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Major families of quantum machine learning algorithms
I “Quantum neural networks” (i.e., variational quantum circuits)

–For example classification (supervised learning)∣∣∣data point(i)
〉

U(~θ)
label

Optimize parameters to try and find most accurate model
–How to avoid barren plateaus?
–Small scale experiments don’t provide conclusive evidence, time will tell . . .

I “Big Data” analysis via quantum linear algebra methods
–For example least squares regression (via quantum matrix inversion, i.e., HHL)

I Speeding up optimization (learning) with quantum algorithms
–For example quantum linear program (LP) and SDP solving

I Learning from quantum data
–Understanding properties of a quantum state or a quantum process
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Quantum machine learning for Big Data
Some major tasks, given data A ∈ Rm×n

I Principal component analysis: find large eigenvalues and eigenvectors
Quantum: Lloyd, Mohseni, and Rebentrost 2013

I Supervised clustering: given class labels, classify new data (vector) b
Quantum: Lloyd, Mohseni, and Rebentrost 2013

I Support vector machines: binary classification of data (vector) b
Quantum: Rebentrost, Mohseni, and Lloyd 2013

I Recommendation Systems: find low-rank Aσ ∈ R
m×n s.t. A ≈ Aσ

Quantum: Kerenidis and Prakash 2016

Idea: Quantum computers can work with exponentially large matrices and vectors!

Warning: “Read the fine print”, Scott Aaronson, Nature, 2015
I Need to be able to efficiently prepare the input vector |b〉
I Need a circuit implementation (block-encoding) of the input matrix A
I Need to efficiently extract “answer” from the output |x〉(= A−1|b〉)
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Recommendation systems – Netflix challange

Image source: https://towardsdatascience.com © 3 / 22



The assumed structure of preference matrix:
Movies: a linear combination of a small number of features
User taste: a linear weighing of the features

Image source: https://towardsdatascience.com ©
4 / 22



What about the missing data points?

Data = structured part + noise

We have noisy preference matrix A ∈ Rm×n

Structured part: low-rank
Noise: high-rank but spread out
Idea: find best low-rank approximation (say rank 100)

Singular value decomposition

For every A ∈ Cm×n its singular value decomposition is A = U†ΣV where
U ∈ Cm×m,V ∈ Cn×n unitaries and Σ ∈ Rm×n has non-zero elements only on the
diagonal.
We can also write A =

∑m
i=1 σi |ui〉〈vi |, where ui, vi are the columns of U,V and

σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0 are the singular values of A .

Fact: the best rank-k approximation of A is Ã =
∑k

i=1 σi |ui〉〈vi |.

(Best in terms of the Frobenius norm: ‖M‖F =
√∑

i,j |Mij |
2.)
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We want to get a good recommendation

Given user i

Suppose we have a state proportional to |Ai.〉 (the i-th row of A ).

We can write |Ai.〉 =
∑m

j=1 αj

∣∣∣vj

〉
, and we want

∣∣∣Ãi.

〉
=

∑k
j=1 αj

∣∣∣vj

〉
.

Exercise 1: Prove that A †A =
∑m

i=1 σ
2
i |vi〉〈vi |

Quantum solution

Observe that A †A =
∑m

i=1 σ
2
i |vi〉〈vi | =⇒ apply phase estimation with A †A on |Ai.〉 to

filter out small singular values. (For simplicity let’s assume phase estimation works
ideally.)∑m

j=1 αj

∣∣∣vj

〉
7→

∑m
j=1 αj

∣∣∣vj

〉∣∣∣∣σ2
j

〉
7→

∑m
j=1 αj

∣∣∣vj

〉∣∣∣∣σ2
j

〉∣∣∣∣χ(σ2
j ≥ σ

2)
〉
7→

∑m
j=1 αj

∣∣∣vj

〉∣∣∣χ(σ2
j ≥ σ

2)
〉︸          ︷︷          ︸

measure

If we get outcome 1 the state is proportional to
∣∣∣Ãi.

〉
.

Measuring the state then gives recommendation j with probability ∝ |Ãij |
2.
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∣∣∣Ãi.

〉
=

∑k
j=1 αj

∣∣∣vj

〉
.

Exercise 1: Prove that A †A =
∑m

i=1 σ
2
i |vi〉〈vi |

Quantum solution

Observe that A †A =
∑m

i=1 σ
2
i |vi〉〈vi | =⇒ apply phase estimation with A †A on |Ai.〉 to

filter out small singular values. (For simplicity let’s assume phase estimation works
ideally.)∑m

j=1 αj

∣∣∣vj

〉
7→

∑m
j=1 αj

∣∣∣vj

〉∣∣∣∣σ2
j

〉
7→

∑m
j=1 αj

∣∣∣vj

〉∣∣∣∣σ2
j

〉∣∣∣∣χ(σ2
j ≥ σ

2)
〉
7→

∑m
j=1 αj

∣∣∣vj

〉∣∣∣χ(σ2
j ≥ σ

2)
〉︸          ︷︷          ︸

measure

If we get outcome 1 the state is proportional to
∣∣∣Ãi.
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Major difficulty: how to input the data?
Data conversion: classical to quantum

I Given b ∈ Rm prepare

|b〉 =
m∑

i=1

bi

‖b‖
|i〉

I Given A ∈ Rm×n construct quantum circuit (block-encoding)

U =

(
A/ ‖A‖F .

. .

)
.

How to preserve the exponential advantage?
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Solution: assume QRAM (readable in superposition)

Data structure (for simplicity let us assume ‖b‖ = 1)

∑3
i=0 |bi |

2

∑1
i=0 |bi |

2

b0 b1

∑3
i=2 |bi |

2

b2 b3

First prepare:
√∑1

i=0 |bi |
2|0〉+

√∑3
i=2 |bi |

2|1〉 – use rotation gate
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
Map

√∑1
i=0 |bi |

2|00〉 7→ |b0||00〉+ |b1||01〉 and
√∑3

i=2 |bi |
2|10〉 7→ |b2||10〉+ |b3||11〉

Add phases to get b0|00〉+ b1|01〉+ b2|10〉+ b3|11〉
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On-line updates to the data structure
Data structure

∑3
i=0 |bi |

2

∑1
i=0 |bi |

2

b0 b1

∑3
i=2 |bi |

2

b2 b3

–Update an entry and then its parent, grand parent, etc.

Cost is about the depth: log(dimension)
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Data structure for the matrix A
Let a be the vector of row norms such that ai = ‖Ai.‖.

‖a‖2 = ‖A‖2F

|a1 |
2 =

∥∥∥A(1, ·)
∥∥∥2

|a2 |
2 =

∥∥∥A(2, ·)
∥∥∥2

|A(1, 1)|2 + |A(1, 2)|2 |A(1, 3)|2 + |A(1, 4)|2 |A(2, 1)|2 + |A(2, 2)|2 |A(2, 3)|2 + |A(2, 4)|2

|A(1, 1)|2 |A(1, 2)|2 |A(1, 3)|2 |A(1, 4)|2 |A(2, 1)|2 |A(2, 2)|2 |A(2, 3)|2 |A(2, 4)|2

A(1,1)
|A(1,1)|

A(1,2)
|A(1,2)|

A(1,3)
|A(1,3)|

A(1,4)
|A(1,4)|

A(2,1)
|A(2,1)|

A(2,2)
|A(2,2)|

A(2,3)
|A(2,3)|

A(2,4)
|A(2,4)|

Dynamic data structure for a matrix A ∈ C2×4. We compose the data structure for a
with the data structure for A ’s rows.
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Quantum algorithms
Exercise 2: Let R : |0〉|i〉 7→ |Ai.〉|i〉

‖Ai.‖
and C : |0〉|j〉 7→ |j〉|a〉

‖a‖ .
Show that U = R†C is a block-encoding of A/ ‖A‖F .

Exercise 3: Show that U†(2|0〉〈0| − I)U is a block-encoding of 2 A†A
‖A‖2F
− I.

Recommendation systems

Given i prepare quantum state |Ai.〉/ ‖Ai.‖ (log(m + n) QRAM calls). Then prepare
∣∣∣Ãi.

〉
by phase estimation to precision σ2

‖A‖2F
and then a measurement, the cost is

Õ

(
‖A‖2F
σ2

)
times post-selection cost factor:

‖Ai.‖
2∥∥∥Ãi.

∥∥∥2

Tomorrow we will see

This can be improved quadratically!

Surely exponential speed-up compared to classical, right?
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Sampling form the input vectors?

∑4
i=1 |bi |

2

∑2
i=1 |bi |

2

b1 b2

∑4
i=3 |bi |

2

b3 b4

Data structure for storing b ∈ Rm

If stored in (classical) RAM, in time O (log(dimension)) we can
I query bi, and

I sample i distributed ∝ |bi |
2, and
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Computing inner products

Computing 〈x, y〉 for normalized vectors x, y

If we have sample and query access to x and query access to y
I sample i distributed ∝ |xi |

2, and output yi
xi

I E =
∑n

i=1

∣∣∣xi

∣∣∣2 yi
xi

= 〈x, y〉; E| · |2 =
∑n

i=1

∣∣∣xi

∣∣∣2∣∣∣ yi
xi

∣∣∣2 = ‖y‖2 = 1

Computing matrix elements

If we have sample and query access to A and query access to x, y
I We want to compute xTAy = Tr(xTAy) = Tr(AyxT ) = 〈A , yxT 〉HS
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Low rank approximation of A†A

A †A =
∑m

i=1 |Ai.〉〈Ai.|

With probability ‖Ai.‖
2

‖A‖2F
= |ai |

2

‖a‖2
sample i and output the rank-1 matrix ‖A‖2F ·

|Ai.〉〈Ai. |

‖‖Ai.‖
2‖

.

The expectation value is

∑
i

pi ‖A‖2F ·
|Ai.〉〈Ai.|∥∥∥‖Ai.‖

2
∥∥∥ =

∑
i

‖Ai.‖
2

‖A‖2F
‖A‖2F ·

|Ai.〉〈Ai.|∥∥∥‖Ai.‖
2
∥∥∥ =

m∑
i=1

|Ai.〉〈Ai.| = A †A

Each random matrix has norm ‖A‖2F .

Matrix Chernoff bound – Ahlswede & Winter (2000), Tropp (2010)

Let B ∈ Rn×n and suppose that E[X ] = B, and ‖X − B‖ ≤ γ.
If X1,X2, . . . are iid copies of X , then

P


∥∥∥∥∥∥∥B −

1
t

t∑
i=1

Xi

∥∥∥∥∥∥∥ > ε
 ≤ 2n exp

(
−
ε2t
3γ2

)
.
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Working with small linear combinations

y = x(1) + x(2).

(Rejection) sample from the linear combination x(1) + x(1)

If we have sample and query access to x(1), x(2)

I sample ` distributed as
∣∣∣x(`)

∣∣∣2/ (∥∥∥x(1)
∥∥∥2

+
∥∥∥x(2)

∥∥∥2
)
, then

I sample i distributed as
∣∣∣x(`)

i

∣∣∣2, and accept with probability∣∣∣∣x(1)
i + x(2)

i

∣∣∣∣2/ (∣∣∣∣x(1)
i

∣∣∣∣2 +
∣∣∣∣x(2)

i

∣∣∣∣2)
We see i with probability

∣∣∣∣x(1)
i + x(2)

i

∣∣∣∣2/ (∥∥∥x(1)
∥∥∥2

+
∥∥∥x(2)

∥∥∥2
)
. Total acceptance prob.:

n∑
i=1

P(Output i) =
∣∣∣∣x(1)

i + x(2)
i

∣∣∣∣2/ (∥∥∥x(1)
∥∥∥2

+
∥∥∥x(2)

∥∥∥2
)

=
‖y‖2∥∥∥x(1)

∥∥∥2
+

∥∥∥x(2)
∥∥∥2
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Overall complexity
Punchline

No exponential speed-ups!

Widely applicable, e.g., recommendation systems, low-rank matrix inversion, etc.

Complexity comparison

Õ
(
‖A‖F
σ

)
quantum vs. Õ

(
‖A‖6F ‖A‖

10

σ16ε6

)
classical

Are quantum Big Data algorithms doomed now???

Open questions

Better classical algorithms? Better quantum algorithms?
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Is there hope for a genuine quantum speedup?
Topological data analysis: Lloyd, Garnerone, and Zanardi (2016),

4

Point cloud Graph Simplicial complex

Linear operators

Betti numbers, i.e., list of 
number of holes, voids and 
k-dimensional counterparts

Mesh at 
grouping-scale ϵ

Identifying cliques 
as simplices

Homology

Computing dimensions 
of kernels

,

FIG. 2: The pipeline of topological data analysis (adapted from [17]). First, points that are within ε distance are
connected to create a graph. Afterwards, cliques in this graph are identified with simplices to create a simplicial
complex. Next, homology is used to construct linear operators that encode the topology. Finally, the dimensions of
the kernels of these operators are computed to obtain the Betti numbers which give the number of holes.

simulation and phase estimation to estimate the dimen-
sion of the kernel (i.e., the nullity) of the combinatorial
Laplacian (which by Eq. (4) is equal to the corresponding
Betti number). To make our presentation self-contained,
we review this quantum algorithm for Betti number es-
timation (for a more in-depth review see [18]).

Estimating the nullity of a sparse Hermitian matrix
can be achieved using some of the most fundamental
quantum-algorithmic primitives. Namely, using Hamil-
tonian simulation and quantum phase estimation one can
estimate the eigenvalues of the Hermitian matrix, given
that the eigenvector register starts out in an eigenstate.
Moreover, if instead the eigenvector register starts out in
the maximally mixed state (which can be thought of as
a random choice of an eigenstate), then measurements of
the eigenvalue register produce approximations of eigen-
values, sampled uniformly at random from the set of all
eigenvalues. This routine is then repeated to estimate
the nullity by simply computing the frequency of zero
eigenvalues (recall that the dimension of the kernel is
equal to the multiplicity of the zero eigenvalue). Note
that this procedure does not strictly speaking estimate
the nullity, but rather the number of small eigenvalues,
where the threshold is determined by the precision of the
quantum phase estimation (see Section II B 1 for more
details). The steps of the quantum algorithm for Betti
number estimation of LGZ are summarized in Figure 3.

In Step 1(a), Grover’s algorithm is used to prepare the
uniform superposition over HGk , from which one can pre-
pare the state ρGk by applying a CNOT gate to each qubit

Quantum algorithm for Betti number estimation

1. For i = 1, . . . ,M repeat:

(a) Prepare the state:

ρGk =
1

|dimHG
k |

∑

j∈Clk(G)

|j〉 〈j| . (5)

(b) Apply quantum phase estimation to the unitary

ei∆
G
k , with the eigenvector register starting out

in the state ρGk .

(c) Measure the eigenvalue register to obtain an

approximation λ̃i.

2. Output the frequency of zero eigenvalues:∣∣∣{i | λ̃i = 0}
∣∣∣ /M .

FIG. 3: Overview of the quantum algorithm of Lloyd,
Garnerone and Zanardi (LGZ) [12]

of the uniform superposition into some ancilla qubits and
tracing those out. When given access to the adjacency
matrix of G, one can check in O

(
k2
)

operations whether
a bitstring j ∈ {0, 1}n encodes a valid k-clique and mark
them accordingly in the application of Grover’s algo-
rithm. By cleverly encoding Hamming weight k strings
we can avoid searching over all n-bit strings, which re-
quires O (nk) additional gates per round of Grover’s al-
gorithm plus an additional one-time cost of O

(
n2k

)
[18].

Image from Gyurik, Cade, Dunjko arXiv:2005.02607 (2020) 18 / 22



Zero-sum games (van Apeldoorn, G – arXiv: 1904.03180)
Pay-off matrix of Alice is A ∈ Rm×n. Expected pay-off for strategies x, y: xTAy

Fictitious play for approximate Nash-equilibrium (Grigoriadis & Khachiyan 1995)

Start with x(0) ← 0 ∈ Rm and y(0) ← 0 ∈ Rn

for t = 1, 2, . . . , Õ
(

1
ε2

)
do

• P(t) ← e−AT x(t)
and Q(t) ← eAy(t)

• p(t) ← P(t)/
∥∥∥P(t)

∥∥∥
1

and q(t) ← Q(t)/
∥∥∥Q(t)

∥∥∥
1

• Sample a ∼ p(t) and b ∼ q(t)

• y(t+1) = y(t) + ε
4ea and x(t+1) = x(t) + ε

4eb

The main task is Gibbs sampling from a linear-combination of vectors.
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Quantum rejection sampling: Ozols, Rötteler, Roland ’11
The main task is Gibbs sampling (∝ eAy(t)

) from a linear-combination of vectors.

Idea: quantum rejection sampling.
I Compute largest entry c of Ay(t) in time: O

(√
m/ε2

)
I Sample i ∈ [m] with probability 1

m , accept with probability eAi.y(t)−c .

I Repeat O
(√

m
)
-times⇒ complexity Õ

(
(
√

n +
√

m )/ε4
)

Exercise 4: work out the details of the above algorithm
(Note: Can be improved to Õ

(
(
√

n +
√

m )/ε3
)

by using approximate counting.)
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LPs (∼ zero-sum games) and SDPs
A generalization of Linear programs (LPs).
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j=0 yj ≤ r .

I Goal: additive ε-approximation of the optimum.

Examples: MAXCUT, Lovász theta number,
Sum-of-Squares, General Adversary bound, . . .
Brandão et al., van Apeldoorn et al. 2016-18 quantum solver Õ

(
(
√

n +
√

m )(Rr/ε)5
)
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Learning from quantum data
Quantum principal component analysis (PCA)

Suppose as input we get a copy of a quantum state |ψi〉 with probability pi.
I The mixed input quantum state is ρ =

∑
i pi |ψi〉〈ψi |

I (For simplicity let us assume 〈ψi, ψj〉 = δij)

I O
(
t2/ε

)
copies enable implementing ε-approximately e itρ see “Quantum principal

component analysis” by Lloyd, Mohseni, Rebentrost (2013) [Exercise 5: 18.7]
I Using phase estimation we can mark the input states |ψi〉|0〉 7→ |ψi〉|pi〉

Advantage with quantum memory

Without quantum memory at least ∼ 2n/2 experiments are needed to learn a fixed
property of the principal component of an unknown n-qubit quantum state, while a
constant number of experiments suffice when two copies can be jointly processed.

Quantum advantage in learning from experiments: Huang, Broughton, Cotler, Chen,
Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean (2021)
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