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» “Big Data” analysis via quantum linear algebra methods
—For example least squares regression (via quantum matrix inversion, i.e., HHL)

» Speeding up optimization (learning) with quantum algorithms
—For example quantum linear program (LP) and SDP solving

» Learning from quantum data
—Understanding properties of a quantum state or a quantum process
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Quantum: Kerenidis and Prakash 2016

ldea: Quantum computers can work with exponentially large matrices and vectors!

Warning: “Read the fine print”, Scott Aaronson, Nature, 2015
» Need to be able to efficiently prepare the input vector |b)
» Need a circuit implementation (block-encoding) of the input matrix A
> Need to efficiently extract “answer” from the output |x)(= A~'|b))

2/22



Recommendation systems — Netflix challange
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The assumed structure of preference matrix:

Movies: a linear combination of a small number of features
User taste: a linear weighing of the features
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Idea: find best low-rank approximation (say rank 100)

Singular value decomposition

For every A € C™" its singular value decompositionis A = U™V where
U e C™m V e C™" unitaries and ¥ € R™" has non-zero elements only on the

diagonal.
We can also write A = >, oj|u;Xvi|, where u;, v; are the columns of U, V and
o1 >022>...> 0, >0 are the singular values of A.

Fact: the best rank-k approximation of Ais A = Y¥ . ojlu;Xvil.
(Best in terms of the Frobenius norm: [[M|lg = /X, IM;[2.)
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If we get outcome 1 the state is proportional to |/Z\,-,>.
Measuring the state then gives recommendation j with probability oc |Z\,-,-|2.
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Major difficulty: how to input the data?
Data conversion: classical to quantum

» Given b € R™ prepare

m

b .
b) = —|i
)= 2, by

> Given A € R™" construct quantum circuit (block-encoding)

U:(A/|!A||F )

How to preserve the exponential advantage?
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Data structure (for simplicity let us assume ||b|| = 1)

. R T [3 |2y : cos(f) —sin(6)
First prepare: />, |bil?|0) + /> i, |bil?|1) — use rotation gate( sin(6) cos(6)
Map \/Z?:olbi|2|00> > |boll00) + |by]|01) and /%%, [bi2[10) > [b,l[10) + |bsl[11)

Add phases to get by|00) + by|01) + b,|10) + bs|11)
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On-line updates to the data structure

Data structure

—Update an entry and then its parent, grand parent, etc.

Cost is about the depth: log(dimension)

9/22



Data structure for the matrix A
Let a be the vector of row norms such that a; = ||A; ||

10/22



Data structure for the matrix A
Let a be the vector of row norms such that a; = ||A; ||

llall?® = A2
jasl? = AQ1, )| laal? = [|A(2,)|
JA(T. )2 +1A(1.2)12 IA(1.8)12 + |A(1,4)P IA(2,1)P +A(2,2)P IA(2,3)F +1A(2,4)P
A(1,1)]2 |A(1,2)? |A(1,3)? IA(1,4) |A(2,1)P |A(2,2)2 |A(2,3)? |A(2,4)P
A(1.1) A(1.2) A(1.3) A(1,4) A2.1) A(2,2) A(2.3) A(2.4)
AT AT2) A3 AT AR AR2) A3 AR

Dynamic data structure for a matrix A € C2**. We compose the data structure for a
with the data structure for A’s rows.

10/22



Quantum algorithms

Exercise 2: Let R: [0)li) > A2 and C: 0)]j) > D22,

Show that U = R'C is a block-encoding of A/ ||A||r.

11/22



Quantum algorithms

Exercise 2: Let R: [0)li) > A2 and C: 0)]j) > D22,

Show that U = R'C is a block-encoding of A/ ||A||r.

Exercise 3: Show that U'(2|0X0| — /)U is a block-encoding of 2% — 1.
F

11/22



Quantum algorithms

Exercise 2: Let R: [0)li) > A2 and C: 0)]j) > D22,

Show that U = R'C is a block-encoding of A/ ||A||r.
Exercise 3: Show that U'(2|0X0| — /)U is a block-encoding of 2”‘2@ — 1.
Recommendation systems

Given i prepare quantum state |A; )/ ||A; ]| (log(m + n) QRAM calls). Then prepare |/Z\,-,>
by phase estimation to precision ﬁ and then a measurement, the cost is
F

[
—(I1A|2
o)

11/22



Quantum algorithms

Exercise 2: Let R: [0)li) > A2 and C: 0)]j) > D22,

Show that U = R'C is a block-encoding of A/ ||A||r.

Exercise 3: Show that U'(2|0X0| — /)U is a block-encoding of 2”‘2@ — 1.
Recommendation systems

Given i prepare quantum state |A; )/ ||A; ]| (log(m + n) QRAM calls). Then prepare |/Z\,-,>

by phase estimation to precision ﬁ and then a measurement, the cost is
F

AP
~ 2
1A

(Al .. . _
(0] 5 times post-selection cost factor:
g

11/22



Quantum algorithms

Exercise 2: Let R: [0)li) > A2 and C: 0)]j) > D22,

Show that U = R'C is a block-encoding of A/ ||A||r.

Exercise 3: Show that U'(2|0X0| — /)U is a block-encoding of ZITXHAZ

Recommendation systems

-1

Given i prepare quantum state |A; )/ ||A; ]| (log(m + n) QRAM calls). Then prepare |/Z\,-,>

by phase estimation to precision |

AP
~ 2
1A

~(lIA
O(” QF ) times post-selection cost factor:
g

Tomorrow we will see
This can be improved quadratically!

Surely exponential speed-up compared to classical, right?

2 0
—l;fnz and then a measurement, the cost is
2
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Computing matrix elements

If we have sample and query access to A and query access to x, y
> We want to compute x” Ay = Tr(xTAy) = Tr(Ayx") = (A, yx")us
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Low rank approximation of ATA
ATA = 27;1 |Ai XA
With probability 1AL — &2

iz = iz sample i and output the rank-1 matrix s el

[[1A1P]]
The expectation value is
|Ai XA AP o JAXAL < +
pillAlIZ - = ALl - = ) JAXAil=ATA
Z TR 4 AR [N ;

Each random matrix has norm ||A|[2.
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Low rank approximation of ATA
ATA = 2:11 |Ai XA

With probability 'f@"u”z l';‘l‘lz sample i and output the rank-1 matrix ||A|2 - A4

The expectation value is

AXA AP AXAL
AR - - A2 - = ) JAXAl =ATA
Zp il ARl 4 Az = (A Z‘

Each random matrix has norm ||A|[2.

Matrix Chernoff bound — Ahlswede & Winter (2000), Tropp (2010)
Let B € R™" and suppose that E[X] = B, and ||[X — B|| < y.

If Xi, X, ... are iid copies of X, then
&2t
> 8) < 2n exp (—3—’)/2) .

[[nAz1E]]
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Working with small linear combinations
y = x4 x®),
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If we have sample and query access to x(1), x(2)
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» sample i distributed as |x,.([)|2, and accept with probability
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We see lWlth probability [x ‘ 1 xd ‘ /(||x 1)|| + x| ) Total acceptance prob.:

0 ) B Iyl
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Overall complexity
Punchline

No exponential speed-ups!
Widely applicable, e.g., recommendation systems, low-rank matrix inversion, etc.

Complexity comparison

— = (IAISIA]™ ;
O(HAol_lF) quantum VS. O(” !—ﬁ28!| ) classical

Are quantum Big Data algorithms doomed now?7??

Open questions

Better classical algorithms? Better quantum algorithms?
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Is there hope for a genuine quantum speedup?

Topological data analysis: Lloyd, Garnerone, and Zanardi (2016),

o o0 .
° Mesh at Identifying cliques
: grouping-scale € as simplices
[ ) > >
[ ]
° o ®
P ) [ 2N ]
L)
Point cloud Simplicial complex

Computing dimensions
of kernels

;(607 517 527 R )Bn—l)

Betti numbers, i.e., list of
number of holes, voids and
k-dimensional counterparts

9E  AC

Linear operators

Image from Gyurik, Cade, Dunjko arXiv:2005.02607 (2020) 18/22
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Fictitious play for approximate Nash-equilibrium (Grigoriadis & Khachiyan 1995)

Start with x® «— 0 e R™and y(© « 0 e R"
for t=1.2....0(%)do

o PO gAY gnd Q) A"

e p — PO/ [|PO|| and g® — QW) [[QW),
e Sample a ~ p!) and b ~ g(¥)

° y(t+1) — y(t) e %ea and X(t+1) — X(t) e %eb

The main task is Gibbs sampling from a linear-combination of vectors.
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Quantum rejection sampling: Ozols, Roétteler, Roland 11

The main task is Gibbs sampling (« eAy“)) from a linear-combination of vectors.
Idea: quantum rejection sampling.

» Compute largest entry ¢ of Ay() in time: 0(\/5/32)
> Sample i € [m] with probability % accept with probability eAy\-c,
» Repeat O(\/ﬁ)—times = complexity 5((\/5 | \/ﬁ)/s“)

Exercise 4: work out the details of the above algorithm
(Note: Can be improved to O((\/ﬁ + \/ﬁ)/a‘*’) by using approximate counting.)
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A generalization of Linear programs (LPs). Let X € R™"

OPT = min Tr(CX)
st. Tr(AX)<b; forallje[m],
X=>=0

Assumptions and formalization

> n X nvariable matrix X, with m constraints.

> Assume ||CI|.||A]| < 1 and s-sparse.

> A priori known bounds Tr[X] < Rand 3", y; < r.
» Goal: additive e-approximation of the optimum.

Examples: MAXCUT, Lovasz theta number,
Sum-of-Squares, General Adversary bound, ... N
Brandio et al., van Apeldoorn et al. 2016-18 quantum solver O((\/ﬁ + \/ﬁ)(Rr/s)5)
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Learning from quantum data

Quantum principal component analysis (PCA)

Suppose as input we get a copy of a quantum state |;) with probability p;.
» The mixed input quantum state is p = 2, pilyiX¥il
> (For simplicity let us assume i, ¥;) = 9j)
> O (t2 /s) copies enable implementing s-approximately e see “Quantum principal
component analysis” by Lloyd, Mohseni, Rebentrost (2013) [Exercise 5: 18.7]
» Using phase estimation we can mark the input states [;)|0) — [¥)|p;)

Advantage with quantum memory

Without quantum memory at least ~ 22 experiments are needed to learn a fixed
property of the principal component of an unknown n-qubit quantum state, while a
constant number of experiments suffice when two copies can be jointly processed.

Quantum advantage in learning from experiments: Huang, Broughton, Cotler, Chen,
Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean (2021)
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