A gentle introduction to quantum complexity theory¹

Sevag Gharibian

Department of Computer Science Institute for Photonic Quantum Systems (PhoQS) Paderborn University Germany

¹https://groups.uni-paderborn.de/fg-qi/courses/UPB_QCOMPLEXITY/2020/UPB_ QCOMPLEXITY_syllabus.html for course notes/Youtube videos

Sevag Gharibian (Paderborn University)

Intro to quantum complexity theory

Sar

-

Goal

Sevag Gharibian (Paderborn University)

Bad Honnef Physics School 2022 2/74

æ

590

・ロト ・ 日本 ・ 日本 ・ 日本

Goal

Sevag Gharibian (Paderborn University)

Bad Honnef Physics School 2022 2/74

Sac

3

・ロト ・四ト ・ヨト ・ヨト

Goal

High-level steps:

- Formal model for computation
- Complexity theory within this model (classical and quantum)

Sac

不得下 不至下 不至下

Preview

Sevag Gharibian (Paderborn University)

Bad Honnef Physics School 2022 3/74

3

Sac

Outline

Classical complexity theory

- The computational model
- Decision problems, P, and NP
- Reductions and NP-hardness

2 BQP

- Circuit families and BQP
- A BQP-complete problem: MI
 - $\bullet \ \mathsf{MI} \in \mathsf{BQP}$
 - MI is BQP-hard

3 QMA

- Kitaev's "quantum Cook-Levin theorem" for QMA
- 5 Beyond QMA: The many flavors of "quantum NP"

Sac

A D A D A D A

Outline

Classical complexity theory

- The computational model
- Decision problems, P, and NP
- Reductions and NP-hardness

2 BQP

- Circuit families and BQP
- A BQP-complete problem: MI
 - $\bullet \ \mathsf{MI} \in \mathsf{BQP}$
 - MI is BQP-hard

3 QMA

- Kitaev's "quantum Cook-Levin theorem" for QMA
- 5 Beyond QMA: The many flavors of "quantum NP"

Dac

周下 医下下 医下

What resources (e.g. time, space, communication, etc) are required to solve a given computational problem?

Sevag Gharibian (Paderborn University)

Intro to quantum complexity theory

Bad Honnef Physics School 2022 6/74

3

Sac

・ロト ・ 同ト ・ ヨト ・ ヨト

What resources (e.g. time, space, communication, etc) are required to solve a given computational problem?

Conversation with first-year CS undergrad:

• Instructor: What does it mean to compute shortest path from point A to point B on a map in $O(n^2)$ time?

3

Sac

化口压 化塑胶 化医胶 化医胶

What resources (e.g. time, space, communication, etc) are required to solve a given computational problem?

Conversation with first-year CS undergrad:

- Instructor: What does it mean to compute shortest path from point A to point B on a map in O(n²) time?
- Student: Given a map, A and B, output the shortest path using approximately n^2 steps.

Sac

化白色 化塑胶 化医胶体 医肉白豆

What resources (e.g. time, space, communication, etc) are required to solve a given computational problem?

Conversation with first-year CS undergrad:

- Instructor: What does it mean to compute shortest path from point A to point B on a map in O(n²) time?
- Student: Given a map, A and B, output the shortest path using approximately n^2 steps.
- Instructor: What do you mean by "steps"?

Sar

4 日本 4 間本 4 日本 4 日本 1 日

What resources (e.g. time, space, communication, etc) are required to solve a given computational problem?

Conversation with first-year CS undergrad:

- Instructor: What does it mean to compute shortest path from point A to point B on a map in O(n²) time?
- Student: Given a map, A and B, output the shortest path using approximately n² steps.
- Instructor: What do you mean by "steps"?
- Student: You know, loop iterations... in Java or something.

Sar

4 日本 4 間本 4 日本 4 日本 1 日

What resources (e.g. time, space, communication, etc) are required to solve a given computational problem?

Conversation with first-year CS undergrad:

- Instructor: What does it mean to compute shortest path from point A to point B on a map in $O(n^2)$ time?
- Student: Given a map, A and B, output the shortest path using approximately n^2 steps.
- Instructor: What do you mean by "steps"?
- Student: You know, loop iterations... in Java or something.
- Instructor: What if I don't code in Java? What if I code in C, or machine code?

Sar

- -

化口压 化塑胶 化医胶 化医胶

What resources (e.g. time, space, communication, etc) are required to solve a given computational problem?

Conversation with first-year CS undergrad:

- Instructor: What does it mean to compute shortest path from point A to point B on a map in $O(n^2)$ time?
- Student: Given a map, A and B, output the shortest path using approximately n² steps.
- Instructor: What do you mean by "steps"?
- Student: You know, loop iterations... in Java or something.
- Instructor: What if I don't code in Java? What if I code in C, or machine code?
- Student: Ummmmm...

Sar

化白色 化塑料 化医补充医补生医

What resources (e.g. time, space, communication, etc) are required to solve a given computational problem?

Conversation with first-year CS undergrad:

- Instructor: What does it mean to compute shortest path from point A to point B on a map in O(n²) time?
- Student: Given a map, A and B, output the shortest path using approximately n² steps.
- Instructor: What do you mean by "steps"?
- Student: You know, loop iterations... in Java or something.
- Instructor: What if I don't code in Java? What if I code in C, or machine code?
- Student: Ummmmm...
- Instructor: Do you even know what n is?

Sar

化白色 化塑胶 化医胶体 医肉白豆

What resources (e.g. time, space, communication, etc) are required to solve a given computational problem?

Conversation with first-year CS undergrad:

- Instructor: What does it mean to compute shortest path from point A to point B on a map in O(n²) time?
- Student: Given a map, A and B, output the shortest path using approximately n² steps.
- Instructor: What do you mean by "steps"?
- Student: You know, loop iterations... in Java or something.
- Instructor: What if I don't code in Java? What if I code in C, or machine code?
- Student: Ummmmm...
- Instructor: Do you even know what n is?
- Student:

Sevag Gharibian (Paderborn University)

Intro to quantum complexity theory

3

Sar

• Before TM starts: Input $x \in \{0, 1\}^*$ written on tape (\sqcup are blank cells)

3

Sac

イロト イポト イヨト イヨト

- Before TM starts: Input $x \in \{0, 1\}^*$ written on tape (\Box are blank cells)
- One step of computation:
 - Head at position *i* reads bit $b_i \in \{0, 1\}^*$ on tape
 - Write bit $b'_i \in \{0, 1\}$ to position *i* on tape
 - Move head left or right 1 cell

Sac

3

- Before TM starts: Input $x \in \{0, 1\}^*$ written on tape (\Box are blank cells)
- One step of computation:
 - Head at position *i* reads bit $b_i \in \{0, 1\}^*$ on tape
 - Write bit $b'_i \in \{0, 1\}$ to position *i* on tape
 - Move head left or right 1 cell
- What does it mean to "compute"? Given input *x*, TM runs for some number of steps, and either:
 - \blacktriangleright Halts \rightarrow tape contents are "output" of computation
 - ► Doesn't halt → infinite loop

Sac

3

- Before TM starts: Input $x \in \{0, 1\}^*$ written on tape (\Box are blank cells)
- One step of computation:
 - Head at position *i* reads bit $b_i \in \{0, 1\}^*$ on tape
 - Write bit $b'_i \in \{0, 1\}$ to position *i* on tape
 - Move head left or right 1 cell
- What does it mean to "compute"? Given input *x*, TM runs for some number of steps, and either:
 - \blacktriangleright Halts \rightarrow tape contents are "output" of computation
 - Doesn't halt \rightarrow infinite loop
- What is *n*? Input size, i.e. $x \in \{0, 1\}^n$.

Sac

3

化口压 化间压 化医压 化医压

Sevag Gharibian (Paderborn University)

Bad Honnef Physics School 2022 8/74

イロト イポト イヨト イヨト

nac

ъ

- Simple model to state and understand:
 - Computation time: Number of steps for TM to halt on input x
 - Computation space: Number of tape cells TM uses on tape

Sac

- Simple model to state and understand:
 - Computation time: Number of steps for TM to halt on input x
 - Computation space: Number of tape cells TM uses on tape
- Robust: Power of model unchanged under minor modifications (e.g. 2 tapes instead of 1)

Sac

- Simple model to state and understand:
 - Computation time: Number of steps for TM to halt on input x
 - Computation space: Number of tape cells TM uses on tape
- Robust: Power of model unchanged under minor modifications (e.g. 2 tapes instead of 1)
- Church-Turing thesis:

If there exists a mechanical process for computing function $f : \{0,1\}^* \to \{0,1\}^*$, then there exists a Turing machine computing f.

3

Outline

Classical complexity theory

- The computational model
- Decision problems, P, and NP
- Reductions and NP-hardness

2 BQP

- Circuit families and BQP
- A BQP-complete problem: MI
 - $\bullet \ \mathsf{MI} \in \mathsf{BQP}$
 - MI is BQP-hard

3 QMA

- Kitaev's "quantum Cook-Levin theorem" for QMA
- 5 Beyond QMA: The many flavors of "quantum NP"

Sac

A D A D A D A

Informally: "Problems with a YES or NO answer."

3

Sac

・ロト ・ 同ト ・ ヨト ・ ヨト

Informally: "Problems with a YES or NO answer."

Decision problem $A = (A_{yes}, A_{no})$

Suppose $A_{yes} \cup A_{no}$ partition $\{0, 1\}^*$, i.e. A_{yes} are "YES" instances, A_{no} the "NO" instances.

Given input $x \in \{0, 1\}^*$,

- if $x \in A_{\text{yes}}$, output YES.
- if $x \in A_{no}$, output NO.

Sac

3

- 日本 - 1 日本 - 日本 - 日本

Informally: "Problems with a YES or NO answer."

Decision problem $A = (A_{yes}, A_{no})$

Suppose $A_{yes} \cup A_{no}$ partition $\{0, 1\}^*$, i.e. A_{yes} are "YES" instances, A_{no} the "NO" instances.

Given input $x \in \{0, 1\}^*$,

- if $x \in A_{\text{yes}}$, output YES.
- if $x \in A_{no}$, output NO.

Example: Integer multiplication (MULTIPLY).

• Non-decision problem formulation: Given $(x, y) \in \mathbb{Z}^2$, what is *xy*?

Sac

イロト イポト イヨト イヨト ニヨー

Informally: "Problems with a YES or NO answer."

Decision problem $A = (A_{yes}, A_{no})$

Suppose $A_{yes} \cup A_{no}$ partition $\{0, 1\}^*$, i.e. A_{yes} are "YES" instances, A_{no} the "NO" instances.

Given input $x \in \{0, 1\}^*$,

- if $x \in A_{\text{yes}}$, output YES.
- if $x \in A_{no}$, output NO.

Example: Integer multiplication (MULTIPLY).

- Non-decision problem formulation: Given $(x, y) \in \mathbb{Z}^2$, what is *xy*?
- Decision problem formulation: Given $(x, y, t) \in \mathbb{Z}^3$, is $xy \le t$?

Sac

- 3

医静脉 医原体 医原

Informally: "Problems with a YES or NO answer."

Decision problem $A = (A_{yes}, A_{no})$

Suppose $A_{yes} \cup A_{no}$ partition $\{0, 1\}^*$, i.e. A_{yes} are "YES" instances, A_{no} the "NO" instances.

Given input $x \in \{0, 1\}^*$,

- if $x \in A_{\text{yes}}$, output YES.
- if $x \in A_{no}$, output NO.

Example: Integer multiplication (MULTIPLY).

- Non-decision problem formulation: Given $(x, y) \in \mathbb{Z}^2$, what is *xy*?
- Decision problem formulation: Given $(x, y, t) \in \mathbb{Z}^3$, is $xy \le t$?
- Formally,

$$A_{\text{yes}} = \Big\{ (x, y, t) \in \mathbb{Z}^3 \mid xy \leq t \Big\}, \qquad A_{\text{no}} = \{0, 1\}^* \setminus A_{\text{yes}}.$$

Sac

イロト イポト イヨト イヨト ニヨー

Polynomial-Time (P)

Polynomial-Time (P)

Decision problem $A = (A_{yes}, A_{no})$ is in P if there exists TM *M* and polynomial *p*, such that for any input $x \in \{0, 1\}^n$, *M* halts in a most O(p(n)) steps and:

- (YES case) If $x \in A_{yes}$, *M* outputs 1, i.e. M(x) = 1.
- (NO case) If $x \in A_{no}$, *M* outputs 0, i.e. M(x) = 0.

3

Polynomial-Time (P)

Polynomial-Time (P)

Decision problem $A = (A_{yes}, A_{no})$ is in P if there exists TM *M* and polynomial *p*, such that for any input $x \in \{0, 1\}^n$, *M* halts in a most O(p(n)) steps and:

• (YES case) If $x \in A_{yes}$, *M* outputs 1, i.e. M(x) = 1.

• (NO case) If $x \in A_{no}$, *M* outputs 0, i.e. M(x) = 0.

$\mathsf{MULTIPLY:} \ \boldsymbol{A}_{\mathsf{yes}} = \big\{ (\boldsymbol{x}, \boldsymbol{y}, t) \in \mathbb{Z}^3 \mid \boldsymbol{xy} \leq t \big\}.$

- Grade-school multiplication algorithm on TM takes $O(n^2)$ steps \Rightarrow MULTIPLY \in P.
- Aside: Fastest multiplication algorithm is O(n log n) [Harvey, van der Hoeven, 2019].

-

 $\mathsf{MULTIPLY:} \ \mathbf{A}_{\mathsf{yes}} = \big\{ (x, y, t) \in \mathbb{Z}^3 \mid xy \leq t \big\}.$

- Grade-school multiplication algorithm on TM takes $O(n^2)$ steps \Rightarrow MULTIPLY \in P.
- Aside: Fastest multiplication algorithm is O(n log n) [Harvey, van der Hoeven, 2019].

Sac

3

 $\mathsf{MULTIPLY:} A_{\mathsf{yes}} = \big\{ (x, y, t) \in \mathbb{Z}^3 \mid xy \leq t \big\}.$

- Grade-school multiplication algorithm on TM takes $O(n^2)$ steps \Rightarrow MULTIPLY \in P.
- Aside: Fastest multiplication algorithm is O(n log n) [Harvey, van der Hoeven, 2019].

FACTOR: $A_{\text{yes}} = \{(x, t) \in \mathbb{Z}^2 \mid x \ge 0 \text{ has non-trivial factor } \le t\}.$

• Is FACTOR \in P?

Sar

3

医静脉 医原体 医原

 $\mathsf{MULTIPLY:} \ \mathbf{A}_{\mathsf{yes}} = \big\{ (\mathbf{x}, \mathbf{y}, t) \in \mathbb{Z}^3 \mid \mathbf{x}\mathbf{y} \leq t \big\}.$

- Grade-school multiplication algorithm on TM takes $O(n^2)$ steps \Rightarrow MULTIPLY \in P.
- Aside: Fastest multiplication algorithm is O(n log n) [Harvey, van der Hoeven, 2019].

FACTOR: $A_{\text{yes}} = \{(x, t) \in \mathbb{Z}^2 \mid x \ge 0 \text{ has non-trivial factor } \le t\}.$

• Is FACTOR \in P?

Strongly believed FACTOR ∉ P (security of popular cryptosystem RSA relies on it)

Sac

・ロト (周) (王) (王) (王)

 $\mathsf{MULTIPLY:} A_{\mathsf{yes}} = \big\{ (x, y, t) \in \mathbb{Z}^3 \mid xy \leq t \big\}.$

- Grade-school multiplication algorithm on TM takes $O(n^2)$ steps \Rightarrow MULTIPLY \in P.
- Aside: Fastest multiplication algorithm is O(n log n) [Harvey, van der Hoeven, 2019].

 $\mathsf{FACTOR}: A_{\mathsf{yes}} = \big\{ (x,t) \in \mathbb{Z}^2 \mid x \geq 0 \text{ has non-trivial factor } \leq t \big\}.$

• Is FACTOR \in P?

- Strongly believed FACTOR ∉ P (security of popular cryptosystem RSA relies on it)
- Can be verified easily: Given claimed "proof" $y \in \mathbb{Z}$, can efficiently check if $y \leq t$ and $x \mod y = 0$.
First cousins

 $\mathsf{MULTIPLY:} \ \mathbf{A}_{\mathsf{yes}} = \big\{ (\mathbf{x}, \mathbf{y}, t) \in \mathbb{Z}^3 \mid \mathbf{x}\mathbf{y} \leq t \big\}.$

- Grade-school multiplication algorithm on TM takes $O(n^2)$ steps \Rightarrow MULTIPLY \in P.
- Aside: Fastest multiplication algorithm is O(n log n) [Harvey, van der Hoeven, 2019].

FACTOR: $A_{\text{yes}} = \{(x, t) \in \mathbb{Z}^2 \mid x \ge 0 \text{ has non-trivial factor } \le t\}.$

• Is FACTOR \in P?

- Strongly believed FACTOR ∉ P (security of popular cryptosystem RSA relies on it)
- Can be verified easily: Given claimed "proof" $y \in \mathbb{Z}$, can efficiently check if $y \leq t$ and $x \mod y = 0$.

Bonus: In contrast to FACTOR, checking if x has any non-trivial factor is in P [Agrawal, Kayal, Saxena 2002]

Sanity check

Why isn't the naive brute force algorithm poly-time?

Input: $(x, t) \in \mathbb{Z}^2$ Output: Factor $y \in \mathbb{Z}$ of x with $y \le t$, if one exists 1 Set k = 22 While (k < t)a) If x mod k = 0 then return k b) k = k + 13 Return "no factor found"

Runtime: \approx num loop iterations O(x).

Exercise 1: Why is this not poly-time?

Sac

3

A D A D A D A

Non-deterministic Polynomial-Time (NP)

Polynomial-Time (P)

Decision problem $A = (A_{yes}, A_{no})$ is in P if there exists TM *M* and polynomial *p*, such that for any input $x \in \{0, 1\}^n$, *M* halts in a most O(p(n)) steps and:

- (YES case) If $x \in A_{yes}$, *M* outputs 1.
- (NO case) If $x \in A_{no}$, *M* outputs 0.

3

Non-deterministic Polynomial-Time (NP)

Polynomial-Time (P)

Decision problem $A = (A_{yes}, A_{no})$ is in P if there exists TM *M* and polynomial *p*, such that for any input $x \in \{0, 1\}^n$, *M* halts in a most O(p(n)) steps and:

- (YES case) If $x \in A_{yes}$, *M* outputs 1.
- (NO case) If $x \in A_{no}$, *M* outputs 0.

Non-deterministic Polynomial-Time (NP)

Decision problem $A = (A_{yes}, A_{no})$ is in NP if there exists TM *M* and polynomials *p* and *q*, such that for any input $x \in \{0, 1\}^n$, *M* halts in a most O(p(n)) steps and:

- (YES case) If $x \in A_{yes}$, there exists proof $y \in \{0, 1\}^{q(n)}$, such that M(x, y) = 1.
- (NO case) If $x \in A_{no}$, for all proofs $y \in \{0, 1\}^{q(n)}$, M(x, y) = 0.

Observe: $P \subseteq NP$.

Non-deterministic Polynomial-Time (NP)

Polynomial-Time (P)

Decision problem $A = (A_{yes}, A_{no})$ is in P if there exists TM *M* and polynomial *p*, such that for any input $x \in \{0, 1\}^n$, *M* halts in a most O(p(n)) steps and:

- (YES case) If $x \in A_{yes}$, *M* outputs 1.
- (NO case) If $x \in A_{no}$, *M* outputs 0.

Non-deterministic Polynomial-Time (NP)

Decision problem $A = (A_{yes}, A_{no})$ is in NP if there exists TM *M* and polynomials *p* and *q*, such that for any input $x \in \{0, 1\}^n$, *M* halts in a most O(p(n)) steps and:

- (YES case) If $x \in A_{yes}$, there exists proof $y \in \{0, 1\}^{q(n)}$, such that M(x, y) = 1.
- (NO case) If $x \in A_{no}$, for all proofs $y \in \{0, 1\}^{q(n)}$, M(x, y) = 0.

Observe: $P \subseteq NP$.

Note: FACTOR \in NP (given "proof" $y \in \mathbb{Z}$, can efficiently check if $y \leq t$ and $x \mod y = 0$).

Preview

Sevag Gharibian (Paderborn University)

Bad Honnef Physics School 2022 15/74

3

Sac

Outline

Classical complexity theory

- The computational model
- Decision problems, P, and NP
- Reductions and NP-hardness

2 BQF

- Circuit families and BQP
- A BQP-complete problem: MI
 - $\bullet \ \mathsf{MI} \in \mathsf{BQP}$
 - MI is BQP-hard

3 QMA

- Kitaev's "quantum Cook-Levin theorem" for QMA
- 5 Beyond QMA: The many flavors of "quantum NP"

э

Moral code of complexity theorists: Let someone else solve your problem

3

Sac

イロト イポト イヨト イヨト

Moral code of complexity theorists: Let someone else solve your problem

(Many-one) reduction

A reduction from $A = (A_{\text{yes}}, A_{\text{no}})$ to $B = (B_{\text{yes}}, B_{\text{no}})$, denoted $A \leq B$, is a TM M, s.t. for any input $x \in \{0, 1\}^*$,

- if $x \in A_{\text{yes}}$, then $M(x) \in B_{\text{yes}}$.
- if $x \in A_{no}$, then $M(x) \in B_{no}$.

If *M* runs in poly-time, we say the reduction is poly-time, and write $A \leq_{\rho} B$.

= nan

Moral code of complexity theorists: Let someone else solve your problem

(Many-one) reduction

A reduction from $A = (A_{\text{yes}}, A_{\text{no}})$ to $B = (B_{\text{yes}}, B_{\text{no}})$, denoted $A \leq B$, is a TM M, s.t. for any input $x \in \{0, 1\}^*$,

- if $x \in A_{\text{yes}}$, then $M(x) \in B_{\text{yes}}$.
- if $x \in A_{no}$, then $M(x) \in B_{no}$.

If *M* runs in poly-time, we say the reduction is poly-time, and write $A \leq_{p} B$.

• Implication: If $A \leq_p B$, then if $B \in P \Rightarrow A \in P$.

= nan

不得下 不至下 不至下

Moral code of complexity theorists: Let someone else solve your problem

(Many-one) reduction

A reduction from $A = (A_{\text{yes}}, A_{\text{no}})$ to $B = (B_{\text{yes}}, B_{\text{no}})$, denoted $A \leq B$, is a TM M, s.t. for any input $x \in \{0, 1\}^*$,

- if $x \in A_{\text{yes}}$, then $M(x) \in B_{\text{yes}}$.
- if $x \in A_{no}$, then $M(x) \in B_{no}$.

If *M* runs in poly-time, we say the reduction is poly-time, and write $A \leq_{\rho} B$.

• Implication: If $A \leq_{p} B$, then if $B \in P \Rightarrow A \in P$.

• Exercise 2: Show that MULTIPLY reduces to $ADD = \{(x_1, \dots, x_k, t) \in \mathbb{Z}^{k+1} \mid k \ge 0 \text{ and } \sum_{i=1}^k x_k \le t\}.$ Is your reduction poly-time?

Sevag Gharibian (Paderborn University)

NP-complete problems

"Strongest/hardest" problems in NP

Formally:

- $B = (B_{\text{yes}}, B_{\text{no}})$ is NP-hard if for all $A = (A_{\text{yes}}, A_{\text{no}}) \in \text{NP}$, $A \leq_{\rho} B$.
 - Implication: $B \in P \Rightarrow P = NP$.

э

Sac

不得下 不至下 不至下

NP-complete problems

"Strongest/hardest" problems in NP

Formally:

- $B = (B_{\text{yes}}, B_{\text{no}})$ is NP-hard if for all $A = (A_{\text{yes}}, A_{\text{no}}) \in \text{NP}$, $A \leq_{\rho} B$.
 - Implication: $B \in P \Rightarrow P = NP$.
- *B* is NP-complete if *B* is NP-hard and $B \in NP$.
 - Implication: B "characterizes" the power of NP.

Sac

3

A D A D A D A

NP-complete problems

"Strongest/hardest" problems in NP

Formally:

- $B = (B_{\text{yes}}, B_{\text{no}})$ is NP-hard if for all $A = (A_{\text{yes}}, A_{\text{no}}) \in \text{NP}$, $A \leq_{\rho} B$.
 - Implication: $B \in P \Rightarrow P = NP$.
- *B* is NP-complete if *B* is NP-hard and $B \in NP$.
 - Implication: B "characterizes" the power of NP.
- Cook-Levin Theorem: 3-SAT is NP-complete [Cook 1971, Levin 1973]

Sac

3

3-SAT

Input: Boolean formula $\phi : \{0,1\}^n \to \{0,1\}$ in "3-Conjunctive Normal Form (3-CNF)", e.g.

 $\phi = (\mathbf{x}_1 \lor \mathbf{x}_2 \lor \overline{\mathbf{x}_3}) \land (\mathbf{x}_4 \lor \overline{\mathbf{x}_1} \lor \overline{\mathbf{x}_9}) \cdots (\overline{\mathbf{x}_1} \lor \mathbf{x}_5 \lor \overline{\mathbf{x}_2})$

Output: Is there a "satisfying assignment", i.e. $\exists x \in \{0,1\}^n$ such that $\phi(x) = 1$?

Exercise 3: Show that 3-SAT is NP-hard even if each variable x_i appears at most 3 times in ϕ .

Exercise 4: What is the complexity of 3-SAT if each variable x_i appears exactly 3 times in ϕ ? (Hint: Google "Hall's marriage theorem".)

Outline

Classical complexity theory

- The computational model
- Decision problems, P, and NP
- Reductions and NP-hardness

BQP

- Circuit families and BQP
- A BQP-complete problem: MI
 - $\bullet \ \mathsf{MI} \in \mathsf{BQP}$
 - MI is BQP-hard

3 QMA

- Kitaev's "quantum Cook-Levin theorem" for QMA
- 5 Beyond QMA: The many flavors of "quantum NP"

Sar

э

A D A D A D A

Outline

Classical complexity theory

- The computational model
- Decision problems, P, and NP
- Reductions and NP-hardness

2 BQP

- Circuit families and BQP
- A BQP-complete problem: MI
 - ${\color{black} \bullet} \ MI \in BQP$
 - MI is BQP-hard

3 QMA

- Kitaev's "quantum Cook-Levin theorem" for QMA
- 5 Beyond QMA: The many flavors of "quantum NP"

Sar

э

Quantumly: Work with poly(n)-size quantum circuit implementing *n*-qubit unitaries U, e.g.

What happened to our beloved TMs?

Sevag Gharibian (Paderborn University)

Intro to quantum complexity theory

Bad Honnef Physics School 2022 22/74

伺下 イヨト イヨト

Sac

What computational model to use for quantum complexity theory?

• Idea 1: Use "quantum Turing machines"...

Sac

医静脉 医原体 医

What computational model to use for quantum complexity theory?

• Idea 1: Use "quantum Turing machines"...

Idea 2: Use "poly-size" quantum circuits?

Sac

э

周下 化医下不良下

What computational model to use for quantum complexity theory?

• Idea 1: Use "quantum Turing machines"...

- Idea 2: Use "poly-size" quantum circuits?
 - **Exercise 5.** If 3-SAT formula ϕ is satisfiable, \exists poly-size circuit computing x with $\phi(x) = 1$.

Sar

3

不得下 不至下 不至下

What computational model to use for quantum complexity theory?

Idea 1: Use "quantum Turing machines"...

- Idea 2: Use "poly-size" quantum circuits?
 - ► Exercise 5. If 3-SAT formula ϕ is satisfiable, \exists poly-size circuit computing x with $\phi(x) = 1$.
 - Problem: Even if poly-size circuit exists, can be hard to find it! If the poly-size circuit is hard to find, not very useful for solving problems ③

Sac

3

A D A D A D A

What computational model to use for quantum complexity theory?

Idea 1: Use "quantum Turing machines"...

- Idea 2: Use "poly-size" quantum circuits?
 - ▶ Exercise 5. If 3-SAT formula ϕ is satisfiable, \exists poly-size circuit computing x with $\phi(x) = 1$.
 - Problem: Even if poly-size circuit exists, can be hard to find it! If the poly-size circuit is hard to find, not very useful for solving problems ©
 - Solution: Use "poly-time uniformly generated" circuits.

Sac

3

不得下 不至下 不至下

Remark: All quantum circuits in this lecture are sequences of 1- and 2-qubit gates.

P-uniform quantum circuit family

A family of quantum circuits $\{Q_n\}$ is P-uniform if there exists a poly-time TM *M*, which given as input 1^{*n*}, outputs a classical description of Q_n via a sequence of 1- and 2-qubit gates.

Exercise 6: Why does M get 1^{*n*} as input, instead of *n* written in binary?

Henceforth: Use P-uniform quantum circuit families, not TMs.

= nar

Bounded-error quantum polynomial-time (BQP)

Promise problem $\mathbb{A} = (A_{\text{ves}}, A_{\text{no}}, A_{\text{inv}}) \in \text{BQP}$ if \exists P-uniform quantum circuit family $\{Q_n\}$ and polynomial q as below. The first output qubit of Q_n is measured in the standard basis and returned. For any input $x \in \{0, 1\}^*$:

- (YES case) If $x \in A_{ves}$, then Q_n outputs 1 with probability at least 2/3.
- (NO case) If $x \in A_{no}$, then Q_n outputs 1 with probability at most 1/3.
- (Invalid case) If $x \in A_{inv}$, Q_n outputs 0 or 1 arbitrarily.

Quantum complexity classes typically promise classes

²Best strategy: Run circuit in parallel, take majority vote of output answers, apply Chernoff bound. 🚊 🗠 🔍

Sevag Gharibian (Paderborn University)

Intro to quantum complexity theory

Quantum complexity classes typically promise classes

• Decision problem: All inputs are "valid", i.e. A_{yes} and A_{no} partition $\{0, 1\}^*$.

 ²Best strategy: Run circuit in parallel, take majority vote of output answers, apply Chernoff bound.
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >

Quantum complexity classes typically promise classes

- Decision problem: All inputs are "valid", i.e. A_{yes} and A_{no} partition $\{0, 1\}^*$.
- Promise problem: Not all inputs are "valid", i.e. $A_{inv} = \{0, 1\}^* \setminus (A_{ves} \cup A_{no})$.
 - ► Intuition: poly(n) runs of quantum circuit cannot distinguish² YES vs NO thresholds like

$$\frac{1}{2} + \frac{1}{2^n} \quad \text{versus} \quad \frac{1}{2} - \frac{1}{2^n}.$$

²Best strategy: Run circuit in parallel, take majority vote of output answers, apply Chernoff bound. 🛓 🗠 ۹. 🤊

Quantum complexity classes typically promise classes

- Decision problem: All inputs are "valid", i.e. A_{yes} and A_{no} partition $\{0, 1\}^*$.
- Promise problem: Not all inputs are "valid", i.e. $A_{inv} = \{0, 1\}^* \setminus (A_{ves} \cup A_{no})$.
 - ► Intuition: poly(n) runs of quantum circuit cannot distinguish² YES vs NO thresholds like

$$\frac{1}{2} + \frac{1}{2^n} \quad \text{versus} \quad \frac{1}{2} - \frac{1}{2^n}.$$

Exercise 7: Chernoff bound has "exponential scaling". Why does it not suffice above?

²Best strategy: Run circuit in parallel, take majority vote of output answers, apply Chernoff bound. 🛓 🗠 ۹.

Outline

Classical complexity theory

- The computational model
- Decision problems, P, and NP
- Reductions and NP-hardness

BQP

- Circuit families and BQP
- A BQP-complete problem: MI
 - ${\color{black} \bullet} \ \mathsf{MI} \in \mathsf{BQP}$
 - MI is BQP-hard

3 QMA

- 4 Kitaev's "quantum Cook-Levin theorem" for QMA
- 5 Beyond QMA: The many flavors of "quantum NP"

э

The Pikachu of BQP

Linear system solving:

- Input: Invertible $A \in \mathbb{C}^{N \times N}$ and target vector $\mathbf{b} \in \mathbb{C}^N$
- Output: $\mathbf{x} \in \mathbb{C}^N$ such that $A\mathbf{x} = \mathbf{b}$.

What is the complexity of linear system solving?

э

Sac

医静脉 医黄脉 医黄脉

The Pikachu of BQP

Linear system solving:

- Input: Invertible $A \in \mathbb{C}^{N \times N}$ and target vector $\mathbf{b} \in \mathbb{C}^{N}$
- Output: $\mathbf{x} \in \mathbb{C}^N$ such that $A\mathbf{x} = \mathbf{b}$.

What is the complexity of linear system solving?

- A and **x** given explicitly in matrix form \Rightarrow **x** = A^{-1} **b** classically in time poly(N)
 - Exercise 8: Is linear system solving thus in P?

Sar

3

不得下 不至下 不至下

The Pikachu of BQP

Linear system solving:

- Input: Invertible $A \in \mathbb{C}^{N \times N}$ and target vector $\mathbf{b} \in \mathbb{C}^N$
- Output: $\mathbf{x} \in \mathbb{C}^N$ such that $A\mathbf{x} = \mathbf{b}$.

What is the complexity of linear system solving?

- A and **x** given explicitly in matrix form \Rightarrow **x** = A^{-1} **b** classically in time poly(N)
 - Exercise 8: Is linear system solving thus in P?
- A represented "succinctly" via "query-access" and b given via quantum circuit?

Sac

3

Matrix inversion problem (MI)

Input:

- O(1)-sparse row-computable invertible Hermitian matrix³ $A \in \mathbb{C}^{N \times N}$
- A specified via polylog *N*-time TM *M* which, given row index $r \in [N]$ of *A*, outputs entries of row *r* of *A*

³Technically, need condition number $\kappa(A)$ to satisfy $\kappa^{-1}(A) \preceq A \preceq I$ with $\kappa(A) \in \text{polylog}(N)$.

Sevag Gharibian (Paderborn University)

Intro to quantum complexity theory

Matrix inversion problem (MI)

Input:

- O(1)-sparse row-computable invertible Hermitian matrix³ $A \in \mathbb{C}^{N \times N}$
- A specified via polylog *N*-time TM *M* which, given row index $r \in [N]$ of *A*, outputs entries of row *r* of *A*

Output: Let $|x\rangle \propto A^{-1}|0^{N}\rangle$ be a unit vector, and $\Pi = |1\rangle\langle 1|$ a projector onto the first qubit of $|x\rangle$. Then:

- (YES case) If $\langle x | \Pi | x \rangle \ge 2/3$, output YES.
- (NO case) If $\langle x | \Pi | x \rangle \leq 1/3$, output NO.
- (Invalid case) Else, output YES or NO arbitrarily.

³Technically, need condition number $\kappa(A)$ to satisfy $\kappa^{-1}(A) \preceq A \preceq I$ with $\kappa(A) \in \text{polylog}(N)$.

Matrix inversion problem (MI)

Input:

- O(1)-sparse row-computable invertible Hermitian matrix³ $A \in \mathbb{C}^{N \times N}$
- A specified via polylog *N*-time TM *M* which, given row index $r \in [N]$ of *A*, outputs entries of row *r* of *A*

Output: Let $|x\rangle \propto A^{-1}|0^N\rangle$ be a unit vector, and $\Pi = |1\rangle\langle 1|$ a projector onto the first qubit of $|x\rangle$. Then:

- (YES case) If $\langle x|\Pi|x\rangle \ge 2/3$, output YES.
- (NO case) If $\langle x | \Pi | x \rangle \leq 1/3$, output NO.
- (Invalid case) Else, output YES or NO arbitrarily.

Theorem [Harrow, Hassidim, Lloyd, 2008]

MI is BQP-complete under poly-time many-one reductions.

Proof steps:

2 MI is BQP-hard.

³Technically, need condition number $\kappa(A)$ to satisfy $\kappa^{-1}(A) \preceq A \preceq I$ with $\kappa(A) \in \mathsf{polylog}(N)$.

Sevag Gharibian (Paderborn University)
Matrix inversion problem (MI)

Input:

- O(1)-sparse row-computable invertible Hermitian matrix³ $A \in \mathbb{C}^{N \times N}$
- A specified via polylog *N*-time TM *M* which, given row index $r \in [N]$ of *A*, outputs entries of row *r* of *A*

Output: Let $|x\rangle \propto A^{-1}|0^N\rangle$ be a unit vector, and $\Pi = |1\rangle\langle 1|$ a projector onto the first qubit of $|x\rangle$. Then:

- (YES case) If $\langle x|\Pi|x\rangle \ge 2/3$, output YES.
- (NO case) If $\langle x | \Pi | x \rangle \leq 1/3$, output NO.
- (Invalid case) Else, output YES or NO arbitrarily.

Theorem [Harrow, Hassidim, Lloyd, 2008]

MI is BQP-complete under poly-time many-one reductions.

Proof steps:

2 MI is BQP-hard.

³Technically, need condition number $\kappa(A)$ to satisfy $\kappa^{-1}(A) \not \leq A \leq I$ with $\kappa(A) \in \mathsf{polylog}(\underline{N})$.

Sevag Gharibian (Paderborn University)

Outline

Classical complexity theory

- The computational model
- Decision problems, P, and NP
- Reductions and NP-hardness

BQP

- Circuit families and BQP
- A BQP-complete problem: MI • MI \in BQP
 - MI is BQP-hard

3 QMA

- Kitaev's "quantum Cook-Levin theorem" for QMA
- 5 Beyond QMA: The many flavors of "quantum NP"

Goal: Given sparse Hermitian *A* and poly-size circuit for $|b\rangle$, want to compute unit vector $|x\rangle \propto A^{-1}|b\rangle$. Idea: To compute A^{-1} , *coherently invert* each eigenvalue of *A* via Quantum Phase Estimation (QPE).

Sac

化口水 化塑料 化管料 化管料 一营一

Goal: Given sparse Hermitian *A* and poly-size circuit for $|b\rangle$, want to compute unit vector $|x\rangle \propto A^{-1}|b\rangle$. Idea: To compute A^{-1} , *coherently invert* each eigenvalue of *A* via Quantum Phase Estimation (QPE). Notation: Spectral decomposition $A = \sum_i \lambda_i |\psi_i\rangle\langle\psi_i|$.

Framework: Eigenvalue surgery

- Eigenvalue extraction (via Hamiltonian simulation and Quantum Phase Estimation (QPE))
- 2 Eigenvalue processing (done classically, coherently)
- Eigenvalue reinsertion (via postselection)

Goal: Given sparse Hermitian *A* and poly-size circuit for $|b\rangle$, want to compute unit vector $|x\rangle \propto A^{-1}|b\rangle$. Idea: To compute A^{-1} , *coherently invert* each eigenvalue of *A* via Quantum Phase Estimation (QPE). Notation: Spectral decomposition $A = \sum_i \lambda_i |\psi_i\rangle\langle\psi_i|$.

Framework: Eigenvalue surgery

- Eigenvalue extraction (via Hamiltonian simulation and Quantum Phase Estimation (QPE))
- 2 Eigenvalue processing (done classically, coherently)
- Eigenvalue reinsertion (via postselection)

Question: Why is quantum dynamics unitary?

3

Sac

イロト イポト イヨト イヨト

Question: Why is quantum dynamics unitary?

(Time-independent) Schrödinger equation

Time evolution of any *n*-qubit system governed by Hermitian matrix $H \in \mathcal{L}(\mathbb{C}^2)^{\otimes n}$, called a Hamiltonian:

$$irac{{m d}|\psi
angle}{{m d}t}={m H}|\psi
angle$$

Sac

-

Question: Why is quantum dynamics unitary?

(Time-independent) Schrödinger equation

Time evolution of any *n*-qubit system governed by Hermitian matrix $H \in \mathcal{L}(\mathbb{C}^2)^{\otimes n}$, called a Hamiltonian:

$$i \frac{d|\psi\rangle}{dt} = H|\psi\rangle \quad \stackrel{solve}{\longrightarrow} \quad |\psi_t\rangle = e^{-iHt}|\psi_0\rangle \quad (\leftarrow \text{ unitary!})$$

Sac

3

不得下 不至下 不至下

Question: Why is quantum dynamics unitary?

(Time-independent) Schrödinger equation

Time evolution of any *n*-qubit system governed by Hermitian matrix $H \in \mathcal{L}(\mathbb{C}^2)^{\otimes n}$, called a Hamiltonian:

$$i \frac{d|\psi\rangle}{dt} = H|\psi\rangle \quad \stackrel{solve}{\longrightarrow} \quad |\psi_t\rangle = e^{-iHt}|\psi_0\rangle \quad (\leftarrow \text{ unitary!})$$

Hamiltonian simulation [Low, Chuang 2017]

Given *d*-sparse *H*, simulation time $t \ge 0$, and $\epsilon > 0$, can simulate e^{iHt} up to error ϵ and success probability at least $1 - 2\epsilon$ in time^{*a*}

$$O\left(td \left\|H\right\|_{\max} + \frac{\log(1/\epsilon)}{\log\log(1/\epsilon)}\right).$$

^{*a*}Query complexity. Gate complexity has O(n) overhead.

Sevag Gharibian (Paderborn University)

-

Sac

Goal: Given sparse Hermitian *A* and poly-size circuit for $|b\rangle$, want to compute unit vector $|x\rangle \propto A^{-1}|b\rangle$. Idea: To compute A^{-1} , *coherently invert* each eigenvalue of *A* via Quantum Phase Estimation (QPE). Notation: Spectral decomposition $A = \sum_i \lambda_i |\psi_i\rangle\langle\psi_i|$.

Framework: Eigenvalue surgery

- Eigenvalue extraction (via Hamiltonian simulation and Quantum Phase Estimation (QPE))
- 2 Eigenvalue processing (done classically, coherently)
- Eigenvalue reinsertion (via postselection)

- Consider Hermitian *H* with spectral decomposition $H = \sum_{i} \lambda_{i} |\psi_{j}\rangle \langle \psi_{j}|$.
- Consider spectral decomposition of unitary:

$$U = e^{iH} =$$

Sac

-

・ロト ・ 同ト ・ ヨト ・ ヨト

- Consider Hermitian *H* with spectral decomposition $H = \sum_{i} \lambda_{i} |\psi_{j}\rangle \langle \psi_{j}|$.
- Consider spectral decomposition of unitary:

$$U = e^{iH} = \sum_{j} e^{i\lambda_j} |\psi_j\rangle\langle\psi_j|.$$

Sac

-

・ロト ・ 同ト ・ ヨト ・ ヨト

- Consider Hermitian *H* with spectral decomposition $H = \sum_{i} \lambda_{i} |\psi_{j}\rangle \langle \psi_{j}|$.
- Consider spectral decomposition of unitary:

$$U = e^{iH} = \sum_{j} e^{i\lambda_j} |\psi_j\rangle\langle\psi_j|.$$

• Goal: Given eigenvector $|\psi_j\rangle$, precision parameter *k*, want to compute λ_j to *k* bits of precision.

Quantum Phase Estimation algorithm (QPE)

Given precision *k*, and ability to efficiently compute controlled- $U^{2^{\kappa}}$ for $1 \leq \kappa \leq k$, can map

 $|\mathbf{0}^{k}\rangle|\psi_{j}\rangle\mapsto|\widetilde{\lambda_{j}}\rangle|\psi_{j}\rangle$

Sevag Gharibian (Paderborn University)

Sac

4 日本 4 間本 4 日本 4 日本 1 日

- Consider Hermitian *H* with spectral decomposition $H = \sum_{i} \lambda_{i} |\psi_{j}\rangle \langle \psi_{j}|$.
- Consider spectral decomposition of unitary:

$$U = e^{iH} = \sum_{j} e^{i\lambda_j} |\psi_j\rangle\langle\psi_j|.$$

• Goal: Given eigenvector $|\psi_j\rangle$, precision parameter k, want to compute λ_j to k bits of precision.

Quantum Phase Estimation algorithm (QPE)

Given precision *k*, and ability to efficiently compute controlled- $U^{2^{\kappa}}$ for $1 \leq \kappa \leq k$, can map

$$|\mathbf{0}^{k}\rangle|\psi_{j}\rangle\mapsto|\widetilde{\lambda}_{j}\rangle|\psi_{j}\rangle \quad \Rightarrow \quad |\mathbf{0}^{k}\rangle\sum_{j}\alpha_{j}|\psi_{j}\rangle\mapsto\sum_{j}\alpha_{j}|\widetilde{\lambda}_{j}\rangle|\psi_{j}\rangle,$$

where $\widetilde{\lambda_j}$ is λ_j up to *k* bits.

Exercise 9a: Given *n*-qubit unitary *U*, can we efficiently compute U^{2^n} in general?

Sevag Gharibian (Paderborn University)

Intro to quantum complexity theory

Goal: Given sparse Hermitian *A* and poly-size circuit for $|b\rangle$, want to compute unit vector $|x\rangle \propto A^{-1}|b\rangle$. Idea: To compute A^{-1} , *coherently invert* each eigenvalue of *A* via Quantum Phase Estimation (QPE). Notation: Spectral decomposition $A = \sum_i \lambda_i |\psi_i\rangle\langle\psi_i|$.

Framework: Eigenvalue surgery

- Eigenvalue extraction (via Hamiltonian simulation and Quantum Phase Estimation (QPE))
- 2 Eigenvalue processing (done classically, coherently)
- Eigenvalue reinsertion (via postselection)

Step 1: Eigenvalue extraction (recall $\mathbf{A} = \sum_{i} \lambda_i |\psi_i\rangle \langle \psi_i |$)

• Prepare target state

$$|\boldsymbol{b}\rangle = \sum_{j=1}^{N} \alpha_j |\psi_j\rangle \in \mathbb{C}^N,$$

where $|\psi_j\rangle$ are the eigenvectors of *A* with eigenvalues λ_j .

э.

Sac

・ロト ・ 同ト ・ ヨト ・ ヨト

Step 1: Eigenvalue extraction (recall $\mathbf{A} = \sum_{i} \lambda_{i} |\psi_{i}\rangle\langle\psi_{i}|$)

• Prepare target state

$$|\boldsymbol{b}
angle = \sum_{j=1}^{N} \alpha_j |\psi_j
angle \in \mathbb{C}^N,$$

where $|\psi_j\rangle$ are the eigenvectors of *A* with eigenvalues λ_j .

• Apply QPE (for unitary e^{iA}) with an *n*-qubit ancilla to our state $|b\rangle$ to obtain

$$\sum_{j=1}^{N} \alpha_j |\lambda_j\rangle |\psi_j\rangle \in (\mathbb{C}^2)^{\otimes n} \otimes \mathbb{C}^N.$$

Sac

イロト 不得 トイヨト イヨト ニヨー

Step 1: Eigenvalue extraction (recall $\mathbf{A} = \sum_{i} \lambda_{i} |\psi_{i}\rangle\langle\psi_{i}|$)

Prepare target state

$$|\boldsymbol{b}
angle = \sum_{j=1}^{N} \alpha_j |\psi_j
angle \in \mathbb{C}^N,$$

where $|\psi_j\rangle$ are the eigenvectors of *A* with eigenvalues λ_j .

• Apply QPE (for unitary e^{iA}) with an *n*-qubit ancilla to our state $|b\rangle$ to obtain

$$\sum_{j=1}^{N} \alpha_j |\lambda_j\rangle |\psi_j\rangle \in (\mathbb{C}^2)^{\otimes n} \otimes \mathbb{C}^N.$$

Step 2: Eigenvalue processing

• Conditioned on the first register, rotate a new single-qubit ancilla as follows:

$$\sum_{j=1}^{N} \alpha_j |\lambda_j\rangle |\psi_j\rangle \left(\sqrt{1 - \frac{1}{\lambda_j^2 \kappa^2(\boldsymbol{A})}} |0\rangle + \left(\frac{1}{\lambda_j \kappa(\boldsymbol{A})}\right) |1\rangle \right) \in (\mathbb{C}^2)^{\otimes n} \otimes \mathbb{C}^N \otimes \mathbb{C}^2.$$

Exercise 9b: Google "condition number", learn about it.

Exercise 10: Assume $\|A\|_{\infty} = 1$. Show $1/\kappa(A) \le 1/(\lambda_j \kappa(A)) \le 1$. Thus, amplitudes above well-defined.

Step 2: Eigenvalue processing

• Conditioned on the first register, rotate a new single-qubit ancilla as follows:

$$\sum_{j=1}^{N} \alpha_j |\lambda_j\rangle |\psi_j\rangle \left(\sqrt{1 - \frac{1}{\lambda_j^2 \kappa^2(\mathcal{A})}} |0\rangle + \left(\frac{1}{\lambda_j \kappa(\mathcal{A})}\right) |1\rangle \right) \in (\mathbb{C}^2)^{\otimes n} \otimes \mathbb{C}^N \otimes \mathbb{C}^2.$$

3

Sac

イロト イポト イヨト イヨト

Step 2: Eigenvalue processing

• Conditioned on the first register, rotate a new single-qubit ancilla as follows:

$$\sum_{j=1}^{N} \alpha_{j} |\lambda_{j}\rangle |\psi_{j}\rangle \left(\sqrt{1 - \frac{1}{\lambda_{j}^{2} \kappa^{2}(\boldsymbol{A})}} |0\rangle + \left(\frac{1}{\lambda_{j} \kappa(\boldsymbol{A})}\right) |1\rangle \right) \in (\mathbb{C}^{2})^{\otimes n} \otimes \mathbb{C}^{N} \otimes \mathbb{C}^{2}.$$

Step 3: Eigenvalue reinsertion

Measure third register in standard basis, postselect on outcome 1, discard third register:

$$\sum_{j=1}^{N} \alpha_j \left(\frac{1}{\lambda_j}\right) |\psi_j\rangle \propto \boldsymbol{A}^{-1} |\boldsymbol{b}\rangle \in \mathbb{C}^{\boldsymbol{N}}.$$

Exercise 11. Prove that probability of obtaining outcome 1 is at least $1/\kappa^2(A)$. Exercise 12. What is the expected number of repetitions for postselection to succeed? Can we improve this with amplitude amplification?

Runtime

If we run QPE to get additive inverse poly error for phases, runtime is

```
\widetilde{O}(\kappa(A)(T_b + s^2 \log^2(N)))
```

for T_b the number of gates to prepare $|b\rangle$, N the dimension of A, and $\log N$ the number of qubits.

Implication:

- When $\kappa(A)$, T_b , $s \in \text{polylog}(N)$, exponentially faster than classically solving the entire $N \times N$ system.
- For definition of MI, suffices to obtain $MI \in BQP$.

Exercise 13**. Although the quantum algorithm can give exponential speedups, why is it incorrect to directly compare it to classical linear system solvers?

Matrix inversion problem (MI)

Input:

- O(1)-sparse row-computable invertible Hermitian matrix⁴ $A \in \mathbb{C}^{N \times N}$
- A specified via poly-time TM M which, given row index $r \in [N]$ of A, outputs entries of row r of A

Output: Let $|x\rangle \propto A^{-1}|0^N\rangle$ be a unit vector, and $\Pi = |1\rangle\langle 1|$ a projector onto the first qubit of $|x\rangle$. Then:

- (YES case) If $\langle x|\Pi|x\rangle \ge 2/3$, output YES.
- (NO case) If $\langle x | \Pi | x \rangle \leq 1/3$, output NO.
- (Invalid case) Else, output YES or NO arbitrarily.

Theorem [Harrow, Hassidim, Lloyd, 2008]

MI is BQP-complete under poly-time many-one reductions.

Proof steps:

2 MI is BQP-hard.

⁴Technically, need condition number $\kappa(A)$ to satisfy $\kappa^{-1}(A)I \preceq A \preceq I$ with $\kappa(A) \in \text{polylog}(\underline{N})$.

Sevag Gharibian (Paderborn University)

Outline

Classical complexity theory

- The computational model
- Decision problems, P, and NP
- Reductions and NP-hardness

BQP

- Circuit families and BQP
- A BQP-complete problem: MI
 - ${\small { \bullet } } {\small MI} \in BQP$
 - MI is BQP-hard

3 QMA

- Kitaev's "quantum Cook-Levin theorem" for QMA
- 5 Beyond QMA: The many flavors of "quantum NP"

MI is BQP-hard

Goal: Show that any BQP computation V poly-time reducible to an instance A of MI.

Starting point: Let $V = V_m \cdots V_1$ be a BQP circuit on *n* qubits, $N = 2^n$. Assume WLOG *m* is power of 2.

Problem: Need to tie matrix inverse with action of *V*.

MI is BQP-hard

Goal: Show that any BQP computation V poly-time reducible to an instance A of MI.

Starting point: Let $V = V_m \cdots V_1$ be a BQP circuit on *n* qubits, $N = 2^n$. Assume WLOG *m* is power of 2.

Problem: Need to tie matrix inverse with action of V.

Idea:

- Recall Maclaurin series $\frac{1}{1-x} = \sum_{l=0}^{\infty} x^{l}$ for |x| < 1.
- We could apply this to any normal matrix U with $||U||_{\infty} < 1$ to get

$$(I-U)^{-1} = \sum_{l=0}^{\infty} U^{l}.$$

MI is BQP-hard

Goal: Show that any BQP computation V poly-time reducible to an instance A of MI.

Starting point: Let $V = V_m \cdots V_1$ be a BQP circuit on *n* qubits, $N = 2^n$. Assume WLOG *m* is power of 2.

Problem: Need to tie matrix inverse with action of *V*.

Idea:

- Recall Maclaurin series $\frac{1}{1-x} = \sum_{l=0}^{\infty} x^{l}$ for |x| < 1.
- We could apply this to any normal matrix U with $||U||_{\infty} < 1$ to get

$$(I-U)^{-1} = \sum_{l=0}^{\infty} U^{l}.$$

• What would be great: Normal matrix U acting something like

$$U^{\mathbf{k}}|0^{n}\rangle \approx V_{\mathbf{k}}\cdots V_{1}|0^{n}\rangle.$$

What would be great: Normal matrix U acting something like

 $U^{k}|0^{n}\rangle \approx V_{k}\cdots V_{1}|0^{n}\rangle.$

Define:

$$U = \sum_{t=0}^{m-1} |t+1\rangle \langle t| \otimes V_{t+1} + \sum_{t=m}^{2m-1} |t+1 \operatorname{mod} 2m\rangle \langle t| \otimes V_{2m-t}^{\dagger} \in \mathcal{U}((\mathbb{C}^2)^{\otimes \log m} \otimes (\mathbb{C}^2)^{\otimes n}),$$

Exercise 12: Check that U is unitary.

Exercise 13: Check that $U^m |0^{\log m}\rangle |0^n\rangle = |m\rangle V |0^n\rangle$.

Implication: Measuring first qubit of second register of $U^m |0^{\log m}\rangle |0^n\rangle$ simulates measuring output qubit of V!

- We could apply this to any normal matrix U with $||U||_{\infty} < 1$ to get $(I U)^{-1} = \sum_{l=0} U^{l}$.
- Define $U = \sum_{t=0}^{m-1} |t+1\rangle \langle t| \otimes V_{t+1} + \sum_{t=m}^{2m-1} |t+1 \mod 2m \rangle \langle t| \otimes V_{2m-t}^{\dagger} \in \mathcal{U}((\mathbb{C}^2)^{\otimes \log m} \otimes (\mathbb{C}^2)^{\otimes n}),$

- We could apply this to any normal matrix U with $||U||_{\infty} < 1$ to get $(I U)^{-1} = \sum_{l=0} U^{l}$.
- Define $U = \sum_{t=0}^{m-1} |t+1\rangle \langle t| \otimes V_{t+1} + \sum_{t=m}^{2m-1} |t+1 \mod 2m \rangle \langle t| \otimes V_{2m-t}^{\dagger} \in \mathcal{U}((\mathbb{C}^2)^{\otimes \log m} \otimes (\mathbb{C}^2)^{\otimes n}),$
- Define A = I U. Then,

$$|x
angle \propto A^{-1}|0^{\log m+n}
angle$$

- We could apply this to any normal matrix U with $||U||_{\infty} < 1$ to get $(I U)^{-1} = \sum_{l=0} U^{l}$.
- Define $U = \sum_{t=0}^{m-1} |t+1\rangle \langle t| \otimes V_{t+1} + \sum_{t=m}^{2m-1} |t+1 \mod 2m \rangle \langle t| \otimes V_{2m-t}^{\dagger} \in \mathcal{U}((\mathbb{C}^2)^{\otimes \log m} \otimes (\mathbb{C}^2)^{\otimes n}),$
- Define A = I U. Then,

$$\begin{array}{rcl} x \rangle & \propto & A^{-1} | 0^{\log m + n} \rangle \\ & = & (I - U)^{-1} | 0^{\log m + n} \rangle \end{array}$$

- We could apply this to any normal matrix U with $||U||_{\infty} < 1$ to get $(I U)^{-1} = \sum_{l=0} U^{l}$.
- Define $U = \sum_{t=0}^{m-1} |t+1\rangle \langle t| \otimes V_{t+1} + \sum_{t=m}^{2m-1} |t+1 \mod 2m \rangle \langle t| \otimes V_{2m-t}^{\dagger} \in \mathcal{U}((\mathbb{C}^2)^{\otimes \log m} \otimes (\mathbb{C}^2)^{\otimes n}),$
- Define A = I U. Then,

$$\begin{aligned} |x\rangle &\propto & A^{-1}|0^{\log m+n}\rangle \\ &= & (I-U)^{-1}|0^{\log m+n}\rangle \\ &\propto & \sum_{l=0}^{\infty} U^{l}|0\rangle^{\log m}|0^{n}\rangle \end{aligned}$$

- We could apply this to any normal matrix U with $||U||_{\infty} < 1$ to get $(I U)^{-1} = \sum_{l=0} U^{l}$.
- Define $U = \sum_{t=0}^{m-1} |t+1\rangle \langle t| \otimes V_{t+1} + \sum_{t=m}^{2m-1} |t+1 \mod 2m\rangle \langle t| \otimes V_{2m-t}^{\dagger} \in \mathcal{U}((\mathbb{C}^2)^{\otimes \log m} \otimes (\mathbb{C}^2)^{\otimes n}),$
- Define A = I U. Then,

$$\begin{aligned} |x\rangle &\propto & \mathcal{A}^{-1}|0^{\log m+n}\rangle \\ &= & (I-U)^{-1}|0^{\log m+n}\rangle \\ &\propto & \sum_{l=0}^{\infty} U^{l}|0\rangle^{\log m}|0^{n}\rangle \\ &\propto & |0\rangle|0^{n}\rangle + |1\rangle V_{1}|0^{n}\rangle + \dots + |m\rangle V_{m} \dots V_{1}|0^{n}\rangle. \end{aligned}$$

- We could apply this to any normal matrix U with $||U||_{\infty} < 1$ to get $(I U)^{-1} = \sum_{l=0} U^{l}$.
- Define $U = \sum_{t=0}^{m-1} |t+1\rangle \langle t| \otimes V_{t+1} + \sum_{t=m}^{2m-1} |t+1 \mod 2m\rangle \langle t| \otimes V_{2m-t}^{\dagger} \in \mathcal{U}((\mathbb{C}^2)^{\otimes \log m} \otimes (\mathbb{C}^2)^{\otimes n}),$
- Define A = I U. Then,

$$\begin{aligned} |x\rangle &\propto & \mathcal{A}^{-1}|0^{\log m+n}\rangle \\ &= & (I-U)^{-1}|0^{\log m+n}\rangle \\ &\propto & \sum_{l=0}^{\infty} U^{l}|0\rangle^{\log m}|0^{n}\rangle \\ &\propto & |0\rangle|0^{n}\rangle + |1\rangle V_{1}|0^{n}\rangle + \dots + |m\rangle V_{m} \cdots V_{1}|0^{n}\rangle. \end{aligned}$$

- Implication:
 - Measuring first register gives $|m\rangle$ with probability $\approx 1/(m+1)$.

- We could apply this to any normal matrix U with $||U||_{\infty} < 1$ to get $(I U)^{-1} = \sum_{l=0} U^{l}$.
- Define $U = \sum_{t=0}^{m-1} |t+1\rangle \langle t| \otimes V_{t+1} + \sum_{t=m}^{2m-1} |t+1 \mod 2m\rangle \langle t| \otimes V_{2m-t}^{\dagger} \in \mathcal{U}((\mathbb{C}^2)^{\otimes \log m} \otimes (\mathbb{C}^2)^{\otimes n}),$
- Define A = I U. Then,

$$\begin{aligned} |x\rangle &\propto & A^{-1}|0^{\log m+n}\rangle \\ &= & (I-U)^{-1}|0^{\log m+n}\rangle \\ &\propto & \sum_{l=0}^{\infty} U^{l}|0\rangle^{\log m}|0^{n}\rangle \\ &\propto & |0\rangle|0^{n}\rangle + |1\rangle V_{1}|0^{n}\rangle + \dots + |m\rangle V_{m} \cdots V_{1}|0^{n}\rangle. \end{aligned}$$

- Implication:
 - Measuring first register gives $|m\rangle$ with probability $\approx 1/(m+1)$.
 - Postselecting on $|m\rangle$, measuring second register reveals BQP circuit V's output.

- We could apply this to any normal matrix U with $||U||_{\infty} < 1$ to get $(I U)^{-1} = \sum_{l=0} U^{l}$.
- Define $U = \sum_{t=0}^{m-1} |t+1\rangle \langle t| \otimes V_{t+1} + \sum_{t=m}^{2m-1} |t+1 \mod 2m\rangle \langle t| \otimes V_{2m-t}^{\dagger} \in \mathcal{U}((\mathbb{C}^2)^{\otimes \log m} \otimes (\mathbb{C}^2)^{\otimes n}),$
- Define A = I U. Then,

$$\begin{aligned} |x\rangle &\propto & \mathcal{A}^{-1}|0^{\log m+n}\rangle \\ &= & (I-U)^{-1}|0^{\log m+n}\rangle \\ &\propto & \sum_{l=0}^{\infty} U^{l}|0\rangle^{\log m}|0^{n}\rangle \\ &\propto & |0\rangle|0^{n}\rangle + |1\rangle V_{1}|0^{n}\rangle + \dots + |m\rangle V_{m} \cdots V_{1}|0^{n}\rangle. \end{aligned}$$

- Implication:
 - Measuring first register gives $|m\rangle$ with probability $\approx 1/(m+1)$.
 - Postselecting on $|m\rangle$, measuring second register reveals BQP circuit V's output.

Exercise 14: I cheated slightly on one of the lines above (regarding $|x\rangle$) — where did I cheat?

- We could apply this to any normal matrix U with $||U||_{\infty} < 1$ to get $(I U)^{-1} = \sum_{l=0} U^{l}$.
- Define $U = \sum_{t=0}^{m-1} |t+1\rangle \langle t| \otimes V_{t+1} + \sum_{t=m}^{2m-1} |t+1 \mod 2m\rangle \langle t| \otimes V_{2m-t}^{\dagger} \in \mathcal{U}((\mathbb{C}^2)^{\otimes \log m} \otimes (\mathbb{C}^2)^{\otimes n}),$
- Define A = I U. Then,

$$\begin{aligned} |x\rangle &\propto A^{-1}|0^{\log m+n}\rangle \\ &= (I-U)^{-1}|0^{\log m+n}\rangle \\ &\propto \sum_{l=0}^{\infty} U^{l}|0\rangle^{\log m}|0^{n}\rangle \\ &\propto |0\rangle|0^{n}\rangle + |1\rangle V_{1}|0^{n}\rangle + \dots + |m\rangle V_{m} \cdots V_{1}|0^{n}\rangle \end{aligned}$$

Implication:

- Measuring first register gives $|m\rangle$ with probability $\approx 1/(m+1)$.
- Postselecting on $|m\rangle$, measuring second register reveals BQP circuit V's output.

Exercise 14: I cheated slightly on one of the lines above (regarding $|x\rangle$) — where did I cheat? Exercise 15: I cheated less slightly somewhere else on this slide. Where did I make a bigger boo boo?
Construction almost works, but for 3 issues to check:

• A must be O(1)-sparse (by def of MI).

Exercise 16: Check that U, and thus A, are O(1)-sparse.

ъ

Sac

Construction almost works, but for 3 issues to check:

• A must be O(1)-sparse (by def of MI).

Exercise 16: Check that U, and thus A, are O(1)-sparse.

In leads YES case and NO case thresholds of 2/3 vs 1/3 for BQP. The current construction will give 2/(3(m+1)) vs 1/(3(m+1)).

Exercise 17: Modify the construction to boost the YES/NO thresholds to 2/3 and 1/3, respectively.

イロト 不得 トイヨト イヨト 二日 …

Construction almost works, but for 3 issues to check:

• A must be O(1)-sparse (by def of MI).

Exercise 16: Check that U, and thus A, are O(1)-sparse.

2 MI needs YES case and NO case thresholds of 2/3 vs 1/3 for BQP. The current construction will give 2/(3(m+1)) vs 1/(3(m+1)).

Exercise 17: Modify the construction to boost the YES/NO thresholds to 2/3 and 1/3, respectively.

3 Our current choice of A is not necessarily invertible, since $\|U\|_{\infty} = 1$. (Maclaurin series does not apply.)

Exercise 18: Consider first $A = I - \frac{1}{2}U$. Show that A is invertible and has $\kappa(A) \in O(1)$. Where will this construction nevertheless fail in the analysis?

Construction almost works, but for 3 issues to check:

• A must be O(1)-sparse (by def of MI).

Exercise 16: Check that U, and thus A, are O(1)-sparse.

2 MI needs YES case and NO case thresholds of 2/3 vs 1/3 for BQP. The current construction will give 2/(3(m+1)) vs 1/(3(m+1)).

Exercise 17: Modify the construction to boost the YES/NO thresholds to 2/3 and 1/3, respectively.

3 Our current choice of A is not necessarily invertible, since $\|U\|_{\infty} = 1$. (Maclaurin series does not apply.)

Exercise 18: Consider first $A = I - \frac{1}{2}U$. Show that A is invertible and has $\kappa(A) \in O(1)$. Where will this construction nevertheless fail in the analysis?

Exercise 19: Consider finally $A = I - e^{-1/m}U$. Show that A is invertible, has $\kappa(A) \in O(m) \in \text{polylog}(N)$. Show that this choice avoids the problem from Exercise 18.

Construction almost works, but for 3 issues to check:

• A must be O(1)-sparse (by def of MI).

Exercise 16: Check that U, and thus A, are O(1)-sparse.

2 MI needs YES case and NO case thresholds of 2/3 vs 1/3 for BQP. The current construction will give 2/(3(m+1)) vs 1/(3(m+1)).

Exercise 17: Modify the construction to boost the YES/NO thresholds to 2/3 and 1/3, respectively.

3 Our current choice of A is not necessarily invertible, since $\|U\|_{\infty} = 1$. (Maclaurin series does not apply.)

Exercise 18: Consider first $A = I - \frac{1}{2}U$. Show that A is invertible and has $\kappa(A) \in O(1)$. Where will this construction nevertheless fail in the analysis?

Exercise 19: Consider finally $A = I - e^{-1/m}U$. Show that A is invertible, has $\kappa(A) \in O(m) \in \text{polylog}(N)$. Show that this choice avoids the problem from Exercise 18.

I cheated again. There is a 4th issue — A must be Hermitian. But I will spare you these details.

Outline

Classical complexity theory

- The computational model
- Decision problems, P, and NP
- Reductions and NP-hardness

2 BQP

- Circuit families and BQP
- A BQP-complete problem: MI
 - $\bullet \ \mathsf{MI} \in \mathsf{BQP}$
 - MI is BQP-hard

D QMA

- Kitaev's "quantum Cook-Levin theorem" for QMA
- Beyond QMA: The many flavors of "quantum NP"

Sar

A D A D A D A

QMA

Quantum Merlin-Arthur (QMA)

Promise problem $\mathbb{A} = (A_{yes}, A_{no}, A_{inv}) \in \text{QMA}$ if \exists P-uniform quantum circuit family $\{Q_n\}$ and polynomials p, q:

- (YES case) If $x \in A_{\text{yes}}$, $\exists \text{ proof } |\psi_{\text{proof}}\rangle \in (\mathbb{C}^2)^{\otimes p(n)}$, such that Q_n accepts with probability at least 2/3.
- (NO case) If $x \in A_{no}$, then $\forall \text{ proofs } |\psi_{\text{proof}}\rangle \in (\mathbb{C}^2)^{\otimes p(n)}$, Q_n accepts with probability at most 1/3.
- (Invalid case) If $x \in A_{inv}$, Q_n may accept or reject arbitrarily.

(input)
$$|x\rangle$$

(proof) $|\psi_{\text{proof}}\rangle$ ______
(ancilla of $q(n)$ qubits) $|0 \cdots 0\rangle$ ______

Weak error reduction (the "obvious" type)

• Idea: Given poly(n) copies of $|\psi_{proof}\rangle$, repeat verification poly(n) times and take majority vote

Sac

-

・ロト ・ 同ト ・ ヨト ・ ヨト

Weak error reduction (the "obvious" type)

- Idea: Given poly(n) copies of $|\psi_{proof}\rangle$, repeat verification poly(n) times and take majority vote
- Caution: In NO case, no guarantee proof is of form $|\psi_{\text{proof}}\rangle \otimes |\psi_{\text{proof}}\rangle \otimes \cdots \otimes |\psi_{\text{proof}}\rangle|$

Sac

-

Weak error reduction (the "obvious" type)

- Idea: Given poly(n) copies of $|\psi_{proof}\rangle$, repeat verification poly(n) times and take majority vote
- Caution: In NO case, no guarantee proof is of form $|\psi_{\text{proof}}\rangle \otimes |\psi_{\text{proof}}\rangle \otimes \cdots \otimes |\psi_{\text{proof}}\rangle$!
- Achieves completeness $1 2^{-\operatorname{poly}(n)}$ versus soundness $2^{-\operatorname{poly}(n)}$.

Weak error reduction (the "obvious" type)

- Idea: Given poly(n) copies of $|\psi_{proof}\rangle$, repeat verification poly(n) times and take majority vote
- Caution: In NO case, no guarantee proof is of form $|\psi_{\text{proof}}\rangle \otimes |\psi_{\text{proof}}\rangle \otimes \cdots \otimes |\psi_{\text{proof}}\rangle|$
- Achieves completeness $1 2^{-\operatorname{poly}(n)}$ versus soundness $2^{-\operatorname{poly}(n)}$.

Problem: Blows up proof size (by a polynomial)

Weak error reduction (the "obvious" type)

- Idea: Given poly(n) copies of $|\psi_{proof}\rangle$, repeat verification poly(n) times and take majority vote
- Caution: In NO case, no guarantee proof is of form $|\psi_{\text{proof}}\rangle \otimes |\psi_{\text{proof}}\rangle \otimes \cdots \otimes |\psi_{\text{proof}}\rangle$!
- Achieves completeness $1 2^{-\operatorname{poly}(n)}$ versus soundness $2^{-\operatorname{poly}(n)}$.

Problem: Blows up proof size (by a polynomial)

Question: Can we do it with just *one* copy of $|\psi_{proof}\rangle$?

Weak error reduction (the "obvious" type)

- Idea: Given poly(n) copies of $|\psi_{proof}\rangle$, repeat verification poly(n) times and take majority vote
- Caution: In NO case, no guarantee proof is of form $|\psi_{\text{proof}}\rangle \otimes |\psi_{\text{proof}}\rangle \otimes \cdots \otimes |\psi_{\text{proof}}\rangle$!
- Achieves completeness $1 2^{-\operatorname{poly}(n)}$ versus soundness $2^{-\operatorname{poly}(n)}$.

Problem: Blows up proof size (by a polynomial)

Question: Can we do it with just *one* copy of $|\psi_{proof}\rangle$?

Obstacle: No-cloning theorem says we cannot *copy* $|\psi_{\text{proof}}\rangle$...

Sevag Gharibian (Paderborn University)

Bad Honnef Physics School 2022 48/74

590

◆□→ ◆□→ ◆豆→ ◆豆→ □豆

Marriot-Watrous strong error reduction

- Set *i* = 0.
- Do while $i \leq N$:
 - (Run verification Q_n) Run Q_n and measure output qubit to obtain bit y_i . Set i = i + 1.
 - (Run Q_n in reverse) Run Q_n^{\dagger} and measure whether input "resets" to x and ancillae to $|0\cdots 0\rangle$. If yes, set $y_i = 1$, else set $y_i = 0$. Set i = i + 1.
- (Postprocessing) If the number of indices $i \in \{0, ..., N-1\}$ such that $y_i = y_{i+1}$ is at least N/2, accept. Otherwise, reject.

Outline

Classical complexity theory

- The computational model
- Decision problems, P, and NP
- Reductions and NP-hardness

2 BQP

- Circuit families and BQP
- A BQP-complete problem: MI
 - $\bullet \ \mathsf{MI} \in \mathsf{BQP}$
 - MI is BQP-hard

QMA

Kitaev's "quantum Cook-Levin theorem" for QMA

Beyond QMA: The many flavors of "quantum NP"

э

Remember this?

(Time-independent) Schrödinger equation

Time evolution of any *n*-qubit system governed by Hermitian matrix $H \in \mathcal{L}(\mathbb{C}^2)^{\otimes n}$, called a Hamiltonian:

$$i \frac{d|\psi\rangle}{dt} = H|\psi\rangle \quad \stackrel{solve}{\longrightarrow} \quad |\psi_t\rangle = e^{-iHt}|\psi_0\rangle \quad (\leftarrow \text{ unitary!})$$

Sac

3

Remember this?

(Time-independent) Schrödinger equation

Time evolution of any *n*-qubit system governed by Hermitian matrix $H \in \mathcal{L}(\mathbb{C}^2)^{\otimes n}$, called a Hamiltonian:

$$irac{d|\psi
angle}{dt}=H|\psi
angle \quad \stackrel{solve}{\longrightarrow}\quad |\psi_t
angle=e^{-iHt}|\psi_0
angle \quad (\leftarrow ext{ unitary!})$$

Question: What kind of Hamiltonians H appear in nature?

Sevag Gharibian (Paderborn University)

Intro to quantum complexity theory

Bad Honnef Physics School 2022 51/74

Sac

k-local Hamiltonian

An *n*-qubit Hermitian operator $H = \sum_{i} H_i \in \mathcal{L}((\mathbb{C}^2)^{\otimes n})$, where

• each H_i is a $2^k \times 2^k$ matrix for $k \in O(1)$, i.e. a quantum constraint,

Sevag Gharibian (Paderborn University)

= 900

k-local Hamiltonian

An *n*-qubit Hermitian operator $H = \sum_{i} H_i \in \mathcal{L}((\mathbb{C}^2)^{\otimes n})$, where

- each H_i is a $2^k \times 2^k$ matrix for $k \in O(1)$, i.e. a quantum constraint,
- smallest eigenvalue $\lambda_{\min}(H)$ is ground state energy,

= 900

医静脉 医黄胶 医黄胶

k-local Hamiltonian

An *n*-qubit Hermitian operator $H = \sum_{i} H_{i} \in \mathcal{L}((\mathbb{C}^{2})^{\otimes n})$, where

- each H_i is a $2^k \times 2^k$ matrix for $k \in O(1)$, i.e. a quantum constraint,
- smallest eigenvalue λ_{min}(H) is ground state energy,
- the eigenvector $|\psi\rangle \in (\mathbb{C}^2)^{\otimes n}$ corresponding to $\lambda_{\min}(H)$ is ground state.

Sac

- 10

k-local Hamiltonian

An *n*-qubit Hermitian operator $H = \sum_{i} H_i \in \mathcal{L}((\mathbb{C}^2)^{\otimes n})$, where

- each H_i is a $2^k \times 2^k$ matrix for $k \in O(1)$, i.e. a quantum constraint,
- smallest eigenvalue λ_{min}(H) is ground state energy,
- the eigenvector $|\psi\rangle \in (\mathbb{C}^2)^{\otimes n}$ corresponding to $\lambda_{\min}(H)$ is ground state.

Example. Let $H_{ij} = X_i \otimes X_j + Y_i \otimes Y_j + Z_i \otimes Z_j \in \mathcal{L}(\mathbb{C}^4)$.

$$H_{12}$$
 H_{23} H_{34}
1 2 3 4

k-local Hamiltonian

An *n*-qubit Hermitian operator $H = \sum_{i} H_i \in \mathcal{L}((\mathbb{C}^2)^{\otimes n})$, where

- each H_i is a $2^k \times 2^k$ matrix for $k \in O(1)$, i.e. a quantum constraint,
- smallest eigenvalue λ_{min}(H) is ground state energy,
- the eigenvector $|\psi\rangle \in (\mathbb{C}^2)^{\otimes n}$ corresponding to $\lambda_{\min}(H)$ is ground state.

Example. Let $H_{ij} = X_i \otimes X_j + Y_i \otimes Y_j + Z_i \otimes Z_j \in \mathcal{L}(\mathbb{C}^4)$.

$$\begin{array}{c|cccc} H_{12} & H_{23} & H_{34} \\ \bullet & \bullet & \bullet \\ 1 & 2 & 3 & 4 \end{array}$$

Then, $H = H_{12} \otimes I_{34} + I_1 \otimes H_{23} \otimes I_4 + I_{12} \otimes H_{34} \in \mathcal{L}(\mathbb{C}^{16}).$

Quantum constraint satisfaction

k-local Hamiltonian problem (k-LH)

- Input: k-local Hamiltonian H on n qubits, thresholds $0 \le \alpha \le \beta$ s.t. $|\alpha \beta| \ge 1/\text{ poly}(n)$
- Promise: $\lambda_{\min}(H) \leq \alpha$ or $\lambda_{\min}(H) \geq \beta$
- Output: Decide whether $\lambda_{\min}(H) \leq \alpha$ or $\lambda_{\min}(H) \geq \beta$

- Canonical QMA-complete problem!
- Motivation: Show superfluid helium video

https://www.youtube.com/watch?v=2Z6UJbwxBZI

= nan

不得下 不至下 不至下

• "Quantum Cook-Levin Theorem": 5-LH is QMA-complete [Kitaev, 1999]

э.

Sac

イロト イポト イヨト イヨト

- "Quantum Cook-Levin Theorem": 5-LH is QMA-complete [Kitaev, 1999]
- 2-LH is QMA-complete (via perturbation theory gadgets) [Kempe, Kitaev, Regev, 2004]

Sac

-

イロト イポト イヨト イヨト

- "Quantum Cook-Levin Theorem": 5-LH is QMA-complete [Kitaev, 1999]
- 2-LH is QMA-complete (via perturbation theory gadgets) [Kempe, Kitaev, Regev, 2004]
- QMA-complete on 2D square lattice of qubits [Oliveira, Terhal 2005]

3

- "Quantum Cook-Levin Theorem": 5-LH is QMA-complete [Kitaev, 1999]
- 2-LH is QMA-complete (via perturbation theory gadgets) [Kempe, Kitaev, Regev, 2004]
- QMA-complete on 2D square lattice of qubits [Oliveira, Terhal 2005]
- QMA-complete in 1D (!) for local dimension 12 [Aharonov, Gottesman, Irani, Kempe 2009]

-

- "Quantum Cook-Levin Theorem": 5-LH is QMA-complete [Kitaev, 1999]
- 2-LH is QMA-complete (via perturbation theory gadgets) [Kempe, Kitaev, Regev, 2004]
- QMA-complete on 2D square lattice of qubits [Oliveira, Terhal 2005]
- QMA-complete in 1D (!) for local dimension 12 [Aharonov, Gottesman, Irani, Kempe 2009]
- "Quantum NEXP"-complete for 1D, translation-invariant systems [Gottesman, Irani, 2010]

-

- "Quantum Cook-Levin Theorem": 5-LH is QMA-complete [Kitaev, 1999]
- 2-LH is QMA-complete (via perturbation theory gadgets) [Kempe, Kitaev, Regev, 2004]
- QMA-complete on 2D square lattice of qubits [Oliveira, Terhal 2005]
- QMA-complete in 1D (!) for local dimension 12 [Aharonov, Gottesman, Irani, Kempe 2009]
- "Quantum NEXP"-complete for 1D, translation-invariant systems [Gottesman, Irani, 2010]
- 4-chotomy theorem: either P, NP-complete, StoqMA-complete, QMA-complete [Cubitt, Montanaro 2013], [Bravyi, Hastings 2014]

化白色 化塑料 化医补充医补生医

- "Quantum Cook-Levin Theorem": 5-LH is QMA-complete [Kitaev, 1999]
- 2-LH is QMA-complete (via perturbation theory gadgets) [Kempe, Kitaev, Regev, 2004]
- QMA-complete on 2D square lattice of qubits [Oliveira, Terhal 2005]
- QMA-complete in 1D (!) for local dimension 12 [Aharonov, Gottesman, Irani, Kempe 2009]
- "Quantum NEXP"-complete for 1D, translation-invariant systems [Gottesman, Irani, 2010]
- 4-chotomy theorem: either P, NP-complete, StoqMA-complete, QMA-complete [Cubitt, Montanaro 2013], [Bravyi, Hastings 2014]

Variants:

• PSPACE-complete for $|\alpha - \beta| \ge 1/\exp(n)$ [Fefferman, Lin, 2016]

化口水 化塑料 化管料 化管料 一营一

- "Quantum Cook-Levin Theorem": 5-LH is QMA-complete [Kitaev, 1999]
- 2-LH is QMA-complete (via perturbation theory gadgets) [Kempe, Kitaev, Regev, 2004]
- QMA-complete on 2D square lattice of qubits [Oliveira, Terhal 2005]
- QMA-complete in 1D (!) for local dimension 12 [Aharonov, Gottesman, Irani, Kempe 2009]
- "Quantum NEXP"-complete for 1D, translation-invariant systems [Gottesman, Irani, 2010]
- 4-chotomy theorem: either P, NP-complete, StoqMA-complete, QMA-complete [Cubitt, Montanaro 2013], [Bravyi, Hastings 2014]

Variants:

- PSPACE-complete for $|\alpha \beta| \ge 1/\exp(n)$ [Fefferman, Lin, 2016]
- QMA-hard for $|\alpha \beta| \in \Omega(1)$?

Quantum PCP conjecture! (see [Aharonov, Arad, Vidick, 2013] for survey)

Sevag Gharibian (Paderborn University)

Sar

Kitaev's quantum Cook-Levin theorem

Goal: Map *U* to instance $(H, \alpha, \beta, |\psi\rangle)$ of LH such that $\beta - \alpha \ge 1/\operatorname{poly}(n)$ and

f U accepts x	\implies	$\lambda_{\min}(H) \leq lpha$
if U rejects x	\implies	$\lambda_{\min}(H) \geq eta$

э

Sac

A D A D A D A

Kitaev's quantum Cook-Levin theorem

Goal: Map *U* to instance $(H, \alpha, \beta, |\psi\rangle)$ of LH such that $\beta - \alpha \ge 1/\operatorname{poly}(n)$ and

if <i>U</i> accepts <i>x</i>	\implies	$\lambda_{\min}(H) \leq lpha$
if U rejects x	\implies	$\lambda_{\min}(H) \geq eta$

• Let $U = U_m \cdots U_1$ be a QMA circuit verifying proof $|\psi_{\text{proof}}\rangle$.

• Design local terms *H_i* to force ground state to be history state:

$$|\psi_{\text{hist}}\rangle = rac{1}{\sqrt{m+1}}\sum_{t=0}^{m}U_t\cdots U_1|\psi_{\text{proof}}\rangle_A|0\cdots 0\rangle_B|t\rangle_C$$

A: proof register B: ancilla register C: clock register

Sac

イロト 不得 トイヨト イヨト 二日 …

Feynman-Kitaev circuit-to-Hamiltonian construction

$$|\psi_{\text{hist}}\rangle = \frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_t \cdots U_1 |\psi_{\text{proof}}\rangle_{\mathcal{A}} |0\cdots 0\rangle_{\mathcal{B}} |t\rangle_{\mathcal{C}}$$

Bad Honnef Physics School 2022 56/74

Sac

э

Feynman-Kitaev circuit-to-Hamiltonian construction

$$|\psi_{\text{hist}}\rangle = \frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_t \cdots U_1 |\psi_{\text{proof}}\rangle_{\boldsymbol{A}} |0\cdots 0\rangle_{\boldsymbol{B}} |t\rangle_{\boldsymbol{C}}$$

Define $H = H_{in} + H_{out} + H_{prop} + H_{stab}$ such that

$$H_{\rm in}$$
: Correct ancilla initialization at time $t = 0$ \Rightarrow $\langle \psi_{\rm hist} | H_{\rm in} | \psi_{\rm hist} \rangle = 0$

3

Sac

・ロト ・ 同ト ・ ヨト ・ ヨト
$$|\psi_{\text{hist}}\rangle = \frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_t \cdots U_1 |\psi_{\text{proof}}\rangle_{\boldsymbol{A}} |0\cdots 0\rangle_{\boldsymbol{B}} |t\rangle_{\boldsymbol{C}}$$

Define $H = H_{in} + H_{out} + H_{prop} + H_{stab}$ such that

 H_{in} :Correct ancilla initialization at time t = 0 \Rightarrow H_{prop} :Gate U_t applied at time t \Rightarrow

$$\Rightarrow \langle \psi_{\mathsf{hist}} | \mathcal{H}_{\mathsf{in}} | \psi_{\mathsf{hist}}
angle = \mathbf{0}$$

$$\Rightarrow \langle \psi_{\text{hist}} | \mathcal{H}_{\text{prop}} | \psi_{\text{hist}} \rangle = 0$$

ъ

Sac

化口压 化间压 化医压 化医压

$$|\psi_{\text{hist}}\rangle = \frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_t \cdots U_1 |\psi_{\text{proof}}\rangle_{\boldsymbol{A}} |0\cdots 0\rangle_{\boldsymbol{B}} |t\rangle_{\boldsymbol{C}}$$

Define $H = H_{in} + H_{out} + H_{prop} + H_{stab}$ such that

- H_{in} : Correct ancilla initialization at time t = 0
- H_{prop} : Gate U_t applied at time t
- *H*_{stab}: Clock register *C* encoded correctly in unary

- $\Rightarrow \langle \psi_{\mathsf{hist}} | \mathcal{H}_{\mathsf{in}} | \psi_{\mathsf{hist}}
 angle = \mathbf{0}$
- $\Rightarrow \langle \psi_{\mathrm{hist}} | \mathcal{H}_{\mathrm{prop}} | \psi_{\mathrm{hist}} \rangle = 0$

$$\Rightarrow \langle \psi_{\rm hist} | {\cal H}_{\rm out} | \psi_{\rm hist}
angle = 0$$

Sac

-

化口压 化间压 化医压 化医压

$$|\psi_{\text{hist}}\rangle = \frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_t \cdots U_1 |\psi_{\text{proof}}\rangle_{\boldsymbol{A}} |0\cdots 0\rangle_{\boldsymbol{B}} |t\rangle_{\boldsymbol{C}}$$

Define $H = H_{in} + H_{out} + H_{prop} + H_{stab}$ such that

- H_{in} : Correct ancilla initialization at time t = 0
- H_{prop} : Gate U_t applied at time t
- H_{stab} : Clock register *C* encoded correctly in unary
- H_{out} : Penalize rejecting computation U at time t = m

 $\Rightarrow \langle \psi_{\mathsf{hist}} | \mathcal{H}_{\mathsf{in}} | \psi_{\mathsf{hist}}
angle = \mathbf{0}$

$$\Rightarrow \langle \psi_{\text{hist}} | \mathcal{H}_{\text{prop}} | \psi_{\text{hist}} \rangle = 0$$

$$\Rightarrow \langle \psi_{\mathsf{hist}} | \mathcal{H}_{\mathsf{out}} | \psi_{\mathsf{hist}} \rangle = 0$$

$$\Rightarrow \langle \psi_{\text{hist}} | \mathcal{H}_{\text{out}} | \psi_{\text{hist}} \rangle \sim \frac{1 - \Pr(U \text{ accepts } x)}{\Pr(m)}$$

Sac

3

$$|\psi_{\text{hist}}\rangle = \frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_t \cdots U_1 |\psi_{\text{proof}}\rangle_{\boldsymbol{A}} |0\cdots 0\rangle_{\boldsymbol{B}} |t\rangle_{\boldsymbol{C}}$$

Define $H = H_{in} + H_{out} + H_{prop} + H_{stab}$ such that

- H_{in} : Correct ancilla initialization at time t = 0
- H_{prop} : Gate U_t applied at time t
- *H*_{stab}: Clock register *C* encoded correctly in unary
- H_{out} : Penalize rejecting computation U at time t = m

$$\Rightarrow \quad \langle \psi_{\mathsf{hist}} | \mathcal{H}_{\mathsf{in}} | \psi_{\mathsf{hist}}
angle = \mathbf{0}$$

$$\Rightarrow \langle \psi_{\text{hist}} | \mathcal{H}_{\text{prop}} | \psi_{\text{hist}} \rangle = 0$$

$$\Rightarrow \langle \psi_{\text{hist}} | \mathcal{H}_{\text{out}} | \psi_{\text{hist}} \rangle = 0$$

 \Rightarrow

$$\langle \psi_{ ext{hist}} | m{\mathcal{H}}_{ ext{out}} | \psi_{ ext{hist}}
angle \sim rac{1 - ext{Pr}(U ext{ accepts } x)}{ ext{poly}(m)}$$

$$H_{\rm in} = I_A \otimes (I - |0 \cdots 0\rangle \langle 0 \cdots 0|)_B \otimes |0\rangle \langle 0|_C$$

Sar

3

$$|\psi_{\text{hist}}\rangle = \frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_t \cdots U_1 |\psi_{\text{proof}}\rangle_{\boldsymbol{A}} |0\cdots 0\rangle_{\boldsymbol{B}} |t\rangle_{\boldsymbol{C}}$$

Define $H = H_{in} + H_{out} + H_{prop} + H_{stab}$ such that

- H_{in} : Correct ancilla initialization at time t = 0
- H_{prop} : Gate U_t applied at time t
- *H*_{stab}: Clock register *C* encoded correctly in unary
- H_{out} : Penalize rejecting computation U at time t = m

$$\Rightarrow \langle \psi_{\mathsf{hist}} | \mathcal{H}_{\mathsf{in}} | \psi_{\mathsf{hist}} \rangle = 0$$

$$\Rightarrow \langle \psi_{\text{hist}} | \mathcal{H}_{\text{prop}} | \psi_{\text{hist}} \rangle = 0$$

$$\Rightarrow \langle \psi_{\text{hist}} | \mathcal{H}_{\text{out}} | \psi_{\text{hist}} \rangle = 0$$

 \Rightarrow

$$\langle \psi_{\mathsf{hist}} | {m{\mathcal{H}}_\mathsf{out}} | \psi_{\mathsf{hist}}
angle \sim rac{\mathsf{1} - \mathsf{Pr}(U \, \mathsf{accepts} \, x)}{\mathsf{poly}(m)}$$

$$\begin{array}{lll} H_{\rm in} & = & I_A \otimes (I - |0 \cdots 0\rangle \langle 0 \cdots 0|)_B \otimes |0\rangle \langle 0|_C \\ H_{\rm out} & = & I_A \otimes |0\rangle \langle 0|_{\mathcal{B}_1} \otimes |m\rangle \langle m|_C. \end{array}$$

Sac

3

$$|\psi_{\text{hist}}\rangle = \frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_t \cdots U_1 |\psi_{\text{proof}}\rangle_{\boldsymbol{A}} |0\cdots 0\rangle_{\boldsymbol{B}} |t\rangle_{\boldsymbol{C}}$$

Define $H = H_{in} + H_{out} + H_{prop} + H_{stab}$ such that

- $H_{\rm in}$: Correct ancilla initialization at time $t = 0 \Rightarrow$
- H_{prop} : Gate U_t applied at time t
- H_{stab} : Clock register *C* encoded correctly in unary
- H_{out} : Penalize rejecting computation U at time t = m

$$\Rightarrow \quad \langle \psi_{\mathsf{hist}} | \mathcal{H}_{\mathsf{in}} | \psi_{\mathsf{hist}}
angle = \mathbf{0}$$

$$\Rightarrow \langle \psi_{ ext{hist}} | \mathcal{H}_{ ext{prop}} | \psi_{ ext{hist}}
angle = 0$$

$$\Rightarrow \langle \psi_{\text{hist}} | \mathcal{H}_{\text{out}} | \psi_{\text{hist}} \rangle = 0$$

 \Rightarrow

$$\langle \psi_{\mathsf{hist}} | oldsymbol{\mathcal{H}}_{\mathsf{out}} | \psi_{\mathsf{hist}}
angle \sim rac{\mathsf{1} - \mathsf{Pr}(U ext{ accepts } x)}{\mathsf{poly}(m)}$$

$$H_{\text{in}} = I_A \otimes (I - |0 \cdots 0\rangle \langle 0 \cdots 0|)_B \otimes |0\rangle \langle 0|_C$$

$$H_{\text{out}} = I_A \otimes |0\rangle \langle 0|_{B_1} \otimes |m\rangle \langle m|_C.$$

Question: How to check time propagation, i.e. U_t applied at time t?

= nan

化口压 化间压 化医压 化医压

$$|\psi_{\text{hist}}\rangle = \frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_t \cdots U_1 |\psi_{\text{proof}}\rangle_{\boldsymbol{A}} |0\cdots 0\rangle_{\boldsymbol{B}} |t\rangle_{\boldsymbol{C}}$$

Goal: Define H_{prop} so that if U_t applied at time $t \Rightarrow \langle \psi_{\text{hist}} | H_{\text{prop}} | \psi_{\text{hist}} \rangle = 0$.

3

Sac

$$|\psi_{\mathsf{hist}}\rangle = \frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_t \cdots U_1 |\psi_{\mathsf{proof}}\rangle_{\boldsymbol{A}} |0\cdots 0\rangle_{\boldsymbol{B}} |t\rangle_{\boldsymbol{C}}$$

Goal: Define H_{prop} so that if U_t applied at time $t \Rightarrow \langle \psi_{\text{hist}} | H_{\text{prop}} | \psi_{\text{hist}} \rangle = 0$.

Define for each $t \in \{0, \ldots, m-1\}$:

$$H_{\text{prop},t} = -U_t \otimes |t\rangle \langle t - 1|_C - U_t^{\dagger} \otimes |t - 1\rangle \langle t|_C + I \otimes |t - 1\rangle \langle t - 1|_C + I \otimes |t\rangle \langle t|_C$$

Why does this work?

∃ \$\\$<</p>\$\\$

$$|\psi_{\mathsf{hist}}\rangle = \frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_t \cdots U_1 |\psi_{\mathsf{proof}}\rangle_{\boldsymbol{A}} |0\cdots 0\rangle_{\boldsymbol{B}} |t\rangle_{\boldsymbol{C}}$$

Goal: Define H_{prop} so that if U_t applied at time $t \Rightarrow \langle \psi_{\text{hist}} | H_{\text{prop}} | \psi_{\text{hist}} \rangle = 0$.

Define for each $t \in \{0, \ldots, m-1\}$:

$$H_{\text{prop},t} = -U_t \otimes |t\rangle \langle t - 1|_C - U_t^{\dagger} \otimes |t - 1\rangle \langle t|_C + I \otimes |t - 1\rangle \langle t - 1|_C + I \otimes |t\rangle \langle t|_C$$

Why does this work?

$$\sum_{t=0}^{m} H_{\text{prop},t}$$

∃ \$\\$<</p>\$\\$

$$|\psi_{\mathsf{hist}}\rangle = \frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_t \cdots U_1 |\psi_{\mathsf{proof}}\rangle_{\boldsymbol{A}} |0\cdots 0\rangle_{\boldsymbol{B}} |t\rangle_{\boldsymbol{C}}$$

Goal: Define H_{prop} so that if U_t applied at time $t \Rightarrow \langle \psi_{\text{hist}} | H_{\text{prop}} | \psi_{\text{hist}} \rangle = 0$.

Define for each $t \in \{0, \ldots, m-1\}$:

$$H_{\text{prop},t} = -U_t \otimes |t\rangle \langle t - 1|_C - U_t^{\mathsf{T}} \otimes |t - 1\rangle \langle t|_C + I \otimes |t - 1\rangle \langle t - 1|_C + I \otimes |t\rangle \langle t|_C$$

Why does this work?

$$\sum_{i=0}^{m} H_{\text{prop},t} \xrightarrow{\text{change of basis}} I_{AB} \otimes \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & \cdots \\ -1 & 2 & -1 & 0 & 0 & \cdots \\ 0 & -1 & 2 & -1 & 0 & \cdots \\ 0 & 0 & -1 & 2 & -1 & \cdots \\ 0 & 0 & 0 & -1 & \ddots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \end{pmatrix}_{C}$$

Sevag Gharibian (Paderborn University)

3

Sac

$$|\psi_{\mathsf{hist}}\rangle = \frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_t \cdots U_1 |\psi_{\mathsf{proof}}\rangle_{\boldsymbol{A}} |0\cdots 0\rangle_{\boldsymbol{B}} |t\rangle_{\boldsymbol{C}}$$

Goal: Define H_{prop} so that if U_t applied at time $t \Rightarrow \langle \psi_{\text{hist}} | H_{\text{prop}} | \psi_{\text{hist}} \rangle = 0$.

Define for each $t \in \{0, \ldots, m-1\}$:

 $H_{\text{prop},t} = -U_t \otimes |t\rangle \langle t-1|_C - U_t^{\dagger} \otimes |t-1\rangle \langle t|_C + I \otimes |t-1\rangle \langle t-1|_C + I \otimes |t\rangle \langle t|_C,$

Why does this work?

$$\sum_{t=0}^{m} H_{\text{prop},t} \xrightarrow{\text{change of basis}} I_{AB} \otimes \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & \cdots \\ -1 & 2 & -1 & 0 & 0 & \cdots \\ 0 & -1 & 2 & -1 & 0 & \cdots \\ 0 & 0 & -1 & 2 & -1 & \cdots \\ 0 & 0 & 0 & -1 & 2 & -1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \\ \end{bmatrix}_{C} \Rightarrow \text{Unique null state (w.r.t. C): } I_{AB} \otimes \sum_{t=0}^{m} |t\rangle_{C}$$

Sevag Gharibian (Paderborn University)

Correctness

Completeness: By design,

$$\langle \psi_{\text{hist}} | \mathcal{H}_{\text{in}} + \mathcal{H}_{\text{prop}} + \mathcal{H}_{\text{out}} + \mathcal{H}_{\text{stab}} | \psi_{\text{hist}} \rangle \sim 0 + 0 + 0 + \frac{1 - \Pr(U \operatorname{accepts} x)}{\operatorname{poly}(m)} \sim \text{"small"}.$$

3

Sac

イロト 不良 トイヨト イヨト

Correctness

Completeness: By design,

$$\langle \psi_{\text{hist}} | \mathcal{H}_{\text{in}} + \mathcal{H}_{\text{prop}} + \mathcal{H}_{\text{out}} + \mathcal{H}_{\text{stab}} | \psi_{\text{hist}}
angle \sim 0 + 0 + 0 + \frac{1 - \Pr(U \text{ accepts } x)}{\operatorname{poly}(m)} \sim \text{ "small"}.$$

Soundness:

- Goal: Show $\lambda_{\min}(H_{in} + H_{prop} + H_{out} + H_{stab}) \geq$ "large".
- Problem: $H_{in} + H_{out}$ and H_{prop} do not commute (i.e. cannot add $\lambda_{min}(H_{in} + H_{out})$ and $\lambda_{min}(H_{prop})$)!

3

Sac

Geometric Lemma

Let $A_1, A_2 \succeq 0$, and let v lower bound the minimum non-zero eigenvalues of both A_1 and A_2 . Then,

$$\lambda_{\min}(A_1 + A_2) \geq 2\nu \sin^2 \frac{\angle (\operatorname{Null}(A_1), \operatorname{Null}(A_2))}{2}$$

where the angle between spaces ${\mathcal X}$ and ${\mathcal Y}$ is defined as

$$\mathcal{L}(\mathcal{X},\mathcal{Y}) := \arccos \left(\max_{\substack{|x\rangle \in \mathcal{X}, |y\rangle \in \mathcal{Y} \\ ||x\rangle \|_2 = ||y\rangle \|_2 = 1}} |\langle x|y
angle |
ight).$$

Recall:

- $Null(H_{in} + H_{out})$ correct initialization and correct input
- Null(*H*_{prop}) correct time propagation

= 990

Outline

Classical complexity theory

- The computational model
- Decision problems, P, and NP
- Reductions and NP-hardness

2 BQP

- Circuit families and BQP
- A BQP-complete problem: MI
 - $\bullet \ \mathsf{MI} \in \mathsf{BQP}$
 - MI is BQP-hard

3 QMA

Kitaev's "quantum Cook-Levin theorem" for QMA

5 Beyond QMA: The many flavors of "quantum NP"

э

Sevag Gharibian (Paderborn University)

Bad Honnef Physics School 2022 61/74

Sac

イロト イポト イヨト イヨ

Sevag Gharibian (Paderborn University)

Intro to quantum complexity theory

イロト イポト イヨト イヨト Sac Bad Honnef Physics School 2022

61/74

Here we go (named after Snow White's dwarves):

• (Doc) QMA

Sevag Gharibian (Paderborn University)

э

Sac

化口压 化间压 化医压 化医压

Here we go (named after Snow White's dwarves):

- (Doc) QMA
- (Bashful) QMA1: QMA with perfect completeness

Sac

-

化口压 化间压 化医压 化医压

Here we go (named after Snow White's dwarves):

- (Doc) QMA
- (Bashful) QMA1: QMA with perfect completeness
- (Happy) QCMA: QMA with classical proof

Sar

-

Here we go (named after Snow White's dwarves):

- (Doc) QMA
- (Bashful) QMA1: QMA with perfect completeness
- (Happy) QCMA: QMA with classical proof
- (Grumpy) QMA(2): QMA with "unentangled" proof of form $|\psi_1\rangle \otimes |\psi_2\rangle$

Sar

3

Here we go (named after Snow White's dwarves):

- (Doc) QMA
- (Bashful) QMA1: QMA with perfect completeness
- (Happy) QCMA: QMA with classical proof
- (Grumpy) QMA(2): QMA with "unentangled" proof of form $|\psi_1\rangle \otimes |\psi_2\rangle$
- (Sneezy) NQP: Quantum TM accepts x ∈ A_{yes} in poly-time with probability > 0. (Equals coC₌P [Fenner, Green, Homer, Pruim, 1998].)

・ロト (周) (王) (王) (王)

Here we go (named after Snow White's dwarves):

- (Doc) QMA
- (Bashful) QMA1: QMA with perfect completeness
- (Happy) QCMA: QMA with classical proof
- (Grumpy) QMA(2): QMA with "unentangled" proof of form $|\psi_1\rangle \otimes |\psi_2\rangle$
- (Sneezy) NQP: Quantum TM accepts $x \in A_{yes}$ in poly-time with probability > 0. (Equals $coC_{=}P$ [Fenner, Green, Homer, Pruim, 1998].)
- (Dopey) StoqMA: QMA with $\{|0\rangle, |+\rangle\}$ ancillae, classical gates, measurement in X basis

Relationships

3

Sac

QMA(2)

What does an "unentangled" proof $|\psi_1\rangle \otimes |\psi_2\rangle$ buy us?

Sevag Gharibian (Paderborn University)

Intro to quantum complexity theory

Bad Honnef Physics School 2022 64/74

3

Sac

イロト イポト イヨト イヨト

QMA(2)

Promise problem $\mathbb{A} = (A_{\text{yes}}, A_{\text{no}}, A_{\text{inv}}) \in \text{QMA}(2)$ if there exists P-uniform quantum circuit family $\{Q_n\}$ s.t.:

- (YES) If $x \in A_{\text{yes}}$, $\exists \text{ proof } |\psi_1\rangle \otimes |\psi_2\rangle \in (\mathbb{C}^2)^{\otimes \operatorname{poly}(n)} \otimes (\mathbb{C}^2)^{\otimes \operatorname{poly}(n)}$, s.t. Q_n accepts w.p. $\geq 2/3$.
- (NO) If $x \in A_{no}$, then \forall proofs $|\psi_1\rangle \otimes |\psi_2\rangle \in (\mathbb{C}^2)^{\otimes \operatorname{poly}(n)} \otimes (\mathbb{C}^2)^{\otimes \operatorname{poly}(n)}$, Q_n accepts w.p. $\leq 1/3$.
- (Invalid case) If $x \in A_{inv}$, Q_n may accept or reject arbitrarily.

Defined as QMA(k) for k parties by [Kobayashi, Matsumoto, Yamakami 2003]

Sad state of affairs: QMA \subseteq QMA(2) \subseteq Q $\Sigma_3 \subseteq$ NEXP.

QMA(2)

Promise problem $\mathbb{A} = (A_{\text{yes}}, A_{\text{no}}, A_{\text{inv}}) \in \text{QMA}(2)$ if there exists P-uniform quantum circuit family $\{Q_n\}$ s.t.:

- (YES) If $x \in A_{\text{yes}}$, $\exists \text{ proof } |\psi_1\rangle \otimes |\psi_2\rangle \in (\mathbb{C}^2)^{\otimes \operatorname{poly}(n)} \otimes (\mathbb{C}^2)^{\otimes \operatorname{poly}(n)}$, s.t. Q_n accepts w.p. $\geq 2/3$.
- (NO) If $x \in A_{no}$, then \forall proofs $|\psi_1\rangle \otimes |\psi_2\rangle \in (\mathbb{C}^2)^{\otimes \operatorname{poly}(n)} \otimes (\mathbb{C}^2)^{\otimes \operatorname{poly}(n)}$, Q_n accepts w.p. $\leq 1/3$.
- (Invalid case) If $x \in A_{inv}$, Q_n may accept or reject arbitrarily.

Defined as QMA(k) for k parties by [Kobayashi, Matsumoto, Yamakami 2003]

Sad state of affairs: QMA \subseteq QMA(2) \subseteq Q $\Sigma_3 \subseteq$ NEXP.

It's 2022. What's the holdup?

For both classes:

$$\Pr(Q_n \text{ accepts } |\psi\rangle) = \operatorname{Tr}\left(|1\rangle\langle 1|_{A_1} \otimes I_B(Q_n|\psi\rangle_A|0\cdots 0\rangle_B)(\langle\psi|_A\langle 0\cdots 0|_BQ_n^{\dagger})\right)$$

⁵ For general Hermitian matrices *M*, not necessarily M_{acc} arising from some $Q_n [Gurvits 2003] \equiv b \equiv 0.0$ Sevag Gharibian (Paderborn University) Intro to quantum complexity theory Bad Honnef Physics School 2022 66/74

For both classes:

$$\begin{aligned} \Pr(Q_n \text{ accepts } |\psi\rangle) &= \operatorname{Tr} \left(|1\rangle\langle 1|_{A_1} \otimes I_B(Q_n|\psi\rangle_A|0\cdots 0\rangle_B)(\langle\psi|_A\langle 0\cdots 0|_BQ_n^{\dagger}) \right) \\ &= \operatorname{Tr} \left((I_A \otimes \langle 0\cdots 0|_BQ_n^{\dagger}(|1\rangle\langle 1|_{A_1} \otimes I_B)Q_n(I_A \otimes |0\cdots 0\rangle_B)|\psi\rangle\langle\psi|_A) \right) \\ &=: \operatorname{Tr}(\mathcal{M}_{\operatorname{acc}}|\psi\rangle\langle\psi|_A). \end{aligned}$$

⁵For general Hermitian matrices *M*, not necessarily *M*_{acc} arising from some *Q*_n [Gurvits 2003] = $\sim \sim \sim \sim \sim$ Sevag Gharibian (Paderborn University) Intro to quantum complexity theory Bad Honnef Physics School 2022 66/74

For both classes:

$$\begin{aligned} \Pr(Q_n \text{ accepts } |\psi\rangle) &= \operatorname{Tr}\left(|1\rangle\langle 1|_{A_1} \otimes I_B(Q_n|\psi\rangle_A|0\cdots 0\rangle_B)(\langle\psi|_A\langle 0\cdots 0|_BQ_n^{\dagger})\right) \\ &= \operatorname{Tr}\left((I_A \otimes \langle 0\cdots 0|_BQ_n^{\dagger}(|1\rangle\langle 1|_{A_1} \otimes I_B)Q_n(I_A \otimes |0\cdots 0\rangle_B)|\psi\rangle\langle\psi|_A)\right) \\ &=: \operatorname{Tr}(M_{\operatorname{acc}}|\psi\rangle\langle\psi|_A). \end{aligned}$$

Conclusion: Behavior of verifier Q_n captured by M_{acc} independent of QMA vs QMA(2).

For both classes:

$$\begin{aligned} \Pr(Q_n \text{ accepts } |\psi\rangle) &= \operatorname{Tr}\left(|1\rangle\langle 1|_{A_1} \otimes I_B(Q_n|\psi\rangle_A|0\cdots 0\rangle_B)(\langle\psi|_A\langle 0\cdots 0|_BQ_n^{\dagger})\right) \\ &= \operatorname{Tr}\left((I_A \otimes \langle 0\cdots 0|_BQ_n^{\dagger}(|1\rangle\langle 1|_{A_1} \otimes I_B)Q_n(I_A \otimes |0\cdots 0\rangle_B)|\psi\rangle\langle\psi|_A)\right) \\ &=: \operatorname{Tr}(M_{\operatorname{acc}}|\psi\rangle\langle\psi|_A). \end{aligned}$$

Conclusion: Behavior of verifier Q_n captured by M_{acc} independent of QMA vs QMA(2).

QMAQMA(2)Optimal acceptance probability
$$\max_{|\psi\rangle}\langle\psi|M_{acc}|\psi\rangle$$
 $\max_{|\psi_1\rangle,|\psi_2\rangle}\langle\psi_1|\langle\psi_2|M_{acc}|\psi_1\rangle|\psi_2\rangle$

For both classes:

$$\begin{aligned} \Pr(Q_n \text{ accepts } |\psi\rangle) &= \operatorname{Tr}\left(|1\rangle\langle 1|_{A_1} \otimes I_B(Q_n|\psi\rangle_A|0\cdots 0\rangle_B)(\langle\psi|_A\langle 0\cdots 0|_BQ_n^{\dagger})\right) \\ &= \operatorname{Tr}\left((I_A \otimes \langle 0\cdots 0|_BQ_n^{\dagger}(|1\rangle\langle 1|_{A_1} \otimes I_B)Q_n(I_A \otimes |0\cdots 0\rangle_B)|\psi\rangle\langle\psi|_A)\right) \\ &=: \operatorname{Tr}(M_{\operatorname{acc}}|\psi\rangle\langle\psi|_A). \end{aligned}$$

Conclusion: Behavior of verifier Q_n captured by M_{acc} independent of QMA vs QMA(2).

QMAQMA(2)Optimal acceptance probability
$$\max_{|\psi\rangle} \langle \psi | M_{acc} | \psi \rangle$$
 $\max_{|\psi_1\rangle, |\psi_2\rangle} \langle \psi_1 | \langle \psi_2 | M_{acc} | \psi_1 \rangle | \psi_2 \rangle$ Linear algebraic interpretation $\lambda_{max}(M_{acc})$??

For both classes:

$$\begin{aligned} \Pr(Q_n \text{ accepts } |\psi\rangle) &= \operatorname{Tr}\left(|1\rangle\langle 1|_{A_1} \otimes I_B(Q_n|\psi\rangle_A|0\cdots 0\rangle_B)(\langle\psi|_A\langle 0\cdots 0|_BQ_n^{\dagger})\right) \\ &= \operatorname{Tr}\left((I_A \otimes \langle 0\cdots 0|_BQ_n^{\dagger}(|1\rangle\langle 1|_{A_1} \otimes I_B)Q_n(I_A \otimes |0\cdots 0\rangle_B)|\psi\rangle\langle\psi|_A)\right) \\ &=: \operatorname{Tr}(M_{\operatorname{acc}}|\psi\rangle\langle\psi|_A). \end{aligned}$$

Conclusion: Behavior of verifier Q_n captured by M_{acc} independent of QMA vs QMA(2).

QMAQMA(2)Optimal acceptance probability
$$\max_{|\psi\rangle}\langle\psi|M_{acc}|\psi\rangle$$
 $\max_{|\psi_1\rangle,|\psi_2\rangle}\langle\psi_1|\langle\psi_2|M_{acc}|\psi_1\rangle|\psi_2\rangle$ Linear algebraic interpretation $\lambda_{max}(M_{acc})$??Complexitypoly-time in dimension of M_{acc} NP-complete⁵ dimension of M_{acc}

⁵For general Hermitian matrices *M*, not necessarily M_{acc} arising from some Q_n [Gurvits 2003] $\equiv 10^{-10}$ $\approx 10^{-10}$ (Gurvits 2003) $\equiv 10^{-10}$ $\approx 10^{-10}$ (Gurvits 2003) $\approx 10^{-10}$ (Gurvits 2003) $\approx 10^{-10}$ $\approx 10^{-10}$ (Gurvits 2003) ≈ 1

Selected results:

● NP verifiable in QMA(2) with log-size proofs with 1 vs 1 – 1/ poly promise gap [Blier, Tapp 2007]

3

Sac

イロト 不得 トイヨト イヨト

Selected results:

- NP verifiable in QMA(2) with log-size proofs with 1 vs 1 1/poly promise gap [Blier, Tapp 2007]
- 3-SAT verifiable in QMA(k) with k ∈ Õ(√n) log-size proofs with Θ(1)-promise gap [Aaronson, Beigi, Drucker, Fefferman, Shor, 2008]

Sac

4 日本 4 間本 4 日本 4 日本 1 日

Selected results:

- NP verifiable in QMA(2) with log-size proofs with 1 vs 1 1/ poly promise gap [Blier, Tapp 2007]
- 3-SAT verifiable in QMA(k) with k ∈ Õ(√n) log-size proofs with Θ(1)-promise gap [Aaronson, Beigi, Drucker, Fefferman, Shor, 2008]
- QMA(2) with 1/ exp promise gap equals NEXP [Pereszlényi 2012]
- NP verifiable in QMA(2) with log-size proofs with 1 vs 1 1/ poly promise gap [Blier, Tapp 2007]
- 3-SAT verifiable in QMA(k) with k ∈ Õ(√n) log-size proofs with Θ(1)-promise gap [Aaronson, Beigi, Drucker, Fefferman, Shor, 2008]
- QMA(2) with 1/ exp promise gap equals NEXP [Pereszlényi 2012]
- QMA(k) = QMA(2) for all $k \ge 2$, weak error reduction for QMA(2) [Harrow, Montanaro 2013]

- NP verifiable in QMA(2) with log-size proofs with 1 vs 1 1/ poly promise gap [Blier, Tapp 2007]
- 3-SAT verifiable in QMA(k) with k ∈ Õ(√n) log-size proofs with Θ(1)-promise gap [Aaronson, Beigi, Drucker, Fefferman, Shor, 2008]
- QMA(2) with 1/ exp promise gap equals NEXP [Pereszlényi 2012]
- QMA(k) = QMA(2) for all $k \ge 2$, weak error reduction for QMA(2) [Harrow, Montanaro 2013]
- Sparse Separable Hamiltonian problem with 1/ poly promise gap is QMA(2)-complete [Chailloux, Sattath 2012]

- NP verifiable in QMA(2) with log-size proofs with 1 vs 1 1/ poly promise gap [Blier, Tapp 2007]
- 3-SAT verifiable in QMA(k) with k ∈ Õ(√n) log-size proofs with Θ(1)-promise gap [Aaronson, Beigi, Drucker, Fefferman, Shor, 2008]
- QMA(2) with 1/ exp promise gap equals NEXP [Pereszlényi 2012]
- QMA(k) = QMA(2) for all $k \ge 2$, weak error reduction for QMA(2) [Harrow, Montanaro 2013]
- Sparse Separable Hamiltonian problem with 1/ poly promise gap is QMA(2)-complete [Chailloux, Sattath 2012]

Open question: Is QMA(2) = NEXP?

- NP verifiable in QMA(2) with log-size proofs with 1 vs 1 1/ poly promise gap [Blier, Tapp 2007]
- 3-SAT verifiable in QMA(k) with k ∈ Õ(√n) log-size proofs with Θ(1)-promise gap [Aaronson, Beigi, Drucker, Fefferman, Shor, 2008]
- QMA(2) with 1/ exp promise gap equals NEXP [Pereszlényi 2012]
- QMA(k) = QMA(2) for all $k \ge 2$, weak error reduction for QMA(2) [Harrow, Montanaro 2013]
- Sparse Separable Hamiltonian problem with 1/ poly promise gap is QMA(2)-complete [Chailloux, Sattath 2012]

Open question: Is QMA(2) = NEXP?

Open question: Why does "unentanglement" help compress proof lengths?

Relationship to Quantum NPSPACE

- Classically: PSPACE = NPSPACE [Savitch, 1970]
- Quantumly:
 - PSPACE = BQPSPACE [Watrous 2003]
 - ► QMASPACE = BQPSPACE [Fefferman, Remscrim 2021]

Sac

-

Relationship to Quantum NPSPACE

- Classically: PSPACE = NPSPACE [Savitch, 1970]
- Quantumly:
 - PSPACE = BQPSPACE [Watrous 2003]
 - QMASPACE = BQPSPACE [Fefferman, Remscrim 2021]
 - * QMASPACE is "quantum NPSPACE" with *poly*-size *quantum* proof

Sac

-

Relationship to Quantum NPSPACE

- Classically: PSPACE = NPSPACE [Savitch, 1970]
- Quantumly:
 - PSPACE = BQPSPACE [Watrous 2003]
 - QMASPACE = BQPSPACE [Fefferman, Remscrim 2021]
 - * QMASPACE is "quantum NPSPACE" with *poly*-size *quantum* proof
 - * Problem: NPSPACE requires exponential length proof!

Question: How to define "Quantum NPSPACE" with exp-length proof?

Sar

3

化口压 化塑胶 化医胶 化医胶

Streaming QCMASPACE (SQCMASPACE)

Promise problem $A = (A_{yes}, A_{no}) \in SQCMASPACE$ if there exists a poly-time succinctly generated quantum circuit family $\{Q_n\}$, thresholds α, β satisfying $\alpha - \beta \ge 2^{-poly(n)}$ s.t.:

- (YES case) If $x \in A_{yes}$, \exists classical streaming proof $y \in \{0, 1\}^{2^{poly(n)}}$, s.t. Q_n accepts with probability $\geq \alpha$.
- (NO case) If $x \in A_{no}$, \forall classical streaming proofs $y \in \{0, 1\}^{2^{poly(n)}}$, Q_n accepts with probability $\leq \beta$.

-

周 ト イ ヨ ト イ ヨ ト

Streaming QCMASPACE (SQCMASPACE)

Promise problem $A = (A_{yes}, A_{no}) \in SQCMASPACE$ if there exists a poly-time succinctly generated quantum circuit family $\{Q_n\}$, thresholds α, β satisfying $\alpha - \beta \ge 2^{-poly(n)}$ s.t.:

- (YES case) If $x \in A_{yes}$, \exists classical streaming proof $y \in \{0, 1\}^{2^{poly(n)}}$, s.t. Q_n accepts with probability $\geq \alpha$.
- (NO case) If $x \in A_{no}$, \forall classical streaming proofs $y \in \{0, 1\}^{2^{poly(n)}}$, Q_n accepts with probability $\leq \beta$.

- SQCMASPACE = NEXP, even with 1 vs 1/2 promise gap [G, Rudolph, 2022]
- Question: Embed exp-length streaming proofs into poly-size history state construction?

- 10

Recall: Circuit-to-Hamiltonian construction for QMA

$$|\psi_{\mathsf{hist}}\rangle = \frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_t \cdots U_1 |\psi_{\mathsf{proof}}\rangle_{\mathsf{A}} |0\cdots 0\rangle_{\mathsf{B}} |t\rangle_{\mathsf{C}}$$

Define $H = H_{in} + H_{out} + H_{prop} + H_{stab}$ such that

- *H*_{out}: Penalize rejecting computation *U* at time t = m

$$\Rightarrow \langle \psi_{\text{hist}} | \mathcal{H}_{\text{out}} | \psi_{\text{hist}} \rangle \sim \frac{1 - \Pr(U \text{ accepts } x)}{\Pr(m)}$$

Define for each $t \in \{0, ..., m-1\}$: $H_{\text{orgen } t}^{U_t} = -U_t \otimes |t\rangle \langle t-1|_C - U_t^{\dagger} \otimes |t-1\rangle \langle t|_C + I \otimes |t-1\rangle \langle t-1|_C + I \otimes |t\rangle \langle t|_C,$

Sac

・ロト (周) (王) (王) (王)

Recall: Circuit-to-Hamiltonian construction for QMA

$$|\psi_{\mathsf{hist}}\rangle = \frac{1}{\sqrt{m+1}} \sum_{t=0}^{m} U_t \cdots U_1 |\psi_{\mathsf{proof}}\rangle_{\mathsf{A}} |0\cdots 0\rangle_{\mathsf{B}} |t\rangle_{\mathsf{C}}$$

Define $H = H_{in} + H_{out} + H_{prop} + H_{stab}$ such that

- Hin: Correct ancilla initialization at time t = 0 $\langle \psi_{\text{hist}} | H_{\text{in}} | \psi_{\text{hist}} \rangle = 0$ \Rightarrow Gate U_t applied at time t $H_{\rm prop}$: =
- Clock register C encoded correctly in unary H_{stab}:
- Hout: Penalize rejecting computation U at time t = r

$$\Rightarrow \quad \langle \psi_{\mathsf{hist}} | \mathcal{H}_{\mathsf{prop}} | \psi_{\mathsf{hist}}
angle = \mathbf{0}$$

$$\Rightarrow \quad \langle \psi_{\mathsf{hist}} | \mathcal{H}_{\mathsf{out}} | \psi_{\mathsf{hist}}
angle = \mathbf{0}$$

$$m \Rightarrow \langle \psi_{\text{hist}} | H_{\text{out}} | \psi_{\text{hist}} \rangle \sim \frac{1 - \Pr(U \text{ accepts } x)}{\operatorname{poly}(m)}$$

Define for each $t \in \{0, \ldots, m-1\}$:

 $H_{\text{trop}\ t}^{U_t} = -\frac{U_t \otimes |t\rangle\langle t-1|_C - U_t^{\dagger} \otimes |t-1\rangle\langle t|_C + I \otimes |t-1\rangle\langle t-1|_C + I \otimes |t\rangle\langle t|_C,$

Problem: Need to know each gate U_t in advance. But "proof gates" a priori unknown.

3

Sac

 $H^{\boldsymbol{U}} := -\boldsymbol{U} \otimes |t\rangle \langle t-1|_{\mathcal{C}} - \boldsymbol{U}^{\dagger} \otimes |t-1\rangle \langle t|_{\mathcal{C}} + \boldsymbol{I} \otimes |t-1\rangle \langle t-1|_{\mathcal{C}} + \boldsymbol{I} \otimes |t\rangle \langle t|_{\mathcal{C}}.$

Idea [G, Rudolph, 2022]: Use "unentanglement", i.e. try to force prover to send $|\psi_{hist}\rangle \otimes |\psi_{hist}\rangle$.

 $H^{\boldsymbol{U}} := -\boldsymbol{U} \otimes |t\rangle \langle t-1|_{\mathcal{C}} - \boldsymbol{U}^{\dagger} \otimes |t-1\rangle \langle t|_{\mathcal{C}} + I \otimes |t-1\rangle \langle t-1|_{\mathcal{C}} + I \otimes |t\rangle \langle t|_{\mathcal{C}}.$

Idea [G, Rudolph, 2022]: Use "unentanglement", i.e. try to force prover to send $|\psi_{hist}\rangle \otimes |\psi_{hist}\rangle$.

Thought experiment: Imagine parallel universes *L* and *R*, s.t. *L* streams 0, *R* streams 1.

round	L	R
1	0	
2	0	
3		1
4	0	
5		1

 $H^{\boldsymbol{U}} := -\boldsymbol{U} \otimes |t\rangle \langle t-1|_{\mathcal{C}} - \boldsymbol{U}^{\dagger} \otimes |t-1\rangle \langle t|_{\mathcal{C}} + \boldsymbol{I} \otimes |t-1\rangle \langle t-1|_{\mathcal{C}} + \boldsymbol{I} \otimes |t\rangle \langle t|_{\mathcal{C}}.$

Idea [G, Rudolph, 2022]: Use "unentanglement", i.e. try to force prover to send $|\psi_{hist}\rangle \otimes |\psi_{hist}\rangle$.

Thought experiment: Imagine parallel universes L and R, s.t. L streams 0, R streams 1.

round	L	R
1	0	
2	0	
3		1
4	0	
5		1

Unentangled constraint to simulate this: $H_L^I \otimes H_R^X$.

Why?

$$(H_L^\prime\otimes H_R^\chi)|\psi\rangle_L\otimes |\phi\rangle_R=0 \quad \Leftrightarrow \quad H_L^\prime|\psi\rangle=0 \;\; {\sf OR} \;\; H_R^\chi|\phi\rangle=0.$$

 $H^{\boldsymbol{U}} := -\boldsymbol{U} \otimes |t\rangle\langle t-1|_{\mathcal{C}} - \boldsymbol{U}^{\dagger} \otimes |t-1\rangle\langle t|_{\mathcal{C}} + \boldsymbol{I} \otimes |t-1\rangle\langle t-1|_{\mathcal{C}} + \boldsymbol{I} \otimes |t\rangle\langle t|_{\mathcal{C}}.$

Idea [G, Rudolph, 2022]: Use "unentanglement", i.e. try to force prover to send $|\psi_{hist}\rangle \otimes |\psi_{hist}\rangle$.

Thought experiment: Imagine parallel universes L and R, s.t. L streams 0, R streams 1.

round	L	R
1	0	
2	0	
3		1
4	0	
5		1

Unentangled constraint to simulate this: $H_L^I \otimes H_R^X$.

Why?

$$(H_L^{\prime} \otimes H_R^{\chi}) |\psi\rangle_L \otimes |\phi\rangle_R = 0 \quad \Leftrightarrow \quad H_L^{\prime} |\psi\rangle = 0 \text{ OR } H_R^{\chi} |\phi\rangle = 0.$$

Problem: Neither universe has any choice which bit it streams...

Sevag Gharibian (Paderborn University)

Unentangled constraint to simulate this: $H_L^I \otimes H_R^X$.

Why?

$$(H_L^\prime \otimes H_R^X) |\psi\rangle_L \otimes |\phi\rangle_R = 0 \quad \Leftrightarrow \quad H_L^\prime |\psi\rangle = 0 \; \; {\sf OR} \; \; H_R^X |\phi\rangle = 0.$$

Problem: Neither universe has any choice which bit it streams...

3

Sac

Unentangled constraint to simulate this: $H_L^I \otimes H_R^X$.

Why?

$$(H_L^\prime \otimes H_R^X) |\psi\rangle_L \otimes |\phi\rangle_R = 0 \quad \Leftrightarrow \quad H_L^\prime |\psi\rangle = 0 \; \; {\sf OR} \; \; H_R^X |\phi\rangle = 0.$$

Problem: Neither universe has any choice which bit it streams...

Attempt 2:

$$(H'_{L} \otimes H^{\mathsf{X}}_{R} + H^{\mathsf{X}}_{L} \otimes H'_{R}) |\psi\rangle_{L} \otimes |\phi\rangle_{R} = 0 \qquad \Leftrightarrow \qquad (H'_{L}|\psi\rangle = 0 \text{ AND } H'_{R}|\phi\rangle = 0) \text{ OR}$$
$$(H^{\mathsf{X}}_{L}|\psi\rangle = 0 \text{ AND } H^{\mathsf{X}}_{R}|\phi\rangle = 0)$$

Unentangled constraint to simulate this: $H_L^I \otimes H_R^X$.

Why?

$$(H_L^{\prime}\otimes H_R^{\chi})|\psi\rangle_L\otimes |\phi\rangle_R=0 \quad \Leftrightarrow \quad H_L^{\prime}|\psi\rangle=0 \ \ {\sf OR} \ \ H_R^{\chi}|\phi\rangle=0.$$

Problem: Neither universe has any choice which bit it streams...

Attempt 2:

$$\begin{pmatrix} H'_{L} \otimes H^{\mathsf{X}}_{R} + H^{\mathsf{X}}_{L} \otimes H^{\prime}_{R} \end{pmatrix} |\psi\rangle_{L} \otimes |\phi\rangle_{R} = 0 \qquad \Leftrightarrow \qquad (H'_{L}|\psi\rangle = 0 \text{ AND } H^{\prime}_{R}|\phi\rangle = 0) \text{ OR}$$
$$(H^{\mathsf{X}}_{L}|\psi\rangle = 0 \text{ AND } H^{\mathsf{X}}_{R}|\phi\rangle = 0)$$

In words:

• Each universe can stream either proof bit, as long as both universes choose the same bit!

Sac

・ロト (周) (王) (王) (王)

Unentangled constraint to simulate this: $H_L^I \otimes H_R^X$.

Why?

$$(H_L^{\prime}\otimes H_R^{\chi})|\psi\rangle_L\otimes |\phi\rangle_R=0 \quad \Leftrightarrow \quad H_L^{\prime}|\psi\rangle=0 \;\; {\sf OR} \;\; H_R^{\chi}|\phi\rangle=0.$$

Problem: Neither universe has any choice which bit it streams...

Attempt 2:

$$\begin{pmatrix} H'_{L} \otimes H^{\mathsf{X}}_{R} + H^{\mathsf{X}}_{L} \otimes H^{\prime}_{R} \end{pmatrix} |\psi\rangle_{L} \otimes |\phi\rangle_{R} = 0 \qquad \Leftrightarrow \qquad (H'_{L}|\psi\rangle = 0 \text{ AND } H^{\prime}_{R}|\phi\rangle = 0) \text{ OR}$$
$$(H^{\mathsf{X}}_{L}|\psi\rangle = 0 \text{ AND } H^{\mathsf{X}}_{R}|\phi\rangle = 0)$$

In words:

- Each universe can stream either proof bit, as long as both universes choose the same bit!
- Exploited quadratic property of unentanglement to simulate logical EQUALS function on *L* vs *R*.

Sac

・ロト (周) (王) (王) (王)

Unentangled constraint to simulate this: $H_L^I \otimes H_R^X$.

Why?

$$(H_L^l\otimes H_R^X)|\psi\rangle_L\otimes |\phi\rangle_R=0 \quad \Leftrightarrow \quad H_L^l|\psi\rangle=0 \;\; {\sf OR} \;\; H_R^X|\phi\rangle=0.$$

Problem: Neither universe has any choice which bit it streams...

Attempt 2:

$$\begin{pmatrix} H'_{L} \otimes H^{\mathsf{X}}_{R} + H^{\mathsf{X}}_{L} \otimes H^{\prime}_{R} \end{pmatrix} |\psi\rangle_{L} \otimes |\phi\rangle_{R} = 0 \qquad \Leftrightarrow \qquad (H'_{L}|\psi\rangle = 0 \text{ AND } H^{\prime}_{R}|\phi\rangle = 0) \text{ OR}$$
$$(H^{\mathsf{X}}_{L}|\psi\rangle = 0 \text{ AND } H^{\mathsf{X}}_{R}|\phi\rangle = 0)$$

In words:

- Each universe can stream either proof bit, as long as both universes choose the same bit!
- Exploited quadratic property of unentanglement to simulate logical EQUALS function on L vs R.
- Gives intuitive explanation as to why unentanglement helps!

Full construction

$$\widetilde{H} = \Delta_{in}\widetilde{H}_{in} + \Delta_{prop}\widetilde{H}_{prop} + \Delta_{sym}\widetilde{H}_{sym} + \widetilde{H}_{out}$$

$$\widetilde{H}_{in} = (H_{in})_L \otimes I_R + I_L \otimes (H_{in})_R$$
(2)

$$\widetilde{H}_{\text{prop}} = \sum_{t=1}^{m} \widetilde{H}_{t}$$
, where \widetilde{H}_{t} is defined as (3)

$$\widetilde{H}_t = \begin{cases} (H_t^l)_L \otimes (H_t^{lX})_R + (H_t^{lX})_L \otimes (H_t^l)_R & \text{if } t \in P\\ (H_t)_L \otimes I_R + I_L \otimes (H_t)_R & \text{if } t \notin P \end{cases}$$

$$\widetilde{H}_{out} = (H_{out})_L \otimes I_R + I_L \otimes (H_{out})_R$$
(5)

$$\widetilde{H}_{sym} = I - P_{LR}^{sym}$$
 for $P_{LR}^{sym} = \frac{1}{2} \left(I_{LR} + \sum_{xy} |xy\rangle\langle yx|_{LR} \right)$,

• Recall: Analysis not an eigenvalue analysis!

3

イロト イポト イヨト イヨト

(4)

(6)

Sac

Full construction

$$\widetilde{H} = \Delta_{\rm in} \widetilde{H}_{\rm in} + \Delta_{\rm prop} \widetilde{H}_{\rm prop} + \Delta_{\rm sym} \widetilde{H}_{\rm sym} + \widetilde{H}_{\rm out}$$
(1)

$$\widetilde{H}_{\rm in} = (H_{\rm in})_L \otimes I_R + I_L \otimes (H_{\rm in})_R \tag{2}$$

$$\widetilde{H}_{\text{prop}} = \sum_{t=1}^{m} \widetilde{H}_t$$
, where \widetilde{H}_t is defined as (3)

$$\widetilde{H}_{t} = \begin{cases} (H_{t}^{l})_{L} \otimes (H_{t}^{lX})_{R} + (H_{t}^{lX})_{L} \otimes (H_{t}^{l})_{R} & \text{if } t \in P \\ (H_{t})_{L} \otimes I_{R} + I_{L} \otimes (H_{t})_{R} & \text{if } t \notin P \end{cases}$$

$$\tag{4}$$

$$\widetilde{H}_{out} = (H_{out})_L \otimes I_R + I_L \otimes (H_{out})_R$$
(5)

$$\widetilde{H}_{sym} = I - P_{LR}^{sym}$$
 for $P_{LR}^{sym} = \frac{1}{2} \left(I_{LR} + \sum_{xy} |xy\rangle \langle yx|_{LR} \right),$ (6)

- Recall: Analysis not an eigenvalue analysis!
- With more work: Can encode any multi-prover interactive proof into QMA(2), but promise gap scales 1/ exp with communication length

э

Sac

化口压 化间压 化医压 化医压

Full construction

$$\widetilde{H} = \Delta_{\rm in} \widetilde{H}_{\rm in} + \Delta_{\rm prop} \widetilde{H}_{\rm prop} + \Delta_{\rm sym} \widetilde{H}_{\rm sym} + \widetilde{H}_{\rm out}$$
(1)

$$\widetilde{H}_{in} = (H_{in})_L \otimes I_R + I_L \otimes (H_{in})_R$$
⁽²⁾

$$\widetilde{H}_{\text{prop}} = \sum_{t=1}^{m} \widetilde{H}_t$$
, where \widetilde{H}_t is defined as (3)

$$\widetilde{H}_{t} = \begin{cases} (H_{t}^{l})_{L} \otimes (H_{t}^{lX})_{R} + (H_{t}^{lX})_{L} \otimes (H_{t}^{l})_{R} & \text{if } t \in P\\ (H_{t})_{L} \otimes I_{R} + I_{L} \otimes (H_{t})_{R} & \text{if } t \notin P \end{cases}$$

$$\tag{4}$$

$$\widetilde{H}_{out} = (H_{out})_L \otimes I_R + I_L \otimes (H_{out})_R$$
(5)

$$\widetilde{H}_{sym} = I - P_{LR}^{sym}$$
 for $P_{LR}^{sym} = \frac{1}{2} \left(I_{LR} + \sum_{xy} |xy\rangle\langle yx|_{LR} \right),$ (6)

- Recall: Analysis not an eigenvalue analysis!
- With more work: Can encode any multi-prover interactive proof into QMA(2), but promise gap scales 1/ exp with communication length
- Upshot: First systematic "compression" of long proofs into small history states, but does not yet resolve QMA(2) versus NEXP (our construction requires 1/ exp gap for QMA(2) to capture NEXP).

Summary

- Turing machines rule theoretical computer science
- Quantumly, we use uniformly generated circuit families
- Matrix Inversion is BQP-complete
- Local Hamiltonian problem is QMA-complete
- Kitaev's quantum Cook-Levin theorem: Embed computation into low-energy history state
- Quantum NP has many versions, including:
 - QMA(2): promise problems efficiently verifiable (via unentangled proof) on quantum computer.

= nar

Summary

- Turing machines rule theoretical computer science
- Quantumly, we use uniformly generated circuit families
- Matrix Inversion is BQP-complete
- Local Hamiltonian problem is QMA-complete
- Kitaev's quantum Cook-Levin theorem: Embed computation into low-energy history state
- Quantum NP has many versions, including:
 - QMA(2): promise problems efficiently verifiable (via unentangled proof) on quantum computer.

Thank you and happy quantuming!

Sevag Gharibian (Paderborn University)

Intro to quantum complexity theory

Bad Honnef Physics School 2022 74/74

Sar

3

医静脉 医原体 医原