Bad Honnef Summer School on Quantum Computing
Quantum walks (exercises)
Lecturer: Simon Apers

The aim of this exercise session is to understand Ambainis' quantum walk algorithm for element distinctness. Assume that we are given an array of integers $x_{1}, x_{2}, \ldots, x_{N}$. A collision is a pair of distinct i, j such that $x_{i}=x_{j}$. How many elements do we have to query in order to find a collision (or decide that all elements are distinct)? Classically this takes $\Omega(N)$ queries. In contrast, there is a quantum walk algorithm that makes only $O\left(N^{2 / 3}\right)$ queries to the input, which is optimal.

The quantum algorithm searches over elements $\mathcal{Y}=\left(Y, x_{Y}\right)$, with $Y \subseteq[N]$ a size- k subset of indices and x_{Y} the list of integers x_{j} with index $j \in Y$. We call an element \mathcal{Y} marked if x_{Y} contains a collision.

Exercise 1. Let $n=\binom{N}{k}$ denote the number of elements and m the number of marked elements. Show that $m / n \in \Omega\left(k^{2} / N^{2}\right)$.

We consider a graph G with vertex set V indexed by the elements \mathcal{Y}. There is an edge between $\mathcal{Y}=\left(Y, x_{Y}\right)$ and $\mathcal{Y}^{\prime}=\left(Y^{\prime}, x_{Y^{\prime}}\right)$ if the subsets Y and Y^{\prime} differ in exactly one element (i.e., we can obtain Y^{\prime} from Y by replacing one index). The resulting graph G has $n=\binom{N}{k}$ vertices and is $k(n-k)$-regular. It corresponds to a so-called Johnson graph, and one can show that its spectral gap is $\delta \in \Omega(1 / k)$ when $k \ll n$. Quantum walk search on this graph then has complexity

$$
\mathcal{S}+\sqrt{\frac{m}{n}}\left(\frac{1}{\sqrt{\delta}} \mathcal{U}+\mathcal{C}\right)=\mathcal{S}+\frac{N}{k}(\sqrt{k} \mathcal{U}+\mathcal{C}) .
$$

It remains to bound the checking $\operatorname{cost} \mathcal{C}$, the setup $\operatorname{cost} \mathcal{S}$, and the update $\operatorname{cost} \mathcal{U}$ (specifically, the number of queries to the input for each operation).

Exercise 2 (Checking cost). A basis state takes the form $|\mathcal{Y}\rangle=\left|Y, x_{Y}\right\rangle$. Given $|\mathcal{Y}\rangle$, how many queries does it take to check whether \mathcal{Y} is marked?

Exercise 3 (Setup cost). How many queries does the operation $|Y, 0\rangle \mapsto|\mathcal{Y}\rangle=\left|Y, x_{Y}\right\rangle$ require? Use this to bound the query cost of the setup

$$
|0\rangle \mapsto|\pi\rangle=\frac{1}{\sqrt{n}} \sum_{\mathcal{Y}}|\mathcal{Y}\rangle .
$$

Exercise 4 (Update cost). The row oracle V maps $|0\rangle|\mathcal{Y}\rangle$ to

$$
V|0\rangle|\mathcal{Y}\rangle=\frac{1}{\sqrt{k}} \sum_{\mathcal{Y}^{\prime} \sim \mathcal{Y}}\left|\mathcal{Y}^{\prime}\right\rangle|\mathcal{Y}\rangle,
$$

where $\mathcal{Y}^{\prime} \sim \mathcal{Y}$ indicates that there is an edge between \mathcal{Y} and \mathcal{Y}^{\prime} in G. Show that V can be implemented with $O(1)$ queries. Use V to implement a quantum walk on G.
If we set $k=N^{2 / 3}$, then this yields a quantum algorithm with total query complexity

$$
\mathcal{S}+N^{1 / 3}\left(N^{1 / 3} \mathcal{U}+\mathcal{C}\right) \in O\left(N^{2 / 3}\right)
$$

