Quantum machine learning

András Gilyén

Alfréd Rényi Institute of Mathematics
Budapest, Hungary

Quantum Computing Summer School, Physikzentrum Bad Honnef, Germany 2022 August 14-19

Major families of quantum machine learning algorithms

- "Quantum neural networks" (i.e., variational quantum circuits)

Major families of quantum machine learning algorithms

- "Quantum neural networks" (i.e., variational quantum circuits)
-For example classification (supervised learning)

$$
\left.\mid \text { data point }{ }^{(i)}\right\rangle=U(\vec{\theta})-\begin{gathered}
\text { aboel } \\
\\
\hline
\end{gathered}
$$

Major families of quantum machine learning algorithms

- "Quantum neural networks" (i.e., variational quantum circuits)
-For example classification (supervised learning)

$$
\left.\mid \text { data point }{ }^{(i)}\right\rangle-U(\vec{\theta})=\begin{array}{|}
\text { label } \\
\hline
\end{array}
$$

Optimize parameters to try and find most accurate model

Major families of quantum machine learning algorithms

- "Quantum neural networks" (i.e., variational quantum circuits) -For example classification (supervised learning)

$$
\left.\mid \text { data point }{ }^{(i)}\right\rangle-U(\vec{\theta})=\begin{array}{|}
\text { label } \\
\hline
\end{array}
$$

Optimize parameters to try and find most accurate model -How to avoid barren plateaus?

Major families of quantum machine learning algorithms

- "Quantum neural networks" (i.e., variational quantum circuits) -For example classification (supervised learning)

$$
\left.\mid \text { data point }{ }^{(i)}\right\rangle-U(\vec{\theta})=\begin{array}{|}
\text { label } \\
\hline
\end{array}
$$

Optimize parameters to try and find most accurate model -How to avoid barren plateaus?
-Small scale experiments don't provide conclusive evidence, time will tell ...

Major families of quantum machine learning algorithms

- "Quantum neural networks" (i.e., variational quantum circuits)
-For example classification (supervised learning)

$$
\left.\mid \text { data point }{ }^{(i)}\right\rangle-U(\vec{\theta})-\begin{gathered}
\text { label } \\
\hline
\end{gathered}
$$

Optimize parameters to try and find most accurate model -How to avoid barren plateaus?
-Small scale experiments don't provide conclusive evidence, time will tell ...

- "Big Data" analysis via quantum linear algebra methods

Major families of quantum machine learning algorithms

- "Quantum neural networks" (i.e., variational quantum circuits)
-For example classification (supervised learning)

$$
\left.\mid \text { data point }{ }^{(i)}\right\rangle-U(\vec{\theta})-\underset{\text { abod }}{\boldsymbol{A}}
$$

Optimize parameters to try and find most accurate model -How to avoid barren plateaus?
-Small scale experiments don't provide conclusive evidence, time will tell ...

- "Big Data" analysis via quantum linear algebra methods
-For example least squares regression (via quantum matrix inversion, i.e., HHL)

Major families of quantum machine learning algorithms

- "Quantum neural networks" (i.e., variational quantum circuits)
-For example classification (supervised learning)

$$
\left.\mid \text { data point }{ }^{(i)}\right\rangle-U(\vec{\theta})=-
$$

Optimize parameters to try and find most accurate model -How to avoid barren plateaus?
-Small scale experiments don't provide conclusive evidence, time will tell ...

- "Big Data" analysis via quantum linear algebra methods
-For example least squares regression (via quantum matrix inversion, i.e., HHL)
- Speeding up optimization (learning) with quantum algorithms

Major families of quantum machine learning algorithms

- "Quantum neural networks" (i.e., variational quantum circuits)
-For example classification (supervised learning)

$$
\left.\mid \text { data point }{ }^{(i)}\right\rangle-U(\vec{\theta})-\underbrace{}_{\text {baba }}
$$

Optimize parameters to try and find most accurate model -How to avoid barren plateaus?
-Small scale experiments don't provide conclusive evidence, time will tell ...

- "Big Data" analysis via quantum linear algebra methods
-For example least squares regression (via quantum matrix inversion, i.e., HHL)
- Speeding up optimization (learning) with quantum algorithms -For example quantum linear program (LP) and SDP solving

Major families of quantum machine learning algorithms

- "Quantum neural networks" (i.e., variational quantum circuits)
-For example classification (supervised learning)

$$
\left.\mid \text { data point }{ }^{(i)}\right\rangle-U(\vec{\theta})-\underbrace{}_{\text {babd }}
$$

Optimize parameters to try and find most accurate model -How to avoid barren plateaus?
-Small scale experiments don't provide conclusive evidence, time will tell ...

- "Big Data" analysis via quantum linear algebra methods
-For example least squares regression (via quantum matrix inversion, i.e., HHL)
- Speeding up optimization (learning) with quantum algorithms -For example quantum linear program (LP) and SDP solving
- Learning from quantum data

Major families of quantum machine learning algorithms

- "Quantum neural networks" (i.e., variational quantum circuits)
-For example classification (supervised learning)

$$
\left.\mid \text { data point }{ }^{(i)}\right\rangle-U(\vec{\theta})-\underbrace{}_{\text {babd }}
$$

Optimize parameters to try and find most accurate model -How to avoid barren plateaus?
-Small scale experiments don't provide conclusive evidence, time will tell ...

- "Big Data" analysis via quantum linear algebra methods
-For example least squares regression (via quantum matrix inversion, i.e., HHL)
- Speeding up optimization (learning) with quantum algorithms
-For example quantum linear program (LP) and SDP solving
- Learning from quantum data
-Understanding properties of a quantum state or a quantum process

Quantum machine learning for Big Data

Some major tasks, given data $A \in \mathbb{R}^{m \times n}$

- Principal component analysis: find large eigenvalues and eigenvectors Quantum: Lloyd, Mohseni, and Rebentrost 2013

Quantum machine learning for Big Data

Some major tasks, given data $A \in \mathbb{R}^{m \times n}$

- Principal component analysis: find large eigenvalues and eigenvectors Quantum: Lloyd, Mohseni, and Rebentrost 2013
- Supervised clustering: given class labels, classify new data (vector) b Quantum: Lloyd, Mohseni, and Rebentrost 2013

Quantum machine learning for Big Data

Some major tasks, given data $A \in \mathbb{R}^{m \times n}$

- Principal component analysis: find large eigenvalues and eigenvectors Quantum: Lloyd, Mohseni, and Rebentrost 2013
- Supervised clustering: given class labels, classify new data (vector) b Quantum: Lloyd, Mohseni, and Rebentrost 2013
- Support vector machines: binary classification of data (vector) b

Quantum: Rebentrost, Mohseni, and Lloyd 2013

Quantum machine learning for Big Data

Some major tasks, given data $A \in \mathbb{R}^{m \times n}$

- Principal component analysis: find large eigenvalues and eigenvectors Quantum: Lloyd, Mohseni, and Rebentrost 2013
- Supervised clustering: given class labels, classify new data (vector) b Quantum: Lloyd, Mohseni, and Rebentrost 2013
- Support vector machines: binary classification of data (vector) b Quantum: Rebentrost, Mohseni, and Lloyd 2013
- Recommendation Systems: find low-rank $A_{\sigma} \in \mathbb{R}^{m \times n}$ s.t. $A \approx A_{\sigma}$ Quantum: Kerenidis and Prakash 2016

Quantum machine learning for Big Data

Some major tasks, given data $A \in \mathbb{R}^{m \times n}$

- Principal component analysis: find large eigenvalues and eigenvectors Quantum: Lloyd, Mohseni, and Rebentrost 2013
- Supervised clustering: given class labels, classify new data (vector) b Quantum: Lloyd, Mohseni, and Rebentrost 2013
- Support vector machines: binary classification of data (vector) b Quantum: Rebentrost, Mohseni, and Lloyd 2013
- Recommendation Systems: find low-rank $A_{\sigma} \in \mathbb{R}^{m \times n}$ s.t. $A \approx A_{\sigma}$ Quantum: Kerenidis and Prakash 2016

Idea: Quantum computers can work with exponentially large matrices and vectors!

Quantum machine learning for Big Data

Some major tasks, given data $A \in \mathbb{R}^{m \times n}$

- Principal component analysis: find large eigenvalues and eigenvectors Quantum: Lloyd, Mohseni, and Rebentrost 2013
- Supervised clustering: given class labels, classify new data (vector) b Quantum: Lloyd, Mohseni, and Rebentrost 2013
- Support vector machines: binary classification of data (vector) b Quantum: Rebentrost, Mohseni, and Lloyd 2013
- Recommendation Systems: find low-rank $A_{\sigma} \in \mathbb{R}^{m \times n}$ s.t. $A \approx A_{\sigma}$ Quantum: Kerenidis and Prakash 2016

Idea: Quantum computers can work with exponentially large matrices and vectors!
Warning: "Read the fine print", Scott Aaronson, Nature, 2015

- Need to be able to efficiently prepare the input vector |b>

Quantum machine learning for Big Data

Some major tasks, given data $A \in \mathbb{R}^{m \times n}$

- Principal component analysis: find large eigenvalues and eigenvectors Quantum: Lloyd, Mohseni, and Rebentrost 2013
- Supervised clustering: given class labels, classify new data (vector) b Quantum: Lloyd, Mohseni, and Rebentrost 2013
- Support vector machines: binary classification of data (vector) b Quantum: Rebentrost, Mohseni, and Lloyd 2013
- Recommendation Systems: find low-rank $A_{\sigma} \in \mathbb{R}^{m \times n}$ s.t. $A \approx A_{\sigma}$ Quantum: Kerenidis and Prakash 2016

Idea: Quantum computers can work with exponentially large matrices and vectors!
Warning: "Read the fine print", Scott Aaronson, Nature, 2015

- Need to be able to efficiently prepare the input vector |b>
- Need a circuit implementation (block-encoding) of the input matrix A

Quantum machine learning for Big Data

Some major tasks, given data $A \in \mathbb{R}^{m \times n}$

- Principal component analysis: find large eigenvalues and eigenvectors Quantum: Lloyd, Mohseni, and Rebentrost 2013
- Supervised clustering: given class labels, classify new data (vector) b Quantum: Lloyd, Mohseni, and Rebentrost 2013
- Support vector machines: binary classification of data (vector) b Quantum: Rebentrost, Mohseni, and Lloyd 2013
- Recommendation Systems: find low-rank $A_{\sigma} \in \mathbb{R}^{m \times n}$ s.t. $A \approx A_{\sigma}$ Quantum: Kerenidis and Prakash 2016

Idea: Quantum computers can work with exponentially large matrices and vectors!
Warning: "Read the fine print", Scott Aaronson, Nature, 2015

- Need to be able to efficiently prepare the input vector |b>
- Need a circuit implementation (block-encoding) of the input matrix A
- Need to efficiently extract "answer" from the output $|x\rangle\left(=A^{-1}|b\rangle\right)$

Recommendation systems - Netflix challange

Image source: https://towardsdatascience.com ©

The assumed structure of preference matrix:

Movies: a linear combination of a small number of features User taste: a linear weighing of the features

Image source: https://towardsdatascience.com ©

What about the missing data points?

Data = structured part + noise
We have noisy preference matrix $A \in \mathbb{R}^{m \times n}$

What about the missing data points?

Data = structured part + noise
We have noisy preference matrix $A \in \mathbb{R}^{m \times n}$
Structured part: low-rank

What about the missing data points?

Data = structured part + noise
We have noisy preference matrix $A \in \mathbb{R}^{m \times n}$
Structured part: low-rank
Noise: high-rank but spread out

What about the missing data points?

Data $=$ structured part + noise

We have noisy preference matrix $A \in \mathbb{R}^{m \times n}$
Structured part: low-rank
Noise: high-rank but spread out
Idea: find best low-rank approximation (say rank 100)

Singular value decomposition

For every $A \in \mathbb{C}^{m \times n}$ its singular value decomposition is $A=U^{\dagger} \Sigma V$ where $U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$ unitaries and $\Sigma \in \mathbb{R}^{m \times n}$ has non-zero elements only on the diagonal.

What about the missing data points?

Data = structured part + noise

We have noisy preference matrix $A \in \mathbb{R}^{m \times n}$
Structured part: low-rank
Noise: high-rank but spread out
Idea: find best low-rank approximation (say rank 100)

Singular value decomposition

For every $A \in \mathbb{C}^{m \times n}$ its singular value decomposition is $A=U^{\dagger} \Sigma V$ where $U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$ unitaries and $\Sigma \in \mathbb{R}^{m \times n}$ has non-zero elements only on the diagonal.
We can also write $A=\sum_{i=1}^{m} \sigma_{i}\left|u_{i} X v_{i}\right|$, where u_{i}, v_{i} are the columns of U, V and $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{m} \geq 0$ are the singular values of A.

What about the missing data points?

Data = structured part + noise

We have noisy preference matrix $A \in \mathbb{R}^{m \times n}$
Structured part: low-rank
Noise: high-rank but spread out
Idea: find best low-rank approximation (say rank 100)

Singular value decomposition

For every $A \in \mathbb{C}^{m \times n}$ its singular value decomposition is $A=U^{\dagger} \Sigma V$ where $U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$ unitaries and $\Sigma \in \mathbb{R}^{m \times n}$ has non-zero elements only on the diagonal.
We can also write $A=\sum_{i=1}^{m} \sigma_{i}\left|u_{i} X v_{i}\right|$, where u_{i}, v_{i} are the columns of U, V and $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{m} \geq 0$ are the singular values of A.

Fact: the best rank-k approximation of A is $\tilde{A}=\sum_{i=1}^{k} \sigma_{i}\left|u_{i} X v_{i}\right|$.
(Best in terms of the Frobenius norm: $\|M\|_{F}=\sqrt{\sum_{i, j}\left|M_{i j}\right|^{2}}$.)

We want to get a good recommendation

Given user i

Suppose we have a state proportional to $\left|A_{i .}\right\rangle$ (the i-th row of A).

We want to get a good recommendation

Given user i

Suppose we have a state proportional to $\left|A_{i .}\right\rangle$ (the i-th row of A). We can write $\left|A_{i .}\right\rangle=\sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle$, and we want $\left|\tilde{A}_{i .}\right\rangle=\sum_{j=1}^{k} \alpha_{j}\left|v_{j}\right\rangle$.

We want to get a good recommendation

Given user i

Suppose we have a state proportional to $\left|A_{i .}\right\rangle$ (the i-th row of A). We can write $\left|A_{i .}\right\rangle=\sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle$, and we want $\left|\tilde{A}_{i .}\right\rangle=\sum_{j=1}^{k} \alpha_{j}\left|v_{j}\right\rangle$.

Exercise 1: Prove that $A^{\dagger} A=\sum_{i=1}^{m} \sigma_{i}^{2}\left|v_{i} X v_{i}\right|$

We want to get a good recommendation

Given user i

Suppose we have a state proportional to $\left|A_{i .}\right\rangle$ (the i-th row of A). We can write $\left|A_{i .}\right\rangle=\sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle$, and we want $\left|\tilde{A}_{i .}\right\rangle=\sum_{j=1}^{k} \alpha_{j}\left|v_{j}\right\rangle$.

Exercise 1: Prove that $A^{\dagger} A=\sum_{i=1}^{m} \sigma_{i}^{2}\left|v_{i}\right\rangle v_{i} \mid$

Quantum solution

Observe that $A^{\dagger} A=\sum_{i=1}^{m} \sigma_{i}^{2}\left|v_{i}\right\rangle v_{i} \mid \Longrightarrow$ apply phase estimation with $A^{\dagger} A$ on $\left|A_{i .}\right\rangle$ to filter out small singular values. (For simplicity let's assume phase estimation works ideally.)

We want to get a good recommendation

Given user i

Suppose we have a state proportional to $\left|A_{i .}\right\rangle$ (the i-th row of A). We can write $\left|A_{i .}\right\rangle=\sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle$, and we want $\left|\tilde{A}_{i .}\right\rangle=\sum_{j=1}^{k} \alpha_{j}\left|v_{j}\right\rangle$.

Exercise 1: Prove that $A^{\dagger} A=\sum_{i=1}^{m} \sigma_{i}^{2}\left|v_{i} \backslash v_{i}\right|$

Quantum solution

Observe that $A^{\dagger} A=\sum_{i=1}^{m} \sigma_{i}^{2}\left|v_{i}\right\rangle v_{i} \mid \Longrightarrow$ apply phase estimation with $A^{\dagger} A$ on $\left|A_{i .}\right\rangle$ to filter out small singular values. (For simplicity let's assume phase estimation works ideally.)
$\sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle$

We want to get a good recommendation

Given user i

Suppose we have a state proportional to $\left|A_{i}\right\rangle$ (the i-th row of A). We can write $\left|A_{i .}\right\rangle=\sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle$, and we want $\left|\tilde{A}_{i .}\right\rangle=\sum_{j=1}^{k} \alpha_{j}\left|v_{j}\right\rangle$.

Exercise 1: Prove that $\boldsymbol{A}^{\dagger} \boldsymbol{A}=\sum_{i=1}^{m} \sigma_{i}^{2}\left|v_{i}\right\rangle \boldsymbol{v}_{i} \mid$

Quantum solution

Observe that $A^{\dagger} A=\sum_{i=1}^{m} \sigma_{i}^{2}\left|v_{i}\right\rangle v_{i} \mid \Longrightarrow$ apply phase estimation with $A^{\dagger} A$ on $\left|A_{i i}\right\rangle$ to filter out small singular values. (For simplicity let's assume phase estimation works ideally.)
$\sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle \mapsto \sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle\left|\sigma_{j}^{2}\right\rangle$

We want to get a good recommendation

Given user i

Suppose we have a state proportional to $\left|A_{i}\right\rangle$ (the i-th row of A). We can write $\left|A_{i .}\right\rangle=\sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle$, and we want $\left|\tilde{A}_{i .}\right\rangle=\sum_{j=1}^{k} \alpha_{j}\left|v_{j}\right\rangle$.

Exercise 1: Prove that $\mathbf{A}^{\dagger} A=\sum_{i=1}^{m} \sigma_{i}^{2}\left|v_{i}\right\rangle v_{i} \mid$

Quantum solution

Observe that $A^{\dagger} A=\sum_{i=1}^{m} \sigma_{i}^{2}\left|v_{i}\right\rangle v_{i} \mid \Longrightarrow$ apply phase estimation with $A^{\dagger} A$ on $\left|A_{i i}\right\rangle$ to filter out small singular values. (For simplicity let's assume phase estimation works ideally.)
$\sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle \mapsto \sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle\left|\sigma_{j}^{2}\right\rangle \mapsto \sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle\left|\sigma_{j}^{2}\right\rangle\left\langle\chi\left(\sigma_{j}^{2} \geq \sigma^{2}\right)\right\rangle$

We want to get a good recommendation

Given user i

Suppose we have a state proportional to $\left|A_{i}\right\rangle$ (the i-th row of A).
We can write $\left|A_{i .}\right\rangle=\sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle$, and we want $\left|\tilde{A}_{i .}\right\rangle=\sum_{j=1}^{k} \alpha_{j}\left|v_{j}\right\rangle$.
Exercise 1: Prove that $\boldsymbol{A}^{\dagger} \boldsymbol{A}=\sum_{i=1}^{m} \sigma_{i}^{2}\left|v_{i}\right\rangle \boldsymbol{v}_{i} \mid$

Quantum solution

Observe that $A^{\dagger} A=\sum_{i=1}^{m} \sigma_{i}^{2}\left|v_{i}\right\rangle v_{i} \mid \Longrightarrow$ apply phase estimation with $A^{\dagger} A$ on $\left|A_{i i}\right\rangle$ to filter out small singular values. (For simplicity let's assume phase estimation works ideally.)

$$
\sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle \mapsto \sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle\left|\sigma_{j}^{2}\right\rangle \mapsto \sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle\left|\sigma_{j}^{2}\right\rangle\left|\chi\left(\sigma_{j}^{2} \geq \sigma^{2}\right)\right\rangle \mapsto \sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle \underbrace{\left\langle\chi\left(\sigma_{j}^{2} \geq \sigma^{2}\right)\right\rangle}_{\text {measure }}
$$

We want to get a good recommendation

Given user i

Suppose we have a state proportional to $\left|A_{i}\right\rangle$ (the i-th row of A). We can write $\left|A_{i}\right\rangle=\sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle$, and we want $\left|\tilde{A}_{i .}\right\rangle=\sum_{j=1}^{k} \alpha_{j}\left|v_{j}\right\rangle$.

Exercise 1: Prove that $\boldsymbol{A}^{\dagger} \boldsymbol{A}=\sum_{i=1}^{m} \sigma_{i}^{2}\left|\boldsymbol{v}_{i} \chi \boldsymbol{v}_{i}\right|$

Quantum solution

Observe that $A^{\dagger} A=\sum_{i=1}^{m} \sigma_{i}^{2}\left|v_{i}\right\rangle v_{i} \mid \Longrightarrow$ apply phase estimation with $A^{\dagger} A$ on $\left|A_{i}\right\rangle$ to filter out small singular values. (For simplicity let's assume phase estimation works ideally.)

$$
\sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle \mapsto \sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle\left|\sigma_{j}^{2}\right\rangle \mapsto \sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle\left|\sigma_{j}^{2}\right\rangle\left|\chi\left(\sigma_{j}^{2} \geq \sigma^{2}\right)\right\rangle \mapsto \sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle \underbrace{\left|\chi\left(\sigma_{j}^{2} \geq \sigma^{2}\right)\right\rangle}_{\text {measure }}
$$

If we get outcome 1 the state is proportional to $\left|\tilde{A}_{i_{i}}\right\rangle$.

We want to get a good recommendation

Given user i

Suppose we have a state proportional to $\left|A_{i .}\right\rangle$ (the i-th row of A).
We can write $\left|A_{i .}\right\rangle=\sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle$, and we want $\left|\tilde{A}_{i .}\right\rangle=\sum_{j=1}^{k} \alpha_{j}\left|v_{j}\right\rangle$.
Exercise 1: Prove that $A^{\dagger} A=\sum_{i=1}^{m} \sigma_{i}^{2}\left|v_{i} X v_{i}\right|$

Quantum solution

Observe that $A^{\dagger} A=\sum_{i=1}^{m} \sigma_{i}^{2}\left|v_{i}\right\rangle v_{i} \mid \Longrightarrow$ apply phase estimation with $A^{\dagger} A$ on $\left|A_{i .}\right\rangle$ to filter out small singular values. (For simplicity let's assume phase estimation works ideally.)

$$
\sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle \mapsto \sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle\left|\sigma_{j}^{2}\right\rangle \mapsto \sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle\left|\sigma_{j}^{2}\right\rangle\left|\chi\left(\sigma_{j}^{2} \geq \sigma^{2}\right)\right\rangle \mapsto \sum_{j=1}^{m} \alpha_{j}\left|v_{j}\right\rangle \underbrace{\left|\chi\left(\sigma_{j}^{2} \geq \sigma^{2}\right)\right\rangle}_{\text {measure }}
$$

If we get outcome 1 the state is proportional to $\left|\tilde{A}_{i .}\right\rangle$.
Measuring the state then gives recommendation j with probability $\propto\left|\tilde{A}_{i j}\right|^{2}$.

Major difficulty: how to input the data?

Data conversion: classical to quantum

- Given $b \in \mathbb{R}^{m}$ prepare

$$
|b\rangle=\sum_{i=1}^{m} \frac{b_{i}}{\|b\|}|i\rangle
$$

Major difficulty: how to input the data?

Data conversion: classical to quantum

- Given $b \in \mathbb{R}^{m}$ prepare

$$
|b\rangle=\sum_{i=1}^{m} \frac{b_{i}}{\|b\|}|i\rangle
$$

- Given $A \in \mathbb{R}^{m \times n}$ construct quantum circuit (block-encoding)

$$
U=\left(\begin{array}{cc}
A /\|A\|_{F} & \cdot \\
\cdot & .
\end{array}\right)
$$

How to preserve the exponential advantage?

Solution: assume QRAM (readable in superposition)

Solution: assume QRAM (readable in superposition)

Data structure (for simplicity let us assume $\|b\|=1$)

Solution: assume QRAM (readable in superposition)

Data structure (for simplicity let us assume $\|b\|=1$)

First prepare: $\sqrt{\sum_{i=0}^{1}\left|b_{i}\right|^{2}|0\rangle}+\sqrt{\sum_{i=2}^{3}\left|b_{i}\right|^{2}}|1\rangle$

Solution: assume QRAM (readable in superposition)

Data structure (for simplicity let us assume $\|b\|=1$)

First prepare: $\sqrt{\sum_{i=0}^{1}\left|b_{i}\right|^{2}}|0\rangle+\sqrt{\sum_{i=2}^{3}\left|b_{i}\right|^{2}}|1\rangle-$ use rotation gate $\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$

Solution: assume QRAM (readable in superposition)

Data structure (for simplicity let us assume $\|b\|=1$)

First prepare: $\sqrt{\sum_{i=0}^{1}\left|b_{i}\right|^{2}}|0\rangle+\sqrt{\sum_{i=2}^{3}\left|b_{i}\right|^{2}}|1\rangle-$ use rotation gate $\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$
Map $\sqrt{\sum_{i=0}^{1}\left|b_{i}\right|^{2}}|00\rangle \mapsto\left|b_{0}\right||00\rangle+\left|b_{1}\right||01\rangle$ and

Solution: assume QRAM (readable in superposition)

Data structure (for simplicity let us assume $\|b\|=1$)

First prepare: $\sqrt{\sum_{i=0}^{1}\left|b_{i}\right|^{2}}|0\rangle+\sqrt{\sum_{i=2}^{3}\left|b_{i}\right|^{2}}|1\rangle$ - use rotation gate $\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$
Map $\sqrt{\sum_{i=0}^{1}\left|b_{i}\right|^{2}}|00\rangle \mapsto\left|b_{0}\right||00\rangle+\left|b_{1}\right||01\rangle$ and $\sqrt{\sum_{i=2}^{3}\left|b_{i}\right|^{2}}|10\rangle \mapsto\left|b_{2}\right||10\rangle+\left|b_{3}\right||11\rangle$

Solution: assume QRAM (readable in superposition)

Data structure (for simplicity let us assume $\|b\|=1$)

First prepare: $\sqrt{\sum_{i=0}^{1}\left|b_{i}\right|^{2}}|0\rangle+\sqrt{\sum_{i=2}^{3}\left|b_{i}\right|^{2}}|1\rangle$ - use rotation gate $\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$
Map $\sqrt{\sum_{i=0}^{1}\left|b_{i}\right|^{2}}|00\rangle \mapsto\left|b_{0}\right||00\rangle+\left|b_{1}\right||01\rangle$ and $\sqrt{\sum_{i=2}^{3}\left|b_{i}\right|^{2}}|10\rangle \mapsto\left|b_{2}\right||10\rangle+\left|b_{3}\right||11\rangle$
Add phases to get $b_{0}|00\rangle+b_{1}|01\rangle+b_{2}|10\rangle+b_{3}|11\rangle$

On-line updates to the data structure

Data structure

-Update an entry and then its parent, grand parent, etc.

On-line updates to the data structure

Data structure

-Update an entry and then its parent, grand parent, etc.
Cost is about the depth: \log (dimension)

Data structure for the matrix A

Let a be the vector of row norms such that $a_{i}=\left\|A_{i}\right\|$.

Data structure for the matrix A

Let a be the vector of row norms such that $a_{i}=\left\|A_{i}.\right\|$.

Dynamic data structure for a matrix $A \in \mathbb{C}^{2 \times 4}$. We compose the data structure for a with the data structure for A 's rows.

Quantum algorithms

Exercise 2: Let $R:|0\rangle|i\rangle \mapsto \frac{\left|A_{i}\right\rangle|i|}{\| A_{i}| |}$ and $\left.C:|0\rangle j\right\rangle \mapsto \frac{|\lambda| a\rangle}{\|a\| \|}$. Show that $U=R^{\dagger} C$ is a block-encoding of $A /\|A\|_{F}$.

Quantum algorithms

Exercise 2: Let $R:|0\rangle|i\rangle \mapsto \frac{\left|A_{i}\right\rangle|i\rangle}{\left\|A_{i}\right\|}$ and $C:|0\rangle|j\rangle \mapsto \frac{| \rangle|a\rangle}{\|a\|}$.
Show that $U=R^{\dagger} C$ is a block-encoding of $A /\|A\|_{F}$.
Exercise 3: Show that $U^{\dagger}(2|0 X O|-I) U$ is a block-encoding of $2 \frac{A^{\dagger} A}{\|A\|_{F}^{2}}-I$.

Quantum algorithms

Exercise 2: Let $R:|0\rangle|i\rangle \mapsto \frac{\left|A_{i}\right\rangle|i\rangle}{\left\|A_{i}\right\|}$ and $C:|0\rangle|j\rangle \mapsto \frac{| \rangle|a\rangle}{\|a\|}$.
Show that $U=R^{\dagger} C$ is a block-encoding of $A /\|A\|_{F}$.
Exercise 3: Show that $U^{\dagger}(2|0 X 0|-I) U$ is a block-encoding of $2 \frac{A^{\dagger} A}{\|A\|_{F}^{2}}-I$.

Recommendation systems

Given i prepare quantum state $\left|A_{i .}\right\rangle /\left\|A_{i .}\right\|\left(\log (m+n)\right.$ QRAM calls). Then prepare $\left|\tilde{A}_{i .}\right\rangle$ by phase estimation to precision $\frac{\sigma^{2}}{\|A\|_{F}^{2}}$ and then a measurement, the cost is

$$
\widetilde{O}\left(\frac{\|A\|_{F}^{2}}{\sigma^{2}}\right)
$$

Quantum algorithms

Exercise 2: Let $R:|0\rangle|i\rangle \mapsto \frac{\left|A_{i}\right\rangle|i\rangle}{\left.\left\|A_{i}\right\|\right\rangle}$ and $C:|0\rangle|j\rangle \mapsto \frac{|j| a\rangle}{\|a\|}$.
Show that $U=R^{\dagger} C$ is a block-encoding of $A /\|A\|_{F}$.
Exercise 3: Show that $U^{\dagger}(2|O X O|-I) U$ is a block-encoding of $2 \frac{A^{\dagger} A}{\|A\|_{F}^{2}}-I$.

Recommendation systems

Given i prepare quantum state $\left|A_{i .}\right\rangle /\left\|A_{i .}\right\|\left(\log (m+n)\right.$ QRAM calls). Then prepare $\left|\tilde{A}_{i .}\right\rangle$ by phase estimation to precision $\frac{\sigma^{2}}{\|A\|_{F}^{2}}$ and then a measurement, the cost is

$$
\tilde{O}\left(\frac{\|A\|_{F}^{2}}{\sigma^{2}}\right) \text { times post-selection cost factor: } \frac{\left\|A_{i .}\right\|^{2}}{\left\|\tilde{A}_{i .}\right\|^{2}}
$$

Quantum algorithms

Exercise 2: Let $R:|0\rangle|i\rangle \mapsto \frac{\left|A_{i}\right\rangle|i\rangle}{\left\|A_{i}\right\|}$ and $C:|0\rangle|j\rangle \mapsto \frac{|j| a\rangle}{\|a\|}$.
Show that $U=R^{\dagger} C$ is a block-encoding of $A /\|A\|_{F}$.
Exercise 3: Show that $U^{\dagger}(2|0 X 0|-I) U$ is a block-encoding of $2 \frac{A^{\dagger} A}{\|A\|_{F}^{2}}-I$.

Recommendation systems

Given i prepare quantum state $\left|A_{i,}\right\rangle /\left\|A_{i,}\right\|\left(\log (m+n)\right.$ QRAM calls). Then prepare $\left|\tilde{A}_{i .}.\right\rangle$ by phase estimation to precision $\frac{\sigma^{2}}{\|A\|_{F}^{2}}$ and then a measurement, the cost is

$$
\tilde{O}\left(\frac{\|A\|_{F}^{2}}{\sigma^{2}}\right) \text { times post-selection cost factor: } \frac{\left\|A_{i}\right\| \|^{2}}{\left\|\tilde{A}_{i} .\right\|^{2}}
$$

Tomorrow we will see

This can be improved quadratically!
Surely exponential speed-up compared to classical, right?

2018:

Image source: Quantum Computing Memes for QMA-Complete Teens

Sampling form the input vectors?

Data structure for storing $b \in \mathbb{R}^{m}$
If stored in (classical) RAM, in time $O(\log ($ dimension $))$ we can

- query b_{i}, and

Sampling form the input vectors?

Data structure for storing $b \in \mathbb{R}^{m}$
If stored in (classical) RAM, in time O (log(dimension)) we can

- query b_{i}, and
- sample i distributed $\propto\left|b_{i}\right|^{2}$, and

Computing inner products

Computing $\langle x, y\rangle$ for normalized vectors x, y
If we have sample and query access to x and query access to y

- sample i distributed $\propto\left|x_{i}\right|^{2}$, and output $\frac{y_{i}}{x_{i}}$

Computing inner products

Computing $\langle x, y\rangle$ for normalized vectors x, y
If we have sample and query access to x and query access to y

- sample i distributed $\propto\left|x_{i}\right|^{2}$, and output $\frac{y_{i}}{x_{i}}$
- $\mathbb{E}=\sum_{i=1}^{n}\left|x_{i}\right|^{2} \frac{y_{i}}{x_{i}}=\langle x, y\rangle$;

Computing inner products

Computing $\langle x, y\rangle$ for normalized vectors x, y
If we have sample and query access to x and query access to y

- sample i distributed $\propto\left|x_{i}\right|^{2}$, and output $\frac{y_{i}}{x_{i}}$
- $\mathbb{E}=\sum_{i=1}^{n}\left|x_{i}\right|^{2} \frac{y_{i}}{x_{i}}=\langle x, y\rangle ; \quad \mathbb{E}|\cdot|^{2}=\sum_{i=1}^{n}\left|x_{i}\right|^{2}\left|\frac{y_{i}}{x_{i}}\right|^{2}=\|y\|^{2}=1$

Computing inner products

Computing $\langle x, y\rangle$ for normalized vectors x, y
If we have sample and query access to x and query access to y

- sample i distributed $\propto\left|x_{i}\right|^{2}$, and output $\frac{y_{i}}{x_{i}}$
- $\mathbb{E}=\sum_{i=1}^{n}\left|x_{i}\right|^{2} \frac{y_{i}}{x_{i}}=\langle x, y\rangle ; \quad \mathbb{E}|\cdot|^{2}=\sum_{i=1}^{n}\left|x_{i}\right|^{2}\left|\frac{y_{i}}{x_{i}}\right|^{2}=\|y\|^{2}=1$

Computing matrix elements

If we have sample and query access to A and query access to x, y

- We want to compute $x^{\top} A y$

Computing inner products

Computing $\langle x, y\rangle$ for normalized vectors x, y
If we have sample and query access to x and query access to y

- sample i distributed $\propto\left|x_{i}\right|^{2}$, and output $\frac{y_{i}}{x_{i}}$
- $\mathbb{E}=\sum_{i=1}^{n}\left|x_{i}\right|^{2} \frac{y_{i}}{x_{i}}=\langle x, y\rangle$;

$$
\mathbb{E}|\cdot|^{2}=\sum_{i=1}^{n}\left|x_{i}\right|^{2}\left|\frac{y_{i}}{x_{i}}\right|^{2}=\|y\|^{2}=1
$$

Computing matrix elements

If we have sample and query access to A and query access to x, y

- We want to compute $x^{\top} A y=\operatorname{Tr}\left(x^{\top} A y\right)=\operatorname{Tr}\left(A y x^{\top}\right)$

Computing inner products

Computing $\langle x, y\rangle$ for normalized vectors x, y
If we have sample and query access to x and query access to y

- sample i distributed $\propto\left|x_{i}\right|^{2}$, and output $\frac{y_{i}}{x_{i}}$
- $\mathbb{E}=\sum_{i=1}^{n}\left|x_{i}\right|^{2} \frac{y_{i}}{x_{i}}=\langle x, y\rangle$;

$$
\mathbb{E}|\cdot|^{2}=\sum_{i=1}^{n}\left|x_{i}\right|^{2}\left|\frac{y_{i}}{x_{i}}\right|^{2}=\|y\|^{2}=1
$$

Computing matrix elements

If we have sample and query access to A and query access to x, y

- We want to compute $x^{\top} A y=\operatorname{Tr}\left(x^{\top} A y\right)=\operatorname{Tr}\left(A y x^{\top}\right)=\left\langle A, y x^{\top}\right\rangle_{\text {HS }}$

Low rank approximation of $A^{\dagger} A$

$$
A^{\dagger} A=\sum_{i=1}^{m}\left|A_{i .} X A_{i}\right|
$$

With probability $\frac{\left\|A_{i}\right\|^{2}}{\|A\|_{F}^{2}}=\frac{|a|^{2}}{\|a\|^{2}}$ sample i and output the rank-1 matrix $\|A\|_{F}^{2} \cdot \frac{\left|A_{i}\right| X A_{i} \mid}{\| \| A_{i}\left\|^{2}\right\|^{2}}$.

Low rank approximation of $A^{\dagger} A$

$A^{\dagger} A=\sum_{i=1}^{m}\left|A_{i .} X A_{i}\right|$
With probability $\frac{\left\|A_{i}\right\|^{2}}{\|A\|_{F}^{2}}=\frac{\mid a i^{2}}{\|a\|^{2}}$ sample i and output the rank-1 matrix $\|A\|_{F}^{2} \cdot \frac{\left|A_{i} X A_{i}\right|}{\| \| A_{i}\left\|^{2}\right\|^{\prime}}$. The expectation value is

$$
\sum_{i} p_{i}\|A\|_{F}^{2} \cdot \frac{\left|A_{i} . X A_{i}\right| \mid}{\| \| A_{i .} .\left\|^{2}\right\|}=\sum_{i} \frac{\left\|A_{i}\right\|^{2}}{\|A\|_{F}^{2}}\|A\|_{F}^{2} \cdot \frac{\left|A_{i} . X A_{i}\right|}{\| \| A_{i} . \mid\left\|^{2}\right\|}=\sum_{i=1}^{m}\left|A_{i .} X A_{i .}\right|=A^{\dagger} A
$$

Low rank approximation of $A^{\dagger} A$

$A^{\dagger} A=\sum_{i=1}^{m}\left|A_{i .} X A_{i}\right|$
With probability $\frac{\left\|A_{i}\right\|^{2}}{\|A\|_{F}^{2}}=\frac{|a|^{2}}{\|a\|^{2}}$ sample i and output the rank-1 matrix $\|A\|_{F}^{2} \cdot \frac{\left|A_{i} \backslash A_{i}\right|}{\| \| A_{i}\left\|^{2}\right\|^{2}}$. The expectation value is

$$
\sum_{i} p_{i}\|A\|_{F}^{2} \cdot \frac{\left|A_{i} . X A_{i}\right| \mid}{\| \| A_{i .} .\left\|^{2}\right\|}=\sum_{i} \frac{\left\|A_{i}\right\|^{2}}{\|A\|_{F}^{2}}\|A\|_{F}^{2} \cdot \frac{\left|A_{i} . X A_{i}\right|}{\| \| A_{i} . \mid\left\|^{2}\right\|}=\sum_{i=1}^{m}\left|A_{i .} X A_{i .}\right|=A^{\dagger} A
$$

Each random matrix has norm $\|A\|_{F}^{2}$.

Low rank approximation of $A^{\dagger} A$

$A^{\dagger} A=\sum_{i=1}^{m}\left|A_{i .} X A_{i}\right|$
With probability $\frac{\left\|A_{i}\right\|^{2}}{\|A\|_{F}^{2}}=\frac{\mid a i^{2}}{\|a\|^{2}}$ sample i and output the rank-1 matrix $\|A\|_{F}^{2} \cdot \frac{\left|A_{i} X A_{i}\right|}{\| \| A_{i}\left\|^{2}\right\|^{\prime}}$. The expectation value is

$$
\sum_{i} p_{i}\|A\|_{F}^{2} \cdot \frac{\left|A_{i} . X A_{i}\right| \mid}{\| \| A_{i,}\left\|^{2}\right\|}=\sum_{i} \frac{\left\|A_{i}\right\|^{2}}{\|A\|_{F}^{2}}\|A\|_{F}^{2} \cdot \frac{\left|A_{i} . X A_{i}\right| \mid}{\| \| A_{i .} .\left\|^{2}\right\|}=\sum_{i=1}^{m}\left|A_{i .} X A_{i,}\right|=A^{\dagger} A
$$

Each random matrix has norm $\|A\|_{F}^{2}$.

Matrix Chernoff bound - Ahlswede \& Winter (2000), Tropp (2010)

Let $B \in R^{n \times n}$ and suppose that $\mathbb{E}[X]=B$, and $\|X-B\| \leq \gamma$.
If X_{1}, X_{2}, \ldots are iid copies of X, then

$$
\mathbb{P}\left(\left\|B-\frac{1}{t} \sum_{i=1}^{t} X_{i}\right\|>\varepsilon\right) \leq 2 n \exp \left(-\frac{\varepsilon^{2} t}{3 \gamma^{2}}\right) .
$$

Working with small linear combinations

$$
y=x^{(1)}+x^{(2)}
$$

(Rejection) sample from the linear combination $x^{(1)}+x^{(1)}$
If we have sample and query access to $x^{(1)}, x^{(2)}$

- sample ℓ distributed as $\left|x^{(\ell)}\right|^{2} /\left(\left\|x^{(1)}\right\|^{2}+\left\|x^{(2)}\right\|^{2}\right)$, then

Working with small linear combinations

$$
y=x^{(1)}+x^{(2)}
$$

(Rejection) sample from the linear combination $x^{(1)}+x^{(1)}$
If we have sample and query access to $x^{(1)}, x^{(2)}$

- sample ℓ distributed as $\left|x^{(\ell)}\right|^{2} /\left(\left\|x^{(1)}\right\|^{2}+\left\|x^{(2)}\right\|^{2}\right)$, then
- sample i distributed as $\left|x_{i}^{(\ell)}\right|^{2}$, and accept with probability

$$
\left|x_{i}^{(1)}+x_{i}^{(2)}\right|^{2} /\left(\left|x_{i}^{(1)}\right|^{2}+\left|x_{i}^{(2)}\right|^{2}\right)
$$

Working with small linear combinations

$$
y=x^{(1)}+x^{(2)} .
$$

(Rejection) sample from the linear combination $x^{(1)}+x^{(1)}$
If we have sample and query access to $x^{(1)}, x^{(2)}$

- sample ℓ distributed as $\left|x^{(\ell)}\right|^{2} /\left(\left\|x^{(1)}\right\|^{2}+\left\|x^{(2)}\right\|^{2}\right)$, then
- sample i distributed as $\left|x_{i}^{(\ell)}\right|^{2}$, and accept with probability

$$
\left|x_{i}^{(1)}+x_{i}^{(2)}\right|^{2} /\left(\left|x_{i}^{(1)}\right|^{2}+\left|x_{i}^{(2)}\right|^{2}\right)
$$

We see i with probability $\left|x_{i}^{(1)}+x_{i}^{(2)}\right|^{2} /\left(\left\|x^{(1)}\right\|^{2}+\left\|x^{(2)}\right\|^{2}\right)$.

Working with small linear combinations

$$
y=x^{(1)}+x^{(2)} .
$$

(Rejection) sample from the linear combination $x^{(1)}+x^{(1)}$
If we have sample and query access to $x^{(1)}, x^{(2)}$

- sample ℓ distributed as $\left|x^{(\ell)}\right|^{2} /\left(\left\|x^{(1)}\right\|^{2}+\left\|x^{(2)}\right\|^{2}\right)$, then
- sample i distributed as $\left|x_{i}^{(\ell)}\right|^{2}$, and accept with probability

$$
\left|x_{i}^{(1)}+x_{i}^{(2)}\right|^{2} /\left(\left|x_{i}^{(1)}\right|^{2}+\left|x_{i}^{(2)}\right|^{2}\right)
$$

We see i with probability $\left|x_{i}^{(1)}+x_{i}^{(2)}\right|^{2} /\left(\left\|x^{(1)}\right\|^{2}+\left\|x^{(2)}\right\|^{2}\right)$. Total acceptance prob.:

$$
\sum_{i=1}^{n} \mathbb{P}(\text { Output } i)
$$

Working with small linear combinations

$$
y=x^{(1)}+x^{(2)} .
$$

(Rejection) sample from the linear combination $x^{(1)}+x^{(1)}$
If we have sample and query access to $x^{(1)}, x^{(2)}$

- sample ℓ distributed as $\left|x^{(\ell)}\right|^{2} /\left(\left\|x^{(1)}\right\|^{2}+\left\|x^{(2)}\right\|^{2}\right)$, then
- sample i distributed as $\left|x_{i}^{(\ell)}\right|^{2}$, and accept with probability

$$
\left|x_{i}^{(1)}+x_{i}^{(2)}\right|^{2} /\left(\left|x_{i}^{(1)}\right|^{2}+\left|x_{i}^{(2)}\right|^{2}\right)
$$

We see i with probability $\left|x_{i}^{(1)}+x_{i}^{(2)}\right|^{2} /\left(\left\|x^{(1)}\right\|^{2}+\left\|x^{(2)}\right\|^{2}\right)$. Total acceptance prob.:

$$
\sum_{i=1}^{n} \mathbb{P}(\text { Output } i)=\left|x_{i}^{(1)}+x_{i}^{(2)}\right|^{2} /\left(\left\|x^{(1)}\right\|^{2}+\left\|x^{(2)}\right\|^{2}\right)
$$

Working with small linear combinations

$$
y=x^{(1)}+x^{(2)} .
$$

(Rejection) sample from the linear combination $x^{(1)}+x^{(1)}$
If we have sample and query access to $x^{(1)}, x^{(2)}$

- sample ℓ distributed as $\left|x^{(\ell)}\right|^{2} /\left(\left\|x^{(1)}\right\|^{2}+\left\|x^{(2)}\right\|^{2}\right)$, then
- sample i distributed as $\left|x_{i}^{(\ell)}\right|^{2}$, and accept with probability

$$
\left|x_{i}^{(1)}+x_{i}^{(2)}\right|^{2} /\left(\left|x_{i}^{(1)}\right|^{2}+\left|x_{i}^{(2)}\right|^{2}\right)
$$

We see i with probability $\left|x_{i}^{(1)}+x_{i}^{(2)}\right|^{2} /\left(\left\|x^{(1)}\right\|^{2}+\left\|x^{(2)}\right\|^{2}\right)$. Total acceptance prob.:

$$
\sum_{i=1}^{n} \mathbb{P}(\text { Output } i)=\left|x_{i}^{(1)}+x_{i}^{(2)}\right|^{2} \left\lvert\,\left(\left\|x^{(1)}\right\|^{2}+\left\|x^{(2)}\right\|^{2}\right)=\frac{\|y\|^{2}}{\left\|x^{(1)}\right\|^{2}+\left\|x^{(2)}\right\|^{2}}\right.
$$

Overall complexity

Punchline

No exponential speed-ups!

Overall complexity

Punchline

No exponential speed-ups!
Widely applicable, e.g., recommendation systems, low-rank matrix inversion, etc.

Overall complexity

Punchline

No exponential speed-ups!
Widely applicable, e.g., recommendation systems, low-rank matrix inversion, etc.

Complexity comparison

$\widetilde{O}\left(\frac{\|A\|_{F}}{\sigma}\right)$ quantum vs. $\widetilde{O}\left(\frac{\|A\|_{F}^{6}\|A\|^{10}}{\sigma^{16} \varepsilon^{6}}\right)$ classical
Are quantum Big Data algorithms doomed now???

Overall complexity

Punchline

No exponential speed-ups!
Widely applicable, e.g., recommendation systems, low-rank matrix inversion, etc.

Complexity comparison

$\widetilde{O}\left(\frac{\|A\|_{F}}{\sigma}\right)$ quantum vs. $\widetilde{O}\left(\frac{\|A\|_{F}^{6}\|A\|^{10}}{\sigma^{16} \varepsilon^{6}}\right)$ classical
Are quantum Big Data algorithms doomed now???

Open questions

Better classical algorithms? Better quantum algorithms?

Is there hope for a genuine quantum speedup?

Topological data analysis: Lloyd, Garnerone, and Zanardi (2016),

Zero-sum games (van Apeldoorn, G - arXiv: 1904.03180)

Pay-off matrix of Alice is $A \in \mathbb{R}^{m \times n}$. Expected pay-off for strategies $x, y: x^{\top} A y$

Zero-sum games (van Apeldoorn, G - arXiv: 1904.03180)

Pay-off matrix of Alice is $A \in \mathbb{R}^{m \times n}$. Expected pay-off for strategies $x, y: x^{\top} A y$
Fictitious play for approximate Nash-equilibrium (Grigoriadis \& Khachiyan 1995)
Start with $x^{(0)} \leftarrow 0 \in \mathbb{R}^{m}$ and $y^{(0)} \leftarrow 0 \in \mathbb{R}^{n}$

Zero-sum games (van Apeldoorn, G - arXiv: 1904.03180)

Pay-off matrix of Alice is $A \in \mathbb{R}^{m \times n}$. Expected pay-off for strategies $x, y: x^{\top} A y$
Fictitious play for approximate Nash-equilibrium (Grigoriadis \& Khachiyan 1995)
Start with $x^{(0)} \leftarrow 0 \in \mathbb{R}^{m}$ and $y^{(0)} \leftarrow 0 \in \mathbb{R}^{n}$ for $t=1,2, \ldots, \widetilde{O}\left(\frac{1}{\varepsilon^{2}}\right)$ do

- $P^{(t)} \leftarrow e^{-A^{\top} x^{(t)}}$ and $Q^{(t)} \leftarrow e^{A y^{(t)}}$
- $p^{(t)} \leftarrow P^{(t)} /\left\|P^{(t)}\right\|_{1}$ and $q^{(t)} \leftarrow Q^{(t)} /\left\|Q^{(t)}\right\|_{1}$
- Sample $a \sim p^{(t)}$ and $b \sim q^{(t)}$
- $y^{(t+1)}=y^{(t)}+\frac{\varepsilon}{4} e_{a}$ and $x^{(t+1)}=x^{(t)}+\frac{\varepsilon}{4} e_{b}$

Zero-sum games (van Apeldoorn, G - arXiv: 1904.03180)

Pay-off matrix of Alice is $A \in \mathbb{R}^{m \times n}$. Expected pay-off for strategies $x, y: x^{\top} A y$
Fictitious play for approximate Nash-equilibrium (Grigoriadis \& Khachiyan 1995)
Start with $x^{(0)} \leftarrow 0 \in \mathbb{R}^{m}$ and $y^{(0)} \leftarrow 0 \in \mathbb{R}^{n}$ for $t=1,2, \ldots, \widetilde{O}\left(\frac{1}{\varepsilon^{2}}\right)$ do

- $P^{(t)} \leftarrow e^{-A^{\top} x^{(t)}}$ and $Q^{(t)} \leftarrow e^{A y^{(t)}}$
- $p^{(t)} \leftarrow P^{(t)} /\left\|P^{(t)}\right\|_{1}$ and $q^{(t)} \leftarrow Q^{(t)} /\left\|Q^{(t)}\right\|_{1}$
- Sample $a \sim p^{(t)}$ and $b \sim q^{(t)}$
- $y^{(t+1)}=y^{(t)}+\frac{\varepsilon}{4} e_{a}$ and $x^{(t+1)}=x^{(t)}+\frac{\varepsilon}{4} e_{b}$

The main task is Gibbs sampling from a linear-combination of vectors.

Quantum rejection sampling: Ozols, Rötteler, Roland '11

The main task is Gibbs sampling ($\propto e^{A y^{(t)}}$) from a linear-combination of vectors.

Quantum rejection sampling: Ozols, Rötteler, Roland '11

The main task is Gibbs sampling ($\propto e^{A y^{(t)}}$) from a linear-combination of vectors. Idea: quantum rejection sampling.

Quantum rejection sampling: Ozols, Rötteler, Roland '11

The main task is Gibbs sampling ($\propto e^{A y^{(t)}}$) from a linear-combination of vectors. Idea: quantum rejection sampling.

- Compute largest entry c of $A y^{(t)}$ in time: $O\left(\sqrt{m} / \varepsilon^{2}\right)$

Quantum rejection sampling: Ozols, Rötteler, Roland '11

The main task is Gibbs sampling ($\propto e^{A y^{(t)}}$) from a linear-combination of vectors. Idea: quantum rejection sampling.

- Compute largest entry c of $A y^{(t)}$ in time: $O\left(\sqrt{m} / \varepsilon^{2}\right)$
- Sample $i \in[m]$ with probability $\frac{1}{m}$, accept with probability $e^{A_{i} y^{(t)}-c}$.

Quantum rejection sampling: Ozols, Rötteler, Roland '11

The main task is Gibbs sampling ($\propto e^{A y^{(t)}}$) from a linear-combination of vectors. Idea: quantum rejection sampling.

- Compute largest entry c of $A y^{(t)}$ in time: $O\left(\sqrt{m} / \varepsilon^{2}\right)$
- Sample $i \in[m]$ with probability $\frac{1}{m}$, accept with probability $e^{A_{i} y^{(t)}-c}$.
- Repeat $O(\sqrt{m})$-times \Rightarrow complexity $\widetilde{O}\left((\sqrt{n}+\sqrt{m}) / \varepsilon^{4}\right)$

Quantum rejection sampling: Ozols, Rötteler, Roland '11

The main task is Gibbs sampling ($\propto e^{A y^{(t)}}$) from a linear-combination of vectors. Idea: quantum rejection sampling.

- Compute largest entry c of $A y^{(t)}$ in time: $O\left(\sqrt{m} / \varepsilon^{2}\right)$
- Sample $i \in[m]$ with probability $\frac{1}{m}$, accept with probability $e^{A_{i} y^{(t)}-c}$.
- Repeat $O(\sqrt{m})$-times \Rightarrow complexity $\widetilde{O}\left((\sqrt{n}+\sqrt{m}) / \varepsilon^{4}\right)$

Exercise 4: work out the details of the above algorithm

Quantum rejection sampling: Ozols, Rötteler, Roland '11

The main task is Gibbs sampling ($\propto e^{A y^{(t)}}$) from a linear-combination of vectors. Idea: quantum rejection sampling.

- Compute largest entry c of $A y^{(t)}$ in time: $O\left(\sqrt{m} / \varepsilon^{2}\right)$
- Sample $i \in[m]$ with probability $\frac{1}{m}$, accept with probability $e^{A_{i} y^{(t)}-c}$.
- Repeat $O(\sqrt{m})$-times \Rightarrow complexity $\widetilde{O}\left((\sqrt{n}+\sqrt{m}) / \varepsilon^{4}\right)$

Exercise 4: work out the details of the above algorithm
(Note: Can be improved to $\widetilde{O}\left((\sqrt{n}+\sqrt{m}) / \varepsilon^{3}\right)$ by using approximate counting.)

LPs (\sim zero-sum games) and SDPs

A generalization of Linear programs (LPs).

LPs (~ zero-sum games) and SDPs

A generalization of Linear programs (LPs). Let $x \in \mathbb{R}^{n}$

$$
\mathrm{OPT}=\min \quad\langle c, x\rangle
$$

LPs (~ zero-sum games) and SDPs

A generalization of Linear programs (LPs). Let $x \in \mathbb{R}^{n}$

$$
\begin{aligned}
\mathrm{OPT}=\min & \langle c, x\rangle \\
\text { s.t. } & \left\langle a_{j}, x\right\rangle \leq b_{j} \quad \text { for all } j \in[m], \\
& x \geq 0
\end{aligned}
$$

LPs (~ zero-sum games) and SDPs

A generalization of Linear programs (LPs). Let $X \in \mathbb{R}^{n \times n}$

$$
\begin{aligned}
\mathrm{OPT}=\min & \langle C, X\rangle \\
\text { s.t. } & \left\langle A_{j}, X\right\rangle \leq b_{j} \quad \text { for all } j \in[m], \\
& X \geq 0
\end{aligned}
$$

LPs (~ zero-sum games) and SDPs

A generalization of Linear programs (LPs). Let $X \in \mathbb{R}^{n \times n}$

$$
\begin{aligned}
\text { OPT }=\min & \operatorname{Tr}(C X) \\
\text { s.t. } & \operatorname{Tr}\left(A_{j} X\right) \leq b_{j} \quad \text { for all } j \in[m], \\
& X \geq 0
\end{aligned}
$$

Assumptions and formalization

LPs (~ zero-sum games) and SDPs

A generalization of Linear programs (LPs). Let $X \in \mathbb{R}^{n \times n}$

$$
\begin{aligned}
\text { OPT }=\text { min } & \operatorname{Tr}(C X) \\
\text { s.t. } & \operatorname{Tr}\left(A_{j} X\right) \leq b_{j} \quad \text { for all } j \in[m], \\
& X \geq 0
\end{aligned}
$$

Assumptions and formalization

- $n \times n$ variable matrix X, with m constraints.

LPs (~ zero-sum games) and SDPs

A generalization of Linear programs (LPs). Let $X \in \mathbb{R}^{n \times n}$

$$
\begin{aligned}
\text { OPT }=\text { min } & \operatorname{Tr}(C X) \\
\text { s.t. } & \operatorname{Tr}\left(A_{j} X\right) \leq b_{j} \quad \text { for all } j \in[m], \\
& X \geq 0
\end{aligned}
$$

Assumptions and formalization

- $n \times n$ variable matrix X, with m constraints.
- Assume $\|C\|,\left\|A_{j}\right\| \leq 1$ and s-sparse.

LPs (~ zero-sum games) and SDPs

A generalization of Linear programs (LPs). Let $X \in \mathbb{R}^{n \times n}$

$$
\begin{aligned}
\text { OPT }=\text { min } & \operatorname{Tr}(C X) \\
\text { s.t. } & \operatorname{Tr}\left(A_{j} X\right) \leq b_{j} \quad \text { for all } j \in[m], \\
& X \geq 0
\end{aligned}
$$

Assumptions and formalization

- $n \times n$ variable matrix X, with m constraints.
- Assume $\|C\|,\left\|A_{j}\right\| \leq 1$ and s-sparse.
- A priori known bounds $\operatorname{Tr}[X] \leq R$ and $\sum_{j=0}^{m} y_{j} \leq r$.

LPs (~ zero-sum games) and SDPs

A generalization of Linear programs (LPs). Let $X \in \mathbb{R}^{n \times n}$

$$
\begin{aligned}
\text { OPT }=\text { min } & \operatorname{Tr}(C X) \\
\text { s.t. } & \operatorname{Tr}\left(A_{j} X\right) \leq b_{j} \quad \text { for all } j \in[m], \\
& X \geq 0
\end{aligned}
$$

Assumptions and formalization

- $n \times n$ variable matrix X, with m constraints.
- Assume $\|C\|,\left\|A_{j}\right\| \leq 1$ and s-sparse.
- A priori known bounds $\operatorname{Tr}[X] \leq R$ and $\sum_{j=0}^{m} y_{j} \leq r$.
- Goal: additive ε-approximation of the optimum.

LPs (~ zero-sum games) and SDPs

A generalization of Linear programs (LPs). Let $X \in \mathbb{R}^{n \times n}$

$$
\begin{aligned}
\text { OPT }=\text { min } & \operatorname{Tr}(C X) \\
\text { s.t. } & \operatorname{Tr}\left(A_{j} X\right) \leq b_{j} \quad \text { for all } j \in[m], \\
& X \geq 0
\end{aligned}
$$

Assumptions and formalization

- $n \times n$ variable matrix X, with m constraints.
- Assume $\|C\|,\left\|A_{j}\right\| \leq 1$ and s-sparse.
- A priori known bounds $\operatorname{Tr}[X] \leq R$ and $\sum_{j=0}^{m} y_{j} \leq r$.
- Goal: additive ε-approximation of the optimum.

Examples: MAXCUT, Lovász theta number, Sum-of-Squares, General Adversary bound, ...

LPs (~ zero-sum games) and SDPs

A generalization of Linear programs (LPs). Let $X \in \mathbb{R}^{n \times n}$

$$
\begin{aligned}
\text { OPT }=\text { min } & \operatorname{Tr}(C X) \\
\text { s.t. } & \operatorname{Tr}\left(A_{j} X\right) \leq b_{j} \quad \text { for all } j \in[m], \\
& X \geq 0
\end{aligned}
$$

Assumptions and formalization

- $n \times n$ variable matrix X, with m constraints.
- Assume $\|C\|,\left\|A_{j}\right\| \leq 1$ and s-sparse.
- A priori known bounds $\operatorname{Tr}[X] \leq R$ and $\sum_{j=0}^{m} y_{j} \leq r$.
- Goal: additive ε-approximation of the optimum.

Examples: MAXCUT, Lovász theta number, Sum-of-Squares, General Adversary bound, ... Brandão et al., van Apeldoorn et al. 2016-18 quantum solver $\widetilde{O}\left((\sqrt{n}+\sqrt{m})(\operatorname{Rr} / \varepsilon)^{5}\right)$

Learning from quantum data

Quantum principal component analysis (PCA)

Suppose as input we get a copy of a quantum state $\left|\psi_{i}\right\rangle$ with probability p_{i}.

- The mixed input quantum state is $\rho=\sum_{i} p_{i}\left|\psi_{i} X \psi_{i}\right|$
- (For simplicity let us assume $\left.\left\langle\psi_{i}, \psi_{j}\right\rangle=\delta_{i j}\right)$
- $O\left(t^{2} / \varepsilon\right)$ copies enable implementing ε-approximately $e^{\text {it } \rho}$ see "Quantum principal component analysis" by Lloyd, Mohseni, Rebentrost (2013) [Exercise 5: 18.7]
- Using phase estimation we can mark the input states $\left|\psi_{i}\right\rangle|0\rangle \mapsto\left|\psi_{i}\right\rangle\left|p_{i}\right\rangle$

Advantage with quantum memory

Without quantum memory at least $\sim 2^{n / 2}$ experiments are needed to learn a fixed property of the principal component of an unknown n-qubit quantum state, while a constant number of experiments suffice when two copies can be jointly processed.

Quantum advantage in learning from experiments: Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean (2021)

