every input length |x| there exists a quantum verifier $V_{|x|}$, and numbers $0 \le b_{|x|} < a_{|x|} \le 1$ satisfying $\frac{1}{a_{|x|} - b_{|x|}} = O(\text{poly}(|x|))$, such that for all

- $x \in L$ there exists a witness $|\psi\rangle$ such that upon measuring the state $V_{|x|}|x\rangle|0\rangle^{m}|\psi\rangle$ the probability of finding the (|x| + 1)st qubit in state $|1\rangle$ has probability at least $a_{|x|}$,
- $x \notin L$ for any state $|\phi\rangle$ upon measuring the state $V_{|x|}|x\rangle|0\rangle^{m}|\phi\rangle$ the probability of finding the (|x| + 1)st qubit in state $|1\rangle$ has probability at most $b_{|x|}$.

Fast QMA amplification [Nagaj et al.'09]

We can modify the verifier circuit $V_{|x|}$ such that the acceptance probability thresholds become

 $a' := 1 - \varepsilon$ and $b' := \varepsilon$ using singular value transformation of degree $O(-\varepsilon)$

$$\frac{1}{\sqrt{a_{|x|}} - \sqrt{b_{|x|}}} \log\left(\frac{1}{\varepsilon}\right) \bigg).$$

Observe that by the above definition

$$\forall x \in L : \left\| \left(\langle x | \otimes |1 \rangle \langle 1 | \otimes I_{n+m-1} \right) V \left(|x \rangle \otimes |0 \rangle \langle 0 |^{\otimes m} \otimes I_n \right) \right\| \ge \sqrt{a_{|x|}},$$

$$\forall x \notin L : \left\| \left(\langle x | \otimes |1 \rangle \langle 1 | \otimes I_{n+m-1} \right) V \left(|x \rangle \otimes |0 \rangle \langle 0 |^{\otimes m} \otimes I_n \right) \right\| \le \sqrt{b_{|x|}}.$$

Singular vector transformation and projection

Fixed-point and oblivious amplitude ampl. [Yoder et al., Berry et al.]

Amplitude amplification problem: Given U such that

$$|U|0
angle = \sqrt{p}|0
angle \left|\psi_{ ext{good}}
ight
angle + \sqrt{1-p}|1
angle |\psi_{ ext{bad}}
angle, \quad ext{prepare} \left|\psi_{ ext{good}}
ight
angle.$$
Fixed-point and oblivious amplitude ampl. [Yoder et al., Berry et al.]

Amplitude amplification problem: Given U such that

$$|U|0
angle = \sqrt{p}|0
angle |\psi_{good}
angle + \sqrt{1-p}|1
angle |\psi_{bad}
angle, \quad ext{prepare} |\psi_{good}
angle.$$

Note that $(|0\rangle\langle 0|\otimes I)U(|0\rangle\langle 0|) = \sqrt{p}|0, \psi_{good}\rangle\langle 0|$; we can apply QSVT.

Fixed-point and oblivious amplitude ampl. [Yoder et al., Berry et al.]

Amplitude amplification problem: Given U such that

$$|U|0
angle = \sqrt{p}|0
angle |\psi_{good}
angle + \sqrt{1-p}|1
angle |\psi_{bad}
angle, \quad ext{prepare} |\psi_{good}
angle.$$

Note that $(|0\rangle\langle 0| \otimes I)U(|0\rangle\langle 0|) = \sqrt{p}|0, \psi_{good}\rangle\langle 0|$; we can apply QSVT.

Generalization: Singular vector transformation

Given a unitary U, and projectors Π , Π , such that

$$A = \widetilde{\sqcap} U \Pi = \sum_{i=1}^{k} \varsigma_i |\phi_i \rangle \langle \psi_i$$

is a singular value decomposition.

Fixed-point and oblivious amplitude ampl. [Yoder et al., Berry et al.]

Amplitude amplification problem: Given U such that

$$|U|0
angle = \sqrt{p}|0
angle |\psi_{good}
angle + \sqrt{1-p}|1
angle |\psi_{bad}
angle, \quad ext{prepare} |\psi_{good}
angle.$$

Note that $(|0\rangle\langle 0| \otimes I)U(|0\rangle\langle 0|) = \sqrt{p}|0, \psi_{good}\rangle\langle 0|$; we can apply QSVT.

Generalization: Singular vector transformation

Given a unitary U, and projectors Π , Π , such that

$$A = \widetilde{\Pi} U \Pi = \sum_{i=1}^{\kappa} \varsigma_i |\phi_i \rangle \langle \psi_i |$$

is a singular value decomposition. Transform one copy of a quantum state

$$|\psi\rangle = \sum_{i=i}^{k} \alpha_i |\psi_i\rangle$$
 to $|\phi\rangle = \sum_{i=i}^{k} \alpha_i |\phi_i\rangle$

Fixed-point and oblivious amplitude ampl. [Yoder et al., Berry et al.]

Amplitude amplification problem: Given U such that

$$|U|0
angle = \sqrt{p}|0
angle |\psi_{good}
angle + \sqrt{1-p}|1
angle |\psi_{bad}
angle, \quad ext{prepare} |\psi_{good}
angle.$$

Note that $(|0\rangle\langle 0| \otimes I)U(|0\rangle\langle 0|) = \sqrt{p}|0, \psi_{good}\rangle\langle 0|$; we can apply QSVT.

Generalization: Singular vector transformation

Given a unitary U, and projectors Π , Π , such that

$$A = \widetilde{\Pi} U \Pi = \sum_{i=1}^{\kappa} \varsigma_i |\phi_i \rangle \langle \psi_i |$$

is a singular value decomposition. Transform one copy of a quantum state

$$|\psi\rangle = \sum_{i=i}^{k} \alpha_i |\psi_i\rangle$$
 to $|\phi\rangle = \sum_{i=i}^{k} \alpha_i |\phi_i\rangle$.

If $\varsigma_i \ge \delta$ for all $0 \ne \alpha_i$, we can ε -apx. using QSVT with compl. $O\left(\frac{1}{\delta}\log\left(\frac{1}{\varepsilon}\right)\right)$.

Suppose that *H* is given as an *a*-qubit block-encoding, i.e., $U = \begin{bmatrix} H & . \\ . & . \end{bmatrix}$.

Suppose that *H* is given as an *a*-qubit block-encoding, i.e., $U = \begin{bmatrix} H & . \\ . & . \end{bmatrix}$.

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given $t, \varepsilon > 0$, implement a unitary U', which is ε close to e^{itH} . Can be achieved with query complexity

 $O(t + \log(1/\varepsilon)).$

Gate complexity is O(a) times the above.

Suppose that *H* is given as an *a*-qubit block-encoding, i.e., $U = \begin{bmatrix} H & . \\ . & \\ . & \end{bmatrix}$.

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given $t, \varepsilon > 0$, implement a unitary U', which is ε close to e^{itH} . Can be achieved with query complexity

 $O(t + \log(1/\varepsilon)).$

Gate complexity is O(a) times the above.

Proof sketch

Approximate to ε -precision sin(*tx*) and cos(*tx*) with polynomials of degree as above. Then use QSVT and combine even/odd parts.

Optimal complexity

$$\Theta\bigg(t + \frac{\log(1/\varepsilon)}{\log(e + \log(1/\varepsilon)/t)}$$

Suppose that *H* is given as an *a*-qubit block-encoding, i.e., $U = \begin{bmatrix} H & \cdot \\ \cdot & \cdot \end{bmatrix}$.

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given $t, \varepsilon > 0$, implement a unitary U', which is ε close to e^{itH} . Can be achieved with query complexity

 $O(t + \log(1/\varepsilon)).$

Gate complexity is O(a) times the above.

Proof sketch

Approximate to ε -precision sin(*tx*) and cos(*tx*) with polynomials of degree as above. Then use QSVT and combine even/odd parts.

Optimal complexity

 $\Theta\left(t + \frac{\log(1/\varepsilon)}{\log(e + \log(1/\varepsilon)/t)}\right)$ cf. density matrix exp. $\Theta(t^2/\varepsilon)$ Lloyd et al., Kimmel et al.]

The basic approach

• Sample $i \sim p_i$

- Sample $i \sim p_i$
- Estimate \tilde{p}_i

- Sample $i \sim p_i$
- Estimate \tilde{p}_i
- Output $f(\tilde{p}_i)$

- Sample $i \sim p_i$
- Estimate \tilde{p}_i
- Output $f(\tilde{p}_i)$ E.g., for entropy output $-\log(\tilde{p}_i)$

- Sample $i \sim p_i$
- Estimate \tilde{p}_i
- Output $f(\tilde{p}_i)$ E.g., for entropy output $-\log(\tilde{p}_i)$
- Estimate $\mathbb{E}[f(\tilde{p}_i)]$ by repeating the process

- Sample $i \sim p_i$
- Estimate \tilde{p}_i
- Output $f(\tilde{p}_i)$ E.g., for entropy output $-\log(\tilde{p}_i)$
- Estimate $\mathbb{E}[f(\tilde{p}_i)]$ by repeating the process
- Quantum improvement:

The basic approach

- Sample $i \sim p_i$
- Estimate \tilde{p}_i
- ► Output f(p̃_i) E.g., for entropy output log(p̃_i)
- Estimate $\mathbb{E}[f(\tilde{p}_i)]$ by repeating the process

Quantum improvement: use amplitude estimation (Bravyi, Harrow and Hassidim – 2009)

Suppose we can implement "quantum sampling": U_{ρ} : $|0\rangle \mapsto \sum_{i} \sqrt{p_{i}} |\phi_{i}\rangle |i\rangle$

The basic approach

- Sample $i \sim p_i$
- Estimate \tilde{p}_i
- ➤ Output f(p̃_i) E.g., for entropy output log(p̃_i)
- Estimate $\mathbb{E}[f(\tilde{p}_i)]$ by repeating the process

Quantum improvement: use amplitude estimation (Bravyi, Harrow and Hassidim – 2009)

Suppose we can implement "quantum sampling": $U_p : |0\rangle \mapsto \sum_i \sqrt{p_i} |\phi_i\rangle |i\rangle$ Observation: a block encoding of $\sum_i \sqrt{p_i} |\tilde{\phi_i}\rangle |i|$ suffices and can be constructed!

The basic approach

- Sample $i \sim p_i$
- Estimate \tilde{p}_i
- ➤ Output f(p̃_i) E.g., for entropy output log(p̃_i)
- Estimate $\mathbb{E}[f(\tilde{p}_i)]$ by repeating the process

Quantum improvement: use amplitude estimation (Bravyi, Harrow and Hassidim – 2009)

Suppose we can implement "quantum sampling": $U_p : |0\rangle \mapsto \sum_i \sqrt{p_i} |\phi_i\rangle |i\rangle$ Observation: a block encoding of $\sum_i \sqrt{p_i} |\tilde{\phi_i}\rangle |i|$ suffices and can be constructed!

The same technique works for density operators!

The basic approach

- Sample $i \sim p_i$
- Estimate \tilde{p}_i
- ➤ Output f(p̃_i) E.g., for entropy output log(p̃_i)
- Estimate $\mathbb{E}[f(\tilde{p}_i)]$ by repeating the process

Quantum improvement: use amplitude estimation (Bravyi, Harrow and Hassidim – 2009)

Suppose we can implement "quantum sampling": $U_p : |0\rangle \mapsto \sum_i \sqrt{p_i} |\phi_i\rangle |i\rangle$ Observation: a block encoding of $\sum_i \sqrt{p_i} |\tilde{\phi}_i\rangle |i|$ suffices and can be constructed!

The same technique works for density operators! Purified access U_{ρ} : $|0\rangle \mapsto \sum_{i} \sqrt{p_{i}} |\phi_{i}\rangle |\psi_{i}\rangle$, where $\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle\psi_{i}|$

Operationally access and transform the probabilities:

Up

Operationally access and transform the probabilities:

$$U_{
ho} \Rightarrow U'_{
ho} := \left[egin{array}{cc} {
m diag}(\sqrt{
ho}) & \cdot \ & \cdot \ & \cdot \end{array}
ight]$$

Operationally access and transform the probabilities:

$$U_{
ho} \Rightarrow U'_{
ho} := \left[egin{array}{cc} \mathrm{diag}(\sqrt{
ho}) & \cdot \ & \cdot \end{array}
ight] \stackrel{QSVT}{\Longrightarrow} U'_{f(
ho)} := \left[egin{array}{cc} \mathrm{diag}(\sqrt{f(
ho)}) & \cdot \ & \cdot \end{array}
ight]$$

Operationally access and transform the probabilities:

$$U_{\rho} \Rightarrow U'_{\rho} := \begin{bmatrix} \operatorname{diag}(\sqrt{\rho}) & \cdot \\ \cdot & \cdot \end{bmatrix} \stackrel{QSVT}{\Longrightarrow} U'_{f(\rho)} := \begin{bmatrix} \operatorname{diag}(\sqrt{f(\rho)}) & \cdot \\ \cdot & \cdot \end{bmatrix}$$

Apply the operation to a sample:

$$U_{f(\rho)}'|0\rangle \sum_{i=1} \sqrt{\rho_i} |i\rangle |\psi_i\rangle = |0\rangle \sum_{i=1} \sqrt{\rho_i} \sqrt{f(\rho_i)} |i\rangle |\tilde{\psi}_i\rangle + |1\rangle \dots$$

Operationally access and transform the probabilities:

$$U_{\rho} \Rightarrow U'_{\rho} := \begin{bmatrix} \operatorname{diag}(\sqrt{\rho}) & \cdot \\ \cdot & \cdot \end{bmatrix} \stackrel{QSVT}{\Longrightarrow} U'_{f(\rho)} := \begin{bmatrix} \operatorname{diag}(\sqrt{f(\rho)}) & \cdot \\ \cdot & \cdot \end{bmatrix}$$

Apply the operation to a sample:

$$U_{f(p)}'|0\rangle \sum_{i=1} \sqrt{p_i} |i\rangle |\psi_i\rangle = |0\rangle \sum_{i=1} \sqrt{p_i} \sqrt{f(p_i)} |i\rangle |\tilde{\psi}_i\rangle + |1\rangle \dots$$

Estimate the probability of measuring $|0\rangle$:

$$\sum_{i=1} p_i f(p_i) = \mathbb{E}[f(p)]$$

An intuitive lower bound

Lower bound on eigenvalue transformation

Suppose that *U* is a block-encoding of a Hermitian matrix *H* from a family of operators. Let $f: [-1, 1] \to \mathbb{C}$, then implementing a block-encoding of f(H) requires at least $\left\|\frac{df}{dx}\right\|_{I}$ uses of *U*, if $I \subseteq [-\frac{1}{2}, \frac{1}{2}]$ is an interval of potential eigenvalues of *H*.

An intuitive lower bound

Lower bound on eigenvalue transformation

Suppose that *U* is a block-encoding of a Hermitian matrix *H* from a family of operators. Let $f: [-1, 1] \to \mathbb{C}$, then implementing a block-encoding of f(H) requires at least $\left\|\frac{df}{dx}\right\|_{I}$ uses of *U*, if $I \subseteq [-\frac{1}{2}, \frac{1}{2}]$ is an interval of potential eigenvalues of *H*.

Proof sketch

The proof is based on an elementary argument about distinguishability of unitary operators.

An intuitive lower bound

Lower bound on eigenvalue transformation

Suppose that *U* is a block-encoding of a Hermitian matrix *H* from a family of operators. Let $f: [-1, 1] \to \mathbb{C}$, then implementing a block-encoding of f(H) requires at least $\left\|\frac{df}{dx}\right\|_{I}$ uses of *U*, if $I \subseteq [-\frac{1}{2}, \frac{1}{2}]$ is an interval of potential eigenvalues of *H*.

Proof sketch

The proof is based on an elementary argument about distinguishability of unitary operators.

Optimality of pseudoinverse implementation

Let
$$I := \begin{bmatrix} \frac{1}{\kappa}, \frac{1}{2} \end{bmatrix}$$
 and let $f(x) := \frac{1}{\kappa x}$, then $\left. \frac{df}{dx} \right|_{\frac{1}{\kappa}} = -\kappa$.

Thus our implementation is optimal up to the $log(1/\varepsilon)$ factor.

Summarizing the various speed-ups

Speed-up	Source of speed-up	Examples of algorithms
Exponential	Dimensionality of the Hilbert space	Hamiltonian simulation
	Precise polynomial approximations	Improved HHL algorithm
Quadratic	Singular value = square root of probability	Grover search
	Singular values are easier to distinguish	Amplitude estimation
	Close-to-1 singular values are more flexible	Quantum walks

Summarizing the various speed-ups

Speed-up	Source of speed-up	Examples of algorithms
Exponential	Dimensionality of the Hilbert space	Hamiltonian simulation
	Precise polynomial approximations	Improved HHL algorithm
Quadratic	Singular value = square root of probability	Grover search
	Singular values are easier to distinguish	Amplitude estimation
	Close-to-1 singular values are more flexible	Quantum walks

Some more applications

- Quantum walks, fast QMA amplification, fast quantum OR lemma
- Quantum Machine learning: PCA, principal component regression
- "Non-commutative measurements" (for ground state preparation)
- Sample and gate efficient metrology, fractional queries

Hamiltonian simulation

