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Goal

High-level steps:
1 Formal model for computation
2 Complexity theory within this model (classical and quantum)
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Outline

1 Classical complexity theory
The computational model
Decision problems, P, and NP
Reductions and NP-hardness

2 BQP
Circuit families and BQP
A BQP-complete problem: MI

MI ∈ BQP
MI is BQP-hard

3 QMA

4 Kitaev’s “quantum Cook-Levin theorem” for QMA

5 Beyond QMA: The many flavors of “quantum NP”
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Computational complexity theory
What resources (e.g. time, space, communication, etc) are required to solve a given computational problem?

Conversation with first-year CS undergrad:

Instructor: What does it mean to compute shortest path from point A to point B on a map in O(n2) time?

Student: Given a map, A and B, output the shortest path using approximately n2 steps.

Instructor: What do you mean by “steps”?

Student: You know, loop iterations... in Java or something.

Instructor: What if I don’t code in Java? What if I code in C, or machine code?

Student: Ummmmm...

Instructor: Do you even know what n is?

Student:
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Turing machine (TM)

CPU

x1 x2 x3 t t

Head

(Infinite) tape

Before TM starts: Input x ∈ {0, 1}∗ written on tape (t are blank cells)

One step of computation:
I Head at position i reads bit bi ∈ {0, 1}∗ on tape
I Write bit b′i ∈ {0, 1} to position i on tape
I Move head left or right 1 cell

What does it mean to “compute”? Given input x , TM runs for some number of steps, and either:
I Halts→ tape contents are “output” of computation
I Doesn’t halt→ infinite loop

What is n? Input size, i.e. x ∈ {0, 1}n.
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Why Turing machines (TMs)?

Simple model to state and understand:
I Computation time: Number of steps for TM to halt on input x
I Computation space: Number of tape cells TM uses on tape

Robust: Power of model unchanged under minor modifications (e.g. 2 tapes instead of 1)

Church-Turing thesis:

If there exists a mechanical process for computing function f : {0, 1}∗ → {0, 1}∗, then there exists a
Turing machine computing f .
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Decision problems
Informally: “Problems with a YES or NO answer.”

Decision problem A = (Ayes,Ano)

Suppose Ayes ∪ Ano partition {0, 1}∗, i.e. Ayes are “YES” instances, Ano the “NO” instances.

Given input x ∈ {0, 1}∗,
if x ∈ Ayes, output YES.

if x ∈ Ano, output NO.

Example: Integer multiplication (MULTIPLY).

Non-decision problem formulation: Given (x , y) ∈ Z2, what is xy?

Decision problem formulation: Given (x , y , t) ∈ Z3, is xy≤ t?

Formally,
Ayes =

{
(x , y , t) ∈ Z3 | xy ≤ t

}
, Ano = {0, 1}∗ \ Ayes.
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Polynomial-Time (P)

Polynomial-Time (P)
Decision problem A = (Ayes,Ano) is in P if there exists TM M and polynomial p, such that for any input
x ∈ {0, 1}n, M halts in a most O(p(n)) steps and:

(YES case) If x ∈ Ayes, M outputs 1, i.e. M(x) = 1.

(NO case) If x ∈ Ano, M outputs 0, i.e. M(x) = 0.

MULTIPLY: Ayes =
{

(x , y , t) ∈ Z3 | xy ≤ t
}

.

Grade-school multiplication algorithm on TM takes O(n2) steps⇒ MULTIPLY ∈ P.

Aside: Fastest multiplication algorithm is O(n log n) [Harvey, van der Hoeven, 2019].
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First cousins
MULTIPLY: Ayes =

{
(x , y , t) ∈ Z3 | xy ≤ t

}
.

Grade-school multiplication algorithm on TM takes O(n2) steps⇒ MULTIPLY ∈ P.

Aside: Fastest multiplication algorithm is O(n log n) [Harvey, van der Hoeven, 2019].

FACTOR: Ayes =
{

(x , t) ∈ Z2 | x ≥ 0 has non-trivial factor ≤ t
}

.

Is FACTOR ∈ P?

Strongly believed FACTOR 6∈ P (security of popular cryptosystem RSA relies on it)

Can be verified easily: Given claimed “proof” y ∈ Z, can efficiently check if y ≤ t and x mod y = 0.

Bonus: In contrast to FACTOR, checking if x has any non-trivial factor is in P [Agrawal, Kayal, Saxena 2002]
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Sanity check

Why isn’t the naive brute force algorithm poly-time?

Input: (x , t) ∈ Z2

Output: Factor y ∈ Z of x with y ≤ t , if one exists
1 Set k = 2
2 While (k < t)

a) If x mod k = 0 then return k
b) k = k + 1

3 Return “no factor found”

Runtime: ≈ num loop iterations O(x).

Exercise 1: Why is this not poly-time?
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Non-deterministic Polynomial-Time (NP)
Polynomial-Time (P)
Decision problem A = (Ayes,Ano) is in P if there exists TM M and polynomial p, such that for any input
x ∈ {0, 1}n, M halts in a most O(p(n)) steps and:

(YES case) If x ∈ Ayes, M outputs 1.

(NO case) If x ∈ Ano, M outputs 0.

Non-deterministic Polynomial-Time (NP)
Decision problem A = (Ayes,Ano) is in NP if there exists TM M and polynomials p and q, such that for any
input x ∈ {0, 1}n, M halts in a most O(p(n)) steps and:

(YES case) If x ∈ Ayes, there exists proof y ∈ {0, 1}q(n), such that M(x , y) = 1.

(NO case) If x ∈ Ano, for all proofs y ∈ {0, 1}q(n), M(x , y) = 0.

Observe: P ⊆ NP.

Note: FACTOR ∈ NP (given “proof” y ∈ Z, can efficiently check if y ≤ t and x mod y = 0).
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Reductions
Moral code of complexity theorists: Let someone else solve your problem

(Many-one) reduction

A reduction from A = (Ayes,Ano) to B = (Byes,Bno), denoted A ≤ B, is a TM M, s.t. for any input x ∈ {0, 1}∗,
if x ∈ Ayes, then M(x) ∈ Byes.

if x ∈ Ano, then M(x) ∈ Bno.

If M runs in poly-time, we say the reduction is poly-time, and write A ≤p B.

Implication: If A ≤p B, then if B ∈ P⇒ A ∈ P.

Exercise 2: Show that MULTIPLY reduces to ADD =
{

(x1, . . . , xk , t) ∈ Zk+1 | k ≥ 0 and
∑k

i=1 xk ≤ t
}

.
Is your reduction poly-time?
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NP-complete problems

“Strongest/hardest” problems in NP

Formally:

B = (Byes,Bno) is NP-hard if for all A = (Ayes,Ano) ∈ NP, A ≤p B.
I Implication: B ∈ P⇒ P = NP.

B is NP-complete if B is NP-hard and B ∈ NP.
I Implication: B “characterizes” the power of NP.

Cook-Levin Theorem: 3-SAT is NP-complete [Cook 1971, Levin 1973]
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3-SAT

Input: Boolean formula φ : {0, 1}n → {0, 1} in “3-Conjunctive Normal Form (3-CNF)”, e.g.

φ = (x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x1 ∨ x9) · · · (x1 ∨ x5 ∨ x2)

Output: Is there a “satisfying assignment”, i.e. ∃x ∈ {0, 1}n such that φ(x) = 1?

Exercise 3: Show that 3-SAT is NP-hard even if each variable xi appears at most 3 times in φ.

Exercise 4: What is the complexity of 3-SAT if each variable xi appears exactly 3 times in φ? (Hint: Google
“Hall’s marriage theorem”.)
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Quantumly: Work with poly(n)-size quantum circuit implementing n-qubit unitaries U, e.g.

|0〉⊗n


|0〉 H • · · · H

|0〉 X · · · •
...

...
|0〉 H · · · Z

 |ψ〉 ∈ (C2)⊗n

What happened to our beloved TMs?
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The computational model

What computational model to use for quantum complexity theory?

Idea 1: Use “quantum Turing machines”. . .

Idea 2: Use “poly-size” quantum circuits?
I Exercise 5. If 3-SAT formula φ is satisfiable, ∃ poly-size circuit computing x with φ(x) = 1.
I Problem: Even if poly-size circuit exists, can be hard to find it!

If the poly-size circuit is hard to find, not very useful for solving problems ,
I Solution: Use “poly-time uniformly generated” circuits.
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Remark: All quantum circuits in this lecture are sequences of 1- and 2-qubit gates.

P-uniform quantum circuit family

A family of quantum circuits {Qn} is P-uniform if there exists a poly-time TM M, which given as input 1n,
outputs a classical description of Qn via a sequence of 1- and 2-qubit gates.

Exercise 6: Why does M get 1n as input, instead of n written in binary?

Henceforth: Use P-uniform quantum circuit families, not TMs.

Sevag Gharibian (Paderborn University) Intro to quantum complexity theory Bad Honnef Physics School 2022 24 / 74



Bounded-error quantum polynomial-time (BQP)
Promise problem A = (Ayes,Ano,Ainv) ∈ BQP if ∃ P-uniform quantum circuit family {Qn} and polynomial q as
below. The first output qubit of Qn is measured in the standard basis and returned. For any input x ∈ {0, 1}∗:

(YES case) If x ∈ Ayes, then Qn outputs 1 with probability at least 2/3.

(NO case) If x ∈ Ano, then Qn outputs 1 with probability at most 1/3.

(Invalid case) If x ∈ Ainv, Qn outputs 0 or 1 arbitrarily.

|x1〉

Qn

...
|xn〉
|0〉

...
|0〉

input x

ancilla of q(n) qubits
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Caution

Quantum complexity classes typically promise classes

Decision problem: All inputs are “valid”, i.e. Ayes and Ano partition {0, 1}∗.

Promise problem: Not all inputs are “valid”, i.e. Ainv = {0, 1}∗ \ (Ayes ∪ Ano).
I Intuition: poly(n) runs of quantum circuit cannot distinguish2 YES vs NO thresholds like

1
2

+
1
2n versus

1
2
− 1

2n .

I Exercise 7: Chernoff bound has “exponential scaling”. Why does it not suffice above?

2Best strategy: Run circuit in parallel, take majority vote of output answers, apply Chernoff bound.
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The Pikachu of BQP
Linear system solving:

Input: Invertible A ∈ CN×N and target vector b ∈ CN

Output: x ∈ CN such that Ax = b.

What is the complexity of linear system solving?

A and x given explicitly in matrix form⇒ x = A−1b classically in time poly(N)

I Exercise 8: Is linear system solving thus in P?

A represented “succinctly” via “query-access” and b given via quantum circuit?
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Matrix inversion problem (MI)
Input:

O(1)-sparse row-computable invertible Hermitian matrix3 A ∈ CN×N

A specified via polylogN-time TM M which, given row index r ∈ [N] of A, outputs entries of row r of A

Output: Let |x〉 ∝ A−1|0N〉 be a unit vector, and Π = |1〉〈1| a projector onto the first qubit of |x〉. Then:

(YES case) If 〈x |Π|x〉 ≥ 2/3, output YES.

(NO case) If 〈x |Π|x〉 ≤ 1/3, output NO.

(Invalid case) Else, output YES or NO arbitrarily.

Theorem [Harrow, Hassidim, Lloyd, 2008]
MI is BQP-complete under poly-time many-one reductions.

Proof steps:
1 MI ∈ BQP.
2 MI is BQP-hard.

3Technically, need condition number κ(A) to satisfy κ−1(A) � A � I with κ(A) ∈ polylog(N).
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MI ∈ BQP

Goal: Given sparse Hermitian A and poly-size circuit for |b〉, want to compute unit vector |x〉 ∝ A−1|b〉.

Idea: To compute A−1, coherently invert each eigenvalue of A via Quantum Phase Estimation (QPE).

Notation: Spectral decomposition A =
∑

i λi |ψi〉〈ψi |.

Framework: Eigenvalue surgery

1 Eigenvalue extraction (via Hamiltonian simulation and Quantum Phase Estimation (QPE))
2 Eigenvalue processing (done classically, coherently)
3 Eigenvalue reinsertion (via postselection)
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Hamiltonian simulation
Question: Why is quantum dynamics unitary?

(Time-independent) Schrödinger equation

Time evolution of any n-qubit system governed by Hermitian matrix H ∈ L(C2)⊗n, called a Hamiltonian:

i
d |ψ〉

dt
= H|ψ〉 solve−→ |ψt〉 = e−iHt |ψ0〉 (← unitary!)

Hamiltonian simulation [Low, Chuang 2017]

Given d-sparse H, simulation time t ≥ 0, and ε > 0, can simulate eiHt up to error ε and success probability at
least 1− 2ε in timea

O
(

td ‖H‖max +
log(1/ε)

log log(1/ε)

)
.

aQuery complexity. Gate complexity has O(n) overhead.
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MI ∈ BQP

Goal: Given sparse Hermitian A and poly-size circuit for |b〉, want to compute unit vector |x〉 ∝ A−1|b〉.

Idea: To compute A−1, coherently invert each eigenvalue of A via Quantum Phase Estimation (QPE).

Notation: Spectral decomposition A =
∑

i λi |ψi〉〈ψi |.

Framework: Eigenvalue surgery

1 Eigenvalue extraction (via Hamiltonian simulation and Quantum Phase Estimation (QPE))
2 Eigenvalue processing (done classically, coherently)
3 Eigenvalue reinsertion (via postselection)
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Quantum Phase Estimation (QPE)
Consider Hermitian H with spectral decomposition H =

∑
j λj |ψj〉〈ψj |.

Consider spectral decomposition of unitary:

U = eiH =

∑
j

eiλj |ψj〉〈ψj |.

Goal: Given eigenvector |ψj〉, precision parameter k , want to compute λj to k bits of precision.

Quantum Phase Estimation algorithm (QPE)

Given precision k , and ability to efficiently compute controlled-U2K
for 1 ≤ K ≤ k , can map

|0k 〉|ψj〉 7→ |λ̃j〉|ψj〉 ⇒ |0k 〉
∑

j

αj |ψj〉 7→
∑

j

αj |λ̃j〉|ψj〉,

where λ̃j is λj up to k bits.

Exercise 9a: Given n-qubit unitary U, can we efficiently compute U2n
in general?
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MI ∈ BQP

Goal: Given sparse Hermitian A and poly-size circuit for |b〉, want to compute unit vector |x〉 ∝ A−1|b〉.

Idea: To compute A−1, coherently invert each eigenvalue of A via Quantum Phase Estimation (QPE).

Notation: Spectral decomposition A =
∑

i λi |ψi〉〈ψi |.

Framework: Eigenvalue surgery

1 Eigenvalue extraction (via Hamiltonian simulation and Quantum Phase Estimation (QPE))
2 Eigenvalue processing (done classically, coherently)
3 Eigenvalue reinsertion (via postselection)
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Step 1: Eigenvalue extraction (recall A =
∑

i λi |ψi〉〈ψi |)
Prepare target state

|b〉 =
N∑

j=1

αj |ψj〉 ∈ CN ,

where |ψj〉 are the eigenvectors of A with eigenvalues λj .

Apply QPE (for unitary eiA) with an n-qubit ancilla to our state |b〉 to obtain

N∑
j=1

αj |λj〉|ψj〉 ∈ (C2)⊗n ⊗CN .

Step 2: Eigenvalue processing
Conditioned on the first register, rotate a new single-qubit ancilla as follows:

N∑
j=1

αj |λj〉|ψj〉

(√
1− 1

λ2
j κ

2(A)
|0〉+

(
1

λjκ(A)

)
|1〉

)
∈ (C2)⊗n ⊗CN ⊗C2.

Exercise 9b: Google “condition number”, learn about it.
Exercise 10: Assume ‖A‖∞ = 1. Show 1/κ(A) ≤ 1/(λjκ(A)) ≤ 1. Thus, amplitudes above well-defined.
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Step 2: Eigenvalue processing
Conditioned on the first register, rotate a new single-qubit ancilla as follows:

N∑
j=1

αj |λj〉|ψj〉

(√
1− 1

λ2
j κ

2(A)
|0〉+

(
1

λjκ(A)

)
|1〉

)
∈ (C2)⊗n ⊗CN ⊗C2.

Step 3: Eigenvalue reinsertion
Measure third register in standard basis, postselect on outcome 1, discard third register:

N∑
j=1

αj

(
1
λj

)
|ψj〉 ∝ A−1|b〉 ∈ CN .

Exercise 11. Prove that probability of obtaining outcome 1 is at least 1/κ2(A).
Exercise 12. What is the expected number of repetitions for postselection to succeed? Can we improve this
with amplitude amplification?
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Runtime

If we run QPE to get additive inverse poly error for phases, runtime is

Õ(κ(A)(Tb + s2 log2(N)))

for Tb the number of gates to prepare |b〉, N the dimension of A, and log N the number of qubits.

Implication:

When κ(A),Tb, s ∈ polylog(N), exponentially faster than classically solving the entire N × N system.

For definition of MI, suffices to obtain MI ∈ BQP.

Exercise 13**. Although the quantum algorithm can give exponential speedups, why is it incorrect to directly
compare it to classical linear system solvers?
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Matrix inversion problem (MI)
Input:

O(1)-sparse row-computable invertible Hermitian matrix4 A ∈ CN×N

A specified via poly-time TM M which, given row index r ∈ [N] of A, outputs entries of row r of A

Output: Let |x〉 ∝ A−1|0N〉 be a unit vector, and Π = |1〉〈1| a projector onto the first qubit of |x〉. Then:

(YES case) If 〈x |Π|x〉 ≥ 2/3, output YES.

(NO case) If 〈x |Π|x〉 ≤ 1/3, output NO.

(Invalid case) Else, output YES or NO arbitrarily.

Theorem [Harrow, Hassidim, Lloyd, 2008]
MI is BQP-complete under poly-time many-one reductions.

Proof steps:
1 MI ∈ BQP.
2 MI is BQP-hard.
4Technically, need condition number κ(A) to satisfy κ−1(A)I � A � I with κ(A) ∈ polylog(N).
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Outline

1 Classical complexity theory
The computational model
Decision problems, P, and NP
Reductions and NP-hardness

2 BQP
Circuit families and BQP
A BQP-complete problem: MI

MI ∈ BQP
MI is BQP-hard

3 QMA

4 Kitaev’s “quantum Cook-Levin theorem” for QMA

5 Beyond QMA: The many flavors of “quantum NP”

Sevag Gharibian (Paderborn University) Intro to quantum complexity theory Bad Honnef Physics School 2022 40 / 74



MI is BQP-hard
Goal: Show that any BQP computation V poly-time reducible to an instance A of MI.

Starting point: Let V = Vm · · ·V1 be a BQP circuit on n qubits, N = 2n. Assume WLOG m is power of 2.

Problem: Need to tie matrix inverse with action of V .

Idea:

Recall Maclaurin series 1
1−x =

∑∞
l=0 x l for |x | < 1.

We could apply this to any normal matrix U with ‖U‖∞ < 1 to get

(I − U)−1 =
∞∑
l=0

U l .

What would be great: Normal matrix U acting something like

Uk |0n〉 ≈ Vk · · ·V1|0n〉.
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What would be great: Normal matrix U acting something like

Uk |0n〉 ≈ Vk · · ·V1|0n〉.

Define:

U =
m−1∑
t=0

|t + 1〉〈t | ⊗ Vt+1 +
2m−1∑
t=m

|t + 1 mod 2m〉〈t | ⊗ V †2m−t ∈ U((C2)⊗ log m ⊗ (C2)⊗n),

Exercise 12: Check that U is unitary.

Exercise 13: Check that Um|0log m〉|0n〉 = |m〉V |0n〉.

Implication: Measuring first qubit of second register of Um|0log m〉|0n〉 simulates measuring output qubit of V !
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We could apply this to any normal matrix U with ‖U‖∞ < 1 to get (I − U)−1 =
∑

l=0 U l .

Define U =
∑m−1

t=0 |t + 1〉〈t | ⊗ Vt+1 +
∑2m−1

t=m |t + 1 mod 2m〉〈t | ⊗ V †2m−t ∈ U((C2)⊗ log m ⊗ (C2)⊗n),

Define A = I − U. Then,

|x〉 ∝ A−1|0log m+n〉
= (I − U)−1|0log m+n〉

∝
∞∑
l=0

U l |0〉log m|0n〉

∝ |0〉|0n〉+ |1〉V1|0n〉+ · · ·+ |m〉Vm · · ·V1|0n〉.

Implication:
I Measuring first register gives |m〉 with probability ≈ 1/(m + 1).
I Postselecting on |m〉, measuring second register reveals BQP circuit V ’s output.

Exercise 14: I cheated slightly on one of the lines above (regarding |x〉) — where did I cheat?

Exercise 15: I cheated less slightly somewhere else on this slide. Where did I make a bigger boo boo?
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Exercise 15: I cheated less slightly somewhere else on this slide. Where did I make a bigger boo boo?
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Final exercises for MI

Construction almost works, but for 3 issues to check:

1 A must be O(1)-sparse (by def of MI).

Exercise 16: Check that U, and thus A, are O(1)-sparse.

2 MI needs YES case and NO case thresholds of 2/3 vs 1/3 for BQP. The current construction will give
2/(3(m + 1)) vs 1/(3(m + 1)).

Exercise 17: Modify the construction to boost the YES/NO thresholds to 2/3 and 1/3, respectively.

3 Our current choice of A is not necessarily invertible, since ‖U‖∞ = 1. (Maclaurin series does not apply.)

Exercise 18: Consider first A = I − 1
2 U. Show that A is invertible and has κ(A) ∈ O(1). Where will this

construction nevertheless fail in the analysis?

Exercise 19: Consider finally A = I − e−1/mU. Show that A is invertible, has κ(A) ∈ O(m) ∈ polylog(N).
Show that this choice avoids the problem from Exercise 18.

4 I cheated again. There is a 4th issue — A must be Hermitian. But I will spare you these details.
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Outline

1 Classical complexity theory
The computational model
Decision problems, P, and NP
Reductions and NP-hardness

2 BQP
Circuit families and BQP
A BQP-complete problem: MI

MI ∈ BQP
MI is BQP-hard

3 QMA

4 Kitaev’s “quantum Cook-Levin theorem” for QMA

5 Beyond QMA: The many flavors of “quantum NP”
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QMA

Quantum Merlin-Arthur (QMA)
Promise problem A = (Ayes,Ano,Ainv) ∈ QMA if ∃ P-uniform quantum circuit family {Qn} and polynomials p,q:

(YES case) If x ∈ Ayes, ∃ proof |ψproof〉 ∈ (C2)⊗p(n), such that Qn accepts with probability at least 2/3.

(NO case) If x ∈ Ano, then ∀ proofs |ψproof〉 ∈ (C2)⊗p(n), Qn accepts with probability at most 1/3.

(Invalid case) If x ∈ Ainv, Qn may accept or reject arbitrarily.

(input) |x〉

Qn(proof) |ψproof〉
(ancilla of q(n) qubits) |0 · · · 0〉
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Error reduction for QMA

Weak error reduction (the “obvious” type)

Idea: Given poly(n) copies of |ψproof〉, repeat verification poly(n) times and take majority vote

Caution: In NO case, no guarantee proof is of form |ψproof〉 ⊗ |ψproof〉 ⊗ · · · ⊗ |ψproof〉!
Achieves completeness 1− 2− poly(n) versus soundness 2− poly(n).

Problem: Blows up proof size (by a polynomial)

Question: Can we do it with just one copy of |ψproof〉?

Obstacle: No-cloning theorem says we cannot copy |ψproof〉...
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Marriot-Watrous strong error reduction

Set i = 0.

Do while i ≤ N:
I (Run verification Qn) Run Qn and measure output qubit to obtain bit yi . Set i = i + 1.
I (Run Qn in reverse) Run Q†n and measure whether input “resets” to x and ancillae to |0 · · · 0〉. If

yes, set yi = 1, else set yi = 0. Set i = i + 1.

(Postprocessing) If the number of indices i ∈ {0, . . . ,N − 1} such that yi = yi+1 is at least N/2, accept.
Otherwise, reject.
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Outline

1 Classical complexity theory
The computational model
Decision problems, P, and NP
Reductions and NP-hardness

2 BQP
Circuit families and BQP
A BQP-complete problem: MI

MI ∈ BQP
MI is BQP-hard

3 QMA

4 Kitaev’s “quantum Cook-Levin theorem” for QMA

5 Beyond QMA: The many flavors of “quantum NP”
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Remember this?

(Time-independent) Schrödinger equation

Time evolution of any n-qubit system governed by Hermitian matrix H ∈ L(C2)⊗n, called a Hamiltonian:

i
d |ψ〉

dt
= H|ψ〉 solve−→ |ψt〉 = e−iHt |ψ0〉 (← unitary!)

Question: What kind of Hamiltonians H appear in nature?
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k -local Hamiltonian

k -local Hamiltonian

An n-qubit Hermitian operator H =
∑

i Hi ∈ L((C2)⊗n), where

each Hi is a 2k × 2k matrix for k ∈ O(1), i.e. a quantum constraint,

smallest eigenvalue λmin(H) is ground state energy,

the eigenvector |ψ〉 ∈ (C2)⊗n corresponding to λmin(H) is ground state.

Example. Let Hij = Xi ⊗ Xj + Yi ⊗ Yj + Zi ⊗ Zj ∈ L(C4).

1 2 3 4

H12 H23 H34

Then, H = H12 ⊗ I34 + I1 ⊗ H23 ⊗ I4 + I12 ⊗ H34 ∈ L(C16).
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Quantum constraint satisfaction

k -local Hamiltonian problem (k -LH)

Input: k -local Hamiltonian H on n qubits, thresholds 0 ≤ α ≤ β s.t. |α− β| ≥ 1/ poly(n)

Promise: λmin(H) ≤ α or λmin(H) ≥ β
Output: Decide whether λmin(H) ≤ α or λmin(H) ≥ β

Canonical QMA-complete problem!

Motivation: Show superfluid helium video

https://www.youtube.com/watch?v=2Z6UJbwxBZI

Sevag Gharibian (Paderborn University) Intro to quantum complexity theory Bad Honnef Physics School 2022 53 / 74

https://www.youtube.com/watch?v=2Z6UJbwxBZI


Selected history
“Quantum Cook-Levin Theorem”: 5-LH is QMA-complete [Kitaev, 1999]

2-LH is QMA-complete (via perturbation theory gadgets) [Kempe, Kitaev, Regev, 2004]
QMA-complete on 2D square lattice of qubits [Oliveira, Terhal 2005]
QMA-complete in 1D (!) for local dimension 12 [Aharonov, Gottesman, Irani, Kempe 2009]
“Quantum NEXP”-complete for 1D, translation-invariant systems [Gottesman, Irani, 2010]
4-chotomy theorem: either P, NP-complete, StoqMA-complete, QMA-complete [Cubitt, Montanaro
2013], [Bravyi, Hastings 2014]

Variants:
PSPACE-complete for |α− β| ≥ 1/ exp(n) [Fefferman, Lin, 2016]
QMA-hard for |α− β| ∈ Ω(1)?

Quantum PCP conjecture! (see [Aharonov, Arad, Vidick, 2013] for survey)
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QMA-complete on 2D square lattice of qubits [Oliveira, Terhal 2005]
QMA-complete in 1D (!) for local dimension 12 [Aharonov, Gottesman, Irani, Kempe 2009]
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Kitaev’s quantum Cook-Levin theorem

Goal: Map U to instance (H, α, β, |ψ〉) of LH such that β − α ≥ 1/ poly(n) and

if U accepts x =⇒ λmin(H) ≤ α
if U rejects x =⇒ λmin(H) ≥ β

Let U = Um · · ·U1 be a QMA circuit verifying proof |ψproof〉.
Design local terms Hi to force ground state to be history state:

|ψhist〉 =
1√

m + 1

m∑
t=0

Ut · · ·U1|ψproof〉A|0 · · · 0〉B|t〉C

A: proof register B: ancilla register C: clock register
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Feynman-Kitaev circuit-to-Hamiltonian construction

|ψhist〉 =
1

√
m + 1

m∑
t=0

Ut · · ·U1|ψproof〉A|0 · · · 0〉B |t〉C

Define H = Hin + Hout + Hprop + Hstab such that

Hin: Correct ancilla initialization at time t = 0 ⇒ 〈ψhist|Hin|ψhist〉 = 0
Hprop: Gate Ut applied at time t ⇒ 〈ψhist|Hprop|ψhist〉 = 0
Hstab: Clock register C encoded correctly in unary ⇒ 〈ψhist|Hout|ψhist〉 = 0

Hout: Penalize rejecting computation U at time t = m ⇒ 〈ψhist|Hout|ψhist〉 ∼ 1−Pr(U accepts x)
poly(m)

Hin = IA ⊗ (I − |0 · · · 0〉〈0 · · · 0|)B ⊗ |0〉〈0|C
Hout = IA ⊗ |0〉〈0|B1 ⊗ |m〉〈m|C .

Question: How to check time propagation, i.e. Ut applied at time t?
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The propagation term

|ψhist〉 =
1

√
m + 1

m∑
t=0

Ut · · ·U1|ψproof〉A|0 · · · 0〉B |t〉C

Goal: Define Hprop so that if Ut applied at time t ⇒ 〈ψhist|Hprop|ψhist〉 = 0.

Define for each t ∈ {0, . . . ,m − 1}:

Hprop,t = −Ut ⊗ |t〉〈t − 1|C − U†t ⊗ |t − 1〉〈t |C + I ⊗ |t − 1〉〈t − 1|C + I ⊗ |t〉〈t |C ,

Why does this work?

m∑
t=0

Hprop,t
change of basis7→ IAB⊗



1 −1 0 0 0 · · ·
−1 2 −1 0 0 · · ·
0 −1 2 −1 0 · · ·
0 0 −1 2 −1 · · ·

0 0 0 −1
. . .

. . .
...

...
...

...
. . .

. . .


C

⇒ Unique null state (w.r.t. C): IAB⊗
m∑

t=0

|t〉C
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Correctness

Completeness: By design,

〈ψhist|Hin + Hprop + Hout + Hstab|ψhist〉 ∼ 0 + 0 + 0 +
1− Pr(U accepts x)

poly(m)
∼ “small”.

Soundness:

Goal: Show λmin(Hin + Hprop + Hout + Hstab) ≥ “large”.

Problem: Hin + Hout and Hprop do not commute (i.e. cannot add λmin(Hin + Hout) and λmin(Hprop))!

Sevag Gharibian (Paderborn University) Intro to quantum complexity theory Bad Honnef Physics School 2022 58 / 74



Correctness

Completeness: By design,

〈ψhist|Hin + Hprop + Hout + Hstab|ψhist〉 ∼ 0 + 0 + 0 +
1− Pr(U accepts x)

poly(m)
∼ “small”.

Soundness:

Goal: Show λmin(Hin + Hprop + Hout + Hstab) ≥ “large”.

Problem: Hin + Hout and Hprop do not commute (i.e. cannot add λmin(Hin + Hout) and λmin(Hprop))!

Sevag Gharibian (Paderborn University) Intro to quantum complexity theory Bad Honnef Physics School 2022 58 / 74



Geometric Lemma
Let A1,A2 � 0, and let v lower bound the minimum non-zero eigenvalues of both A1 and A2. Then,

λmin(A1 + A2) ≥ 2v sin2 ∠(Null(A1),Null(A2))

2
,

where the angle between spaces X and Y is defined as

∠(X ,Y) := arccos

 max
|x〉∈X ,|y〉∈Y
‖|x〉‖2=‖|y〉‖2=1

|〈x |y〉|

 .

Recall:

Null(Hin + Hout) - correct initialization and correct input

Null(Hprop) - correct time propagation

Sevag Gharibian (Paderborn University) Intro to quantum complexity theory Bad Honnef Physics School 2022 59 / 74



Outline

1 Classical complexity theory
The computational model
Decision problems, P, and NP
Reductions and NP-hardness

2 BQP
Circuit families and BQP
A BQP-complete problem: MI

MI ∈ BQP
MI is BQP-hard

3 QMA

4 Kitaev’s “quantum Cook-Levin theorem” for QMA

5 Beyond QMA: The many flavors of “quantum NP”
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Wait... there’s more than one definition “quantum NP”?
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Wait... there’s more than one definition “quantum NP”?

Here we go (named after Snow White’s dwarves):

(Doc) QMA

(Bashful) QMA1: QMA with perfect completeness

(Happy) QCMA: QMA with classical proof

(Grumpy) QMA(2): QMA with “unentangled” proof of form |ψ1〉 ⊗ |ψ2〉
(Sneezy) NQP: Quantum TM accepts x ∈ Ayes in poly-time with probability > 0.

(Equals coC=P [Fenner, Green, Homer, Pruim, 1998].)

(Dopey) StoqMA: QMA with {|0〉, |+〉} ancillae, classical gates, measurement in X basis
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(Sneezy) NQP: Quantum TM accepts x ∈ Ayes in poly-time with probability > 0.

(Equals coC=P [Fenner, Green, Homer, Pruim, 1998].)

(Dopey) StoqMA: QMA with {|0〉, |+〉} ancillae, classical gates, measurement in X basis
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Relationships

NP

MA=MA1

QCMA=QCMA1

QMA1

QMA

PP QMA(2)

NEXP

StoqMA

AM

PH

BQP

QΣ3PSPACE

P

Set Inclusion

Sevag Gharibian (Paderborn University) Intro to quantum complexity theory Bad Honnef Physics School 2022 63 / 74



Grumpy

QMA(2)

What does an “unentangled” proof |ψ1〉 ⊗ |ψ2〉 buy us?
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QMA(2)

Promise problem A = (Ayes,Ano,Ainv) ∈ QMA(2) if there exists P-uniform quantum circuit family {Qn} s.t.:

(YES) If x ∈ Ayes, ∃ proof |ψ1〉 ⊗ |ψ2〉 ∈ (C2)⊗ poly(n) ⊗ (C2)⊗ poly(n), s.t. Qn accepts w.p. ≥ 2/3.

(NO) If x ∈ Ano, then ∀ proofs |ψ1〉 ⊗ |ψ2〉 ∈ (C2)⊗ poly(n) ⊗ (C2)⊗ poly(n), Qn accepts w.p. ≤ 1/3.

(Invalid case) If x ∈ Ainv, Qn may accept or reject arbitrarily.

Defined as QMA(k ) for k parties by [Kobayashi, Matsumoto, Yamakami 2003]

Sad state of affairs: QMA ⊆ QMA(2) ⊆ QΣ3 ⊆ NEXP.

It’s 2022. What’s the holdup?
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Apples to apples
For both classes:

Pr(Qn accepts |ψ〉) = Tr
(
|1〉〈1|A1 ⊗ IB(Qn|ψ〉A|0 · · · 0〉B)(〈ψ|A〈0 · · · 0|BQ†n )

)

= Tr
(

(IA ⊗ 〈0 · · · 0|BQ†n (|1〉〈1|A1 ⊗ IB)Qn(IA ⊗ |0 · · · 0〉B)|ψ〉〈ψ|A)
)

=: Tr(Macc|ψ〉〈ψ|A).

Conclusion: Behavior of verifier Qn captured by Macc independent of QMA vs QMA(2).

QMA QMA(2)

Optimal acceptance probability max|ψ〉〈ψ|Macc|ψ〉 max|ψ1〉,|ψ2〉〈ψ1|〈ψ2|Macc|ψ1〉|ψ2〉

Linear algebraic interpretation λmax(Macc) ??

Complexity poly-time in dimension of Macc NP-complete5 dimension of Macc

5For general Hermitian matrices M, not necessarily Macc arising from some Qn [Gurvits 2003]
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Selected results:

NP verifiable in QMA(2) with log-size proofs with 1 vs 1− 1/ poly promise gap [Blier, Tapp 2007]

3-SAT verifiable in QMA(k) with k ∈ Õ(
√

n) log-size proofs with Θ(1)-promise gap [Aaronson, Beigi,
Drucker, Fefferman, Shor, 2008]

QMA(2) with 1/ exp promise gap equals NEXP [Pereszlényi 2012]

QMA(k) = QMA(2) for all k ≥ 2, weak error reduction for QMA(2) [Harrow, Montanaro 2013]

Sparse Separable Hamiltonian problem with 1/ poly promise gap is QMA(2)-complete [Chailloux,
Sattath 2012]

Open question: Is QMA(2) = NEXP?

Open question: Why does “unentanglement” help compress proof lengths?
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√

n) log-size proofs with Θ(1)-promise gap [Aaronson, Beigi,
Drucker, Fefferman, Shor, 2008]

QMA(2) with 1/ exp promise gap equals NEXP [Pereszlényi 2012]

QMA(k) = QMA(2) for all k ≥ 2, weak error reduction for QMA(2) [Harrow, Montanaro 2013]

Sparse Separable Hamiltonian problem with 1/ poly promise gap is QMA(2)-complete [Chailloux,
Sattath 2012]

Open question: Is QMA(2) = NEXP?

Open question: Why does “unentanglement” help compress proof lengths?

Sevag Gharibian (Paderborn University) Intro to quantum complexity theory Bad Honnef Physics School 2022 67 / 74



Selected results:

NP verifiable in QMA(2) with log-size proofs with 1 vs 1− 1/ poly promise gap [Blier, Tapp 2007]

3-SAT verifiable in QMA(k) with k ∈ Õ(
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Relationship to Quantum NPSPACE

Classically: PSPACE = NPSPACE [Savitch, 1970]

Quantumly:
I PSPACE = BQPSPACE [Watrous 2003]
I QMASPACE = BQPSPACE [Fefferman, Remscrim 2021]

F QMASPACE is “quantum NPSPACE” with poly -size quantum proof
F Problem: NPSPACE requires exponential length proof!

Question: How to define “Quantum NPSPACE” with exp-length proof?
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Streaming QCMASPACE (SQCMASPACE)
Promise problem A = (Ayes,Ano) ∈ SQCMASPACE if there exists a poly-time succinctly generated quantum
circuit family {Qn}, thresholds α, β satisfying α− β ≥ 2−poly(n) s.t.:

(YES case) If x ∈ Ayes, ∃ classical streaming proof y ∈ {0, 1}2poly(n) , s.t. Qn accepts with probability ≥ α.

(NO case) If x ∈ Ano, ∀ classical streaming proofs y ∈ {0, 1}2poly(n) , Qn accepts with probability ≤ β.

(streaming proof y) |0〉 I or X? • I or X? • · · · •

|0〉

V1

X

V2

X X

V2poly(n)
...
|0〉

SQCMASPACE = NEXP, even with 1 vs 1/2 promise gap [G, Rudolph, 2022]

Question: Embed exp-length streaming proofs into poly-size history state construction?
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Recall: Circuit-to-Hamiltonian construction for QMA

|ψhist〉 =
1√

m + 1

m∑
t=0

Ut · · ·U1|ψproof〉A|0 · · · 0〉B|t〉C

Define H = Hin + Hout + Hprop + Hstab such that

Hin: Correct ancilla initialization at time t = 0 ⇒ 〈ψhist|Hin|ψhist〉 = 0
Hprop: Gate Ut applied at time t ⇒ 〈ψhist|Hprop|ψhist〉 = 0
Hstab: Clock register C encoded correctly in unary ⇒ 〈ψhist|Hout|ψhist〉 = 0

Hout: Penalize rejecting computation U at time t = m ⇒ 〈ψhist|Hout|ψhist〉 ∼ 1−Pr(U accepts x)
poly(m)

Define for each t ∈ {0, . . . ,m − 1}:

HUt
prop,t = −Ut ⊗ |t〉〈t − 1|C − U†t ⊗ |t − 1〉〈t |C + I ⊗ |t − 1〉〈t − 1|C + I ⊗ |t〉〈t |C ,

Problem: Need to know each gate Ut in advance. But “proof gates” a priori unknown.
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Using history states to encode the future
HU := −U ⊗ |t〉〈t − 1|C − U† ⊗ |t − 1〉〈t |C + I ⊗ |t − 1〉〈t − 1|C + I ⊗ |t〉〈t |C .

Idea [G, Rudolph, 2022]: Use “unentanglement”, i.e. try to force prover to send |ψhist〉 ⊗ |ψhist〉.

Thought experiment: Imagine parallel universes L and R, s.t. L streams 0, R streams 1.

round L R
1 0
2 0
3 1
4 0
5 1

Unentangled constraint to simulate this: H I
L ⊗ HX

R .

Why?
(H I

L ⊗ HX
R )|ψ〉L ⊗ |φ〉R = 0 ⇔ H I

L|ψ〉 = 0 OR HX
R |φ〉 = 0.

Problem: Neither universe has any choice which bit it streams...

Sevag Gharibian (Paderborn University) Intro to quantum complexity theory Bad Honnef Physics School 2022 71 / 74



Using history states to encode the future
HU := −U ⊗ |t〉〈t − 1|C − U† ⊗ |t − 1〉〈t |C + I ⊗ |t − 1〉〈t − 1|C + I ⊗ |t〉〈t |C .

Idea [G, Rudolph, 2022]: Use “unentanglement”, i.e. try to force prover to send |ψhist〉 ⊗ |ψhist〉.

Thought experiment: Imagine parallel universes L and R, s.t. L streams 0, R streams 1.

round L R
1 0
2 0
3 1
4 0
5 1

Unentangled constraint to simulate this: H I
L ⊗ HX

R .

Why?
(H I

L ⊗ HX
R )|ψ〉L ⊗ |φ〉R = 0 ⇔ H I

L|ψ〉 = 0 OR HX
R |φ〉 = 0.

Problem: Neither universe has any choice which bit it streams...

Sevag Gharibian (Paderborn University) Intro to quantum complexity theory Bad Honnef Physics School 2022 71 / 74



Using history states to encode the future
HU := −U ⊗ |t〉〈t − 1|C − U† ⊗ |t − 1〉〈t |C + I ⊗ |t − 1〉〈t − 1|C + I ⊗ |t〉〈t |C .

Idea [G, Rudolph, 2022]: Use “unentanglement”, i.e. try to force prover to send |ψhist〉 ⊗ |ψhist〉.

Thought experiment: Imagine parallel universes L and R, s.t. L streams 0, R streams 1.

round L R
1 0
2 0
3 1
4 0
5 1

Unentangled constraint to simulate this: H I
L ⊗ HX

R .

Why?
(H I

L ⊗ HX
R )|ψ〉L ⊗ |φ〉R = 0 ⇔ H I

L|ψ〉 = 0 OR HX
R |φ〉 = 0.

Problem: Neither universe has any choice which bit it streams...

Sevag Gharibian (Paderborn University) Intro to quantum complexity theory Bad Honnef Physics School 2022 71 / 74



Using history states to encode the future
HU := −U ⊗ |t〉〈t − 1|C − U† ⊗ |t − 1〉〈t |C + I ⊗ |t − 1〉〈t − 1|C + I ⊗ |t〉〈t |C .

Idea [G, Rudolph, 2022]: Use “unentanglement”, i.e. try to force prover to send |ψhist〉 ⊗ |ψhist〉.

Thought experiment: Imagine parallel universes L and R, s.t. L streams 0, R streams 1.

round L R
1 0
2 0
3 1
4 0
5 1

Unentangled constraint to simulate this: H I
L ⊗ HX

R .

Why?
(H I

L ⊗ HX
R )|ψ〉L ⊗ |φ〉R = 0 ⇔ H I

L|ψ〉 = 0 OR HX
R |φ〉 = 0.

Problem: Neither universe has any choice which bit it streams...

Sevag Gharibian (Paderborn University) Intro to quantum complexity theory Bad Honnef Physics School 2022 71 / 74



Using history states to encode the future

Unentangled constraint to simulate this: H I
L ⊗ HX

R .

Why?
(H I

L ⊗ HX
R )|ψ〉L ⊗ |φ〉R = 0 ⇔ H I

L|ψ〉 = 0 OR HX
R |φ〉 = 0.

Problem: Neither universe has any choice which bit it streams...

Attempt 2: (
H I

L ⊗ HX
R + HX

L ⊗ H I
R

)
|ψ〉L ⊗ |φ〉R = 0 ⇔ (H I

L|ψ〉 = 0 AND H I
R |φ〉 = 0) OR

(HX
L |ψ〉 = 0 AND HX

R |φ〉 = 0)

In words:

Each universe can stream either proof bit, as long as both universes choose the same bit!

Exploited quadratic property of unentanglement to simulate logical EQUALS function on L vs R.

Gives intuitive explanation as to why unentanglement helps!
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Full construction

H̃ = ∆inH̃in + ∆propH̃prop + ∆symH̃sym + H̃out (1)

H̃in = (Hin)L ⊗ IR + IL ⊗ (Hin)R (2)

H̃prop =
m∑

t=1

H̃t , where H̃t is defined as (3)

H̃t =

{
(H I

t )L ⊗ (H iX
t )R + (H iX

t )L ⊗ (H I
t )R if t ∈ P

(Ht )L ⊗ IR + IL ⊗ (Ht )R if t 6∈ P
(4)

H̃out = (Hout)L ⊗ IR + IL ⊗ (Hout)R (5)

H̃sym = I − Psym
LR for Psym

LR =
1
2

(
ILR +

∑
xy

|xy〉〈yx |LR

)
, (6)

Recall: Analysis not an eigenvalue analysis!

With more work: Can encode any multi-prover interactive proof into QMA(2), but promise gap scales
1/ exp with communication length

Upshot: First systematic “compression” of long proofs into small history states, but does not yet resolve
QMA(2) versus NEXP (our construction requires 1/ exp gap for QMA(2) to capture NEXP).
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Summary
Turing machines rule theoretical computer science

Quantumly, we use uniformly generated circuit families

Matrix Inversion is BQP-complete

Local Hamiltonian problem is QMA-complete

Kitaev’s quantum Cook-Levin theorem: Embed computation into low-energy history state

Quantum NP has many versions, including:
I QMA(2): promise problems efficiently verifiable (via unentangled proof) on quantum computer.

Thank you and happy quantuming!
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