Bad Honnef Summer School on Quantum Computing

Quantum walks (exercises)

Lecturer: Simon Apers

The aim of this exercise session is to understand Ambainis' quantum walk algorithm for *element* distinctness. Assume that we are given an array of integers x_1, x_2, \ldots, x_N . A collision is a pair of distinct i, j such that $x_i = x_j$. How many elements do we have to query in order to find a collision (or decide that all elements are distinct)? Classically this takes $\Omega(N)$ queries. In contrast, there is a quantum walk algorithm that makes only $O(N^{2/3})$ queries to the input, which is optimal.

The quantum algorithm searches over elements $\mathcal{Y} = (Y, x_Y)$, with $Y \subseteq [N]$ a size-k subset of indices and x_Y the list of integers x_j with index $j \in Y$. We call an element \mathcal{Y} marked if x_Y contains a collision.

Exercise 1. Let $n = \binom{N}{k}$ denote the number of elements and m the number of marked elements. Show that $m/n \in \Omega(k^2/N^2)$.

We consider a graph G with vertex set V indexed by the elements \mathcal{Y} . There is an edge between $\mathcal{Y} = (Y, x_Y)$ and $\mathcal{Y}' = (Y', x_{Y'})$ if the subsets Y and Y' differ in exactly one element (i.e., we can obtain Y' from Y by replacing one index). The resulting graph G has $n = \binom{N}{k}$ vertices and is k(n-k)-regular. It corresponds to a so-called Johnson graph, and one can show that its spectral gap is $\delta \in \Omega(1/k)$ when $k \ll n$. Quantum walk search on this graph then has complexity

$$S + \sqrt{\frac{m}{n}} \left(\frac{1}{\sqrt{\delta}} \mathcal{U} + \mathcal{C} \right) = S + \frac{N}{k} \left(\sqrt{k} \mathcal{U} + \mathcal{C} \right).$$

It remains to bound the checking cost C, the setup cost S, and the update cost U (specifically, the number of queries to the input for each operation).

Exercise 2 (Checking cost). A basis state takes the form $|\mathcal{Y}\rangle = |Y, x_Y\rangle$. Given $|\mathcal{Y}\rangle$, how many queries does it take to check whether \mathcal{Y} is marked?

Exercise 3 (Setup cost). How many queries does the operation $|Y, 0\rangle \mapsto |\mathcal{Y}\rangle = |Y, x_Y\rangle$ require? Use this to bound the query cost of the setup

$$|0\rangle \mapsto |\pi\rangle = \frac{1}{\sqrt{n}} \sum_{\mathcal{Y}} |\mathcal{Y}\rangle.$$

Exercise 4 (Update cost). The row oracle V maps $|0\rangle |\mathcal{Y}\rangle$ to

$$V \ket{0} \ket{\mathcal{Y}} = rac{1}{\sqrt{k}} \sum_{\mathcal{Y}' \sim \mathcal{Y}} \ket{\mathcal{Y}} \ket{\mathcal{Y}},$$

where $\mathcal{Y}' \sim \mathcal{Y}$ indicates that there is an edge between \mathcal{Y} and \mathcal{Y}' in G. Show that V can be implemented with O(1) queries. Use V to implement a quantum walk on G.

If we set $k = N^{2/3}$, then this yields a quantum algorithm with total query complexity

$$\mathcal{S} + N^{1/3} \left(N^{1/3} \mathcal{U} + \mathcal{C} \right) \in O(N^{2/3}).$$