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Quantum algorithm design
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Quantum algorithm design

Many quantum algorithms have a common structure!
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A bird’s eye view on quantum linear algebra

Motivating example - the quantum matrix inversion (HHL) algorithm

We want to solve large systems of linear equations

Ax = b .

A quantum computer can nicely work with exponential sized matrices!
Given |b〉, we can prepare a solution ∝ A−1|b〉.

Matrix arithmetic on a quantum computer using block-encoding

Input matrix : A ; Implementation : U =

[
A .

. .

]
; Algorithm : U′ =

[
f(A) .

. .

]
.

In HHL f(x) = 1
x . Use Singular Value Transformation to approximate it!

More examples
I Optimal Hamiltonian simulation [Low et al.], quantum walks [Szegedy]
I Fixed point [Yoder et al.] and oblivious amplitude amplification [Berry et al.]
I HHL, regression [Chakraborty et al.], SDPs & LPs [Brandão et al.], ML [Kerendis et al.]
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Block-encoding
A way to represent large matrices on a quantum computer efficiently

U =

[
A .

. .

]
⇐⇒ A = (〈0|a ⊗ I) U (|0〉a ⊗ I) .

Any complex matrix A with operator norm ‖A‖ ≤ 1 can be block-encoded.

One can efficiently construct block-encodings of
I an efficiently implementable unitary U,
I a sparse matrix with efficiently computable elements,
I a matrix stored in a clever data-structure in a QRAM,
I a density operator ρ given a unitary preparing its purification.
I a POVM operator M given we can sample from the rand.var.: Tr(ρM),
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Example: Block-encoding sparse matrices
Suppose that A is s-sparse and |Aij | ≤ 1 for all i, j indices.

Given ”sparse-access “ we can
efficiently implement unitaries preparing ”rows“

R : |0〉|0〉|i〉 → |0〉
∑

k

(
√

Aik )∗
√

s
|i〉|k 〉+ |1〉|i〉|garbage〉,

and ”columns“

C : |0〉|0〉|j〉 → |0〉
∑
`

√
A`j
√

s
|`〉|j〉+ |2〉|j〉|garbage〉,

They form a block-encoding of A/s:

〈0|〈0|〈i|R†C |0〉|0〉|j〉 = (R |0〉|0〉|i〉)† · (C |0〉|0〉|j〉) =

∑
k

(
√

Aik )∗
√

s
|i〉|k 〉

†
∑

`

√
A`j
√

s
|`〉|j〉

 =
Aij

s
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Efficient matrix arithmetics

Implementing arithmetic operations on block-encoded matrices

I Given block-encodings Aj we can implement convex combinations.
I Given block-encodings A ,B we can implement block-encoding of AB.

Linear combination of (non-)unitary matrices [Childs and Wiebe ’12, Berry et al. ’15]

Suppose that U =
∑

i |i〉〈i| ⊗ Ui , and P : |0〉 7→
∑

i
√

pi |i〉 for pi ∈ [0, 1].
Then (P† ⊗ I)U(P ⊗ I) is a block-encoding of

∑
i piUi .

In particular if (〈0| ⊗ I)Ui(|0〉 ⊗ I) = Ai , then it is a block-encoding of∑
i

piAi .
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Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT

Let P : [−1, 1]→ [−1, 1] be a degree-d odd polynomial map.

Suppose that

U =

[
A .

. .

]
=

[ ∑
i ςi |wi〉〈vi | .

. .

]
=⇒ UΦ =

[ ∑
i P(ςi)|wi〉〈vi | .

. .

]
,

where Φ(P) ∈ Rd is efficiently computable and UΦ is the following circuit:

Alternating phase modulation sequence UΦ :=

H e−iφ1σz e−iφ2σz · · · e−iφdσz H

U U†

· · ·

· · ·

|0〉⊗a

· · ·

· · ·

· · ·

Simmilar result holds for even polynomials.
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where Φ(P) ∈ Rd is efficiently computable and UΦ is the following circuit:

Alternating phase modulation sequence UΦ :=

H e−iφ1σz e−iφ2σz · · · e−iφdσz H

U U†

· · ·

· · ·

|0〉⊗a

· · ·

· · ·

· · ·

Simmilar result holds for even polynomials.
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Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WΣV† is a singular value decomposition.
Then the pseudoinverse of A is A+ = VΣ+W†,

(note A† = VΣW†)
where Σ+ contains the inverses of the non-zero elements of Σ.

7 / 20



Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WΣV† is a singular value decomposition.
Then the pseudoinverse of A is A+ = VΣ+W†, (note A† = VΣW†)
where Σ+ contains the inverses of the non-zero elements of Σ.

7 / 20



Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WΣV† is a singular value decomposition.
Then the pseudoinverse of A is A+ = VΣ+W†, (note A† = VΣW†)
where Σ+ contains the inverses of the non-zero elements of Σ.

Implementing the pseudoinverse using QSVT

−1 −0.5 0.5 1

7 / 20



Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WΣV† is a singular value decomposition.
Then the pseudoinverse of A is A+ = VΣ+W†, (note A† = VΣW†)
where Σ+ contains the inverses of the non-zero elements of Σ.

Implementing the pseudoinverse using QSVT

−1 −0.5 0.5 1−1
κ

1
κ

7 / 20



Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WΣV† is a singular value decomposition.
Then the pseudoinverse of A is A+ = VΣ+W†, (note A† = VΣW†)
where Σ+ contains the inverses of the non-zero elements of Σ.

Implementing the pseudoinverse using QSVT

−1 −0.5 0.5 1−1
κ

1
κ

7 / 20



Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WΣV† is a singular value decomposition.
Then the pseudoinverse of A is A+ = VΣ+W†, (note A† = VΣW†)
where Σ+ contains the inverses of the non-zero elements of Σ.

Implementing the pseudoinverse using QSVT

−1 −0.5 0.5 1−1
κ

1
κ

Degree / complexity: O
(
κ log

(
1
ε

))
7 / 20



Quantum walks and Hermitian matrices

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two
reflection operators.

We can understand his algorithm as

Markov chain : M; Updates : U =

[
M .

. .

]
; Walk : Wn =

[
T2n(M) .

. .

]
.

(Td is the d-th Chebyshev polynomial of the first kind.)
If we choose φj = π

2 for all j ∈ {1, . . . , d}, we get P = ±Td in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

Simulate t classical steps using ∝
√

t quantum operations. I.e., implement

U′ =

[
Mt .

. .

]
.

Proof: x t can be ε-apx. on [−1, 1] with a degree-
√

2t ln(2/ε) polynomial.
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The special case of Hermitian matrices

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let P : [−1, 1]→ [−1, 1] be a degree-d even/odd polynomial map.

If H is Hermitian, then P(H) coincides with the singular value transform.

Removing parity constraint for Hermitian matrices

Let P : [−1, 1]→ [−1
2 ,

1
2 ] be a degree-d polynomial map. Suppose that U is an a-qubit

block-encoding of a Hermitian matrix H. We can implement

U′ =

[
P(H) .

. .

]
,

using d times U and U†, 1 controlled U, and O (ad) extra two-qubit gates.

Proof: let Peven(x) := P(x) + P(−x) and Podd(x) := P(x) − P(−x) then

P(H) =
1
2

(Peven(H) + Podd(H)) implement using QSVT + LCU
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Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using σz phases?

R(x) :=

 x −
√

1 − x2

−
√

1 − x2 −x

 ; e iφ0σz R(x)e iφ1σz · . . . · R(x)e iφdσz = (∗)?

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let d ∈ N; for all Φ ∈ Rd+1 we have

(∗) = id
 PC(x) QC(x)i

√
1 − x2

Q∗
C

(x)i
√

1 − x2 P∗
C

(x)

 ,
where PC,QC ∈ C[x] are such that

(i) deg(PC) ≤ d and deg(QC) ≤ d − 1, and

(ii) PC has parity-(d mod 2) and QC has parity-(d − 1 mod 2), and

(iii) ∀x ∈ [−1, 1] : |PC(x)|2 + (1 − x2)|QC(x)|2 = 1.
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Real quantum signal processing

Theorem: Focusing on the real part [Low, Yoder, Chuang (2016)]

Let d ∈ N, and P ∈ R[x] be of degree d. There exists Φ ∈ Rd such that

d∏
j=1

(
R(x)e iφjσz

)
=

[
PC(x) .

. .

]
,

where<[PC] = P if and only if

(i) P has parity-(d mod 2), and

(ii) for all x ∈ [−1, 1] : |P(x)| ≤ 1.
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Implementing the real part of a polynomial map

Direct implementation

e iφdσz R(x) e iφd−1σz · · · R(x) e iφ0σz =

[
PC(x) .

. .

]

Indirect implementation

e iφdσz · · · e iφ0σz

R(x) · · · R(x)

=


PC(x) .
. .

P∗
C

(x) .
. .


Real implementation

H e iφdσz · · · e iφ0σz H

R · · · R
=


<[PC] . . .

. . . .

. . . .

. . . .
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Generalisation to higher dimensions

1 × 1 case

Input:
[

x .

. .

]
Modulation:

[
e iφ

e−iφ

]
Output:

[
P(x) .

. .

]

2 × 2 case (higher-dimensional case is similar)

Input unitary Modulation Output circuit
x .

. .

y .

. .




e iφ

e−iφ

e iφ

e−iφ




P(x) .

. .

P(y) .

. .


x .

y .

. .

. .




e iφ

e iφ

e−iφ

e−iφ




P(x) .

P(y) .

. .

. .

[
A .

. .

] [
e iφI

e−iφI

] [
P(A) .

. .

]
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Fast QMA gap amplification [Marriott-Watrous’05] [Nagaj et al.’09]

The language class QMA

The language L belongs to the class QMA if for every input length |x | there exists a quantum
verifier V|x |, and numbers 0 ≤ b|x | < a|x | ≤ 1 satisfying 1

a|x |−b|x |
= O (poly (|x |)), such that for all

x ∈ L there exists a witness |ψ〉 such that upon measuring the state V|x ||x〉|0〉m |ψ〉 the probability
of finding the (|x |+ 1)st qubit in state |1〉 has probability at least a|x |,

x < L for any state |φ〉 upon measuring the state V|x ||x〉|0〉m |φ〉 the probability of finding the
(|x |+ 1)st qubit in state |1〉 has probability at most b|x |.

Fast QMA amplification [Nagaj et al.’09]

We can modify the verifier circuit V|x | such that the acceptance probability thresholds become

a′ := 1 − ε and b ′ := ε using singular value transformation of degree O
(

1
√

a|x |−
√
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Singular vector transformation and projection

Fixed-point and oblivious amplitude ampl. [Yoder et al., Berry et al.]

Amplitude amplification problem: Given U such that

U|0〉 =
√

p|0〉
∣∣∣ψgood

〉
+

√
1 − p|1〉|ψbad〉, prepare

∣∣∣ψgood

〉
.

Note that (|0〉〈0| ⊗ I)U(|0〉〈0|) =
√

p|0, ψgood〉〈0|; we can apply QSVT.

Generalization: Singular vector transformation

Given a unitary U, and projectors Π̃,Π, such that

A = Π̃UΠ =
k∑

i=1

ςi |φi〉〈ψi |

is a singular value decomposition. Transform one copy of a quantum state

|ψ〉 =
k∑

i=i

αi |ψi〉 to |φ〉 =
k∑

i=i

αi |φi〉.

If ςi ≥ δ for all 0 , αi , we can ε-apx. using QSVT with compl. O
(

1
δ log

(
1
ε

))
.
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Optimal block-Hamiltonian simulation

Suppose that H is given as an a-qubit block-encoding, i.e., U =

[
H .

. .

]
.

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given t , ε > 0, implement a unitary U′, which is ε close to e itH. Can be achieved with query
complexity

O (t + log(1/ε)) .

Gate complexity is O (a) times the above.

Proof sketch

Approximate to ε-precision sin(tx) and cos(tx) with polynomials of degree as above. Then use
QSVT and combine even/odd parts.

Optimal complexity

Θ

(
t +

log(1/ε)

log(e + log(1/ε)/t)

)
cf. density matrix exp. Θ(t2/ε) Lloyd et al., Kimmel et al.]
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Quantum speed-ups for distribution testing

The basic approach

I Sample i ∼ pi

I Estimate p̃i

I Output f(p̃i) E.g., for entropy output − log(p̃i)

I Estimate E[f(p̃i)] by repeating the process

Quantum improvement: use amplitude estimation
(Bravyi, Harrow and Hassidim – 2009)

Suppose we can implement ”quantum sampling“: Up : |0〉 7→
∑

i
√

pi |φi〉|i〉
Observation: a block encoding of

∑
i
√

pi |φ̃i〉〈i| suffices and can be constructed!

The same technique works for density operators!
Purified access Uρ : |0〉 7→

∑
i
√

pi |φi〉|ψi〉, where ρ =
∑

i pi |ψi〉〈ψi |
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Trick - skip estimating pi

Operationally access and transform the probabilities:

Up

⇒ U′p :=

[
diag(

√
p) ·

· ·

]
QSVT
=⇒ U′f(p) :=

[
diag(

√
f(p)) ·

· ·

]
Apply the operation to a sample:

U′f(p)|0〉
∑
i=1

√
pi |i〉|ψi〉 = |0〉

∑
i=1

√
pi

√
f(pi)|i〉

∣∣∣ψ̃i

〉
+ |1〉 . . .

Estimate the probability of measuring |0〉:∑
i=1

pi f(pi) = E[f(p)]
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An intuitive lower bound

Lower bound on eigenvalue transformation

Suppose that U is a block-encoding of a Hermitian matrix H from a family of operators. Let
f : [−1, 1]→ C, then implementing a block-encoding of f(H) requires at least

∥∥∥ df
dx

∥∥∥
I uses of U, if

I ⊆ [−1
2 ,

1
2 ] is an interval of potential eigenvalues of H.

Proof sketch

The proof is based on an elementary argument about distinguishability of unitary operators.

Optimality of pseudoinverse implementation

Let I :=

[
1
κ
,
1
2

]
and let f(x) :=

1
κx
, then

df
dx

∣∣∣∣∣ 1
κ

= −κ.

Thus our implementation is optimal up to the log(1/ε) factor.
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Suppose that U is a block-encoding of a Hermitian matrix H from a family of operators. Let
f : [−1, 1]→ C, then implementing a block-encoding of f(H) requires at least

∥∥∥ df
dx

∥∥∥
I uses of U, if

I ⊆ [−1
2 ,

1
2 ] is an interval of potential eigenvalues of H.
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Summarizing the various speed-ups

Speed-up Source of speed-up Examples of algorithms

Exponential
Dimensionality of the Hilbert space Hamiltonian simulation

Precise polynomial approximations Improved HHL algorithm

Quadratic

Singular value = square root of probability Grover search

Singular values are easier to distinguish Amplitude estimation

Close-to-1 singular values are more flexible Quantum walks

Some more applications

I Quantum walks, fast QMA amplification, fast quantum OR lemma
I Quantum Machine learning: PCA, principal component regression
I “Non-commutative measurements” (for ground state preparation)
I Sample and gate efficient metrology, fractional queries

I
...
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Summary of some applications of QSVT

sin(tx), cos(tx) :
Hamiltonian
simulation

exp(−βx) :
Gibbs sampling

Tn(x) :
n =13

n =25

Grover search
Ampl. ampl.

Quantum walks

≈ Heaviside(x) :

“Fixed-point”
ampl. ampl.
Ground state

prep.
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