Quantum Machine Learning Exercise Sheet

August 18, 2022

Exercises

1.) Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
a.) What is the singular value decomposition of A ?
b.) Give a singular value decomposition of B !
c.) What is the eigenvalue decomposition of B ?
d.) Give a singular value decomposition of B where the right singular vectors coincide with the eigenvectors!
2.) Let $A=U^{\dagger} \Sigma V=\sum_{i=1}^{m} \sigma_{i}\left|u_{i}\right\rangle\left\langle v_{i}\right|$, where u_{i}, v_{i} are the columns of the unitaries U, V and $\sigma_{1} \geq$ $\sigma_{2} \geq \ldots \geq \sigma_{m} \geq 0$ are the singular values of A. Prove that $A^{\dagger} A=\sum_{i=1}^{m} \sigma_{i}^{2}\left|v_{i}\right\rangle\left\langle v_{i}\right|$.
3.) We know that every Hermitian matrix $H \in \mathbb{C}^{n \times n}$ has a decomposition of the from $\sum_{i=1}^{n} \lambda_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$, where $\lambda_{i} \in \mathbb{R}$ and $\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j}$. Prove that every $A \in \mathbb{C}^{m \times n}$ has a singular value decomposition.
4.) Let $R:|0\rangle|i\rangle \mapsto \frac{\left|A_{i}\right\rangle|i\rangle}{\left\|A_{i .}\right\|}$ and $C:|0\rangle|j\rangle \mapsto \frac{|j\rangle|a\rangle}{\|a\|}$, where $|a\rangle=\sum_{i=1}^{m} a_{i}|i\rangle$ is the vector of row norms of A such that $a_{i}=\left\|A_{i}.\right\|$. Show that $U=R^{\dagger} C$ is a block-encoding of $A /\|A\|_{F}$.
5.) Show that $U^{\dagger}\left(2|0\rangle 0 \mid \otimes I_{2}-I_{12}\right) U$ is a block-encoding of $2 \frac{A^{\dagger} A}{\|A\|_{F}^{2}}-I$ if U is a block-encoding of $A /\|A\|_{F}:$

$$
U=\left(\begin{array}{cc}
A /\|A\|_{F} & \cdot \\
\cdot & \cdot
\end{array}\right) .
$$

6.) (Quantum rejection sampling) Suppose you have a quantum state $\sum_{i=1}^{m} \sqrt{p_{i}}|i\rangle$ and we have a distribution q such that $q \leq c \cdot p$. Show that you can prepare the state $\sum_{i=1}^{m} \sqrt{q_{i}}|i\rangle$ with $\mathcal{O}(\sqrt{c})$ queries for an oracle $O:|i\rangle|0\rangle \mapsto|i\rangle\left|q_{i} / p_{i}\right\rangle$ that outputs the ratio $\frac{q_{i}}{p_{i}}$ as a fixed point binary number.
7.) (SWAP test) Suppose you get quantum states from a source such that either

- every time you get the same (unknown) quantum state $|\psi\rangle$
- every time you get $|i\rangle$ for a uniformly random $i \in 0,1, \ldots, n-1$.

Request two quantum states from the source and append an ancilla qubit in the $|+\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ state. Controlled by the ancilla qubit SWAP the two copies. Measure the ancilla qubit in the

8.) dW19, Chapter 18 Exercise 7]

References

[dW19] Ronald de Wolf. Quantum computing: Lecture notes, 2019. arXiv: 1907.09415

