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Multiplicities, Quivers, Polytopes

The aim of my talk is to describe some general results on multiplicity
functions,
and to extend some results (Knutson-Tao,..., Chindris-Collins-Kline) on
interpreting a multiplicity as the number of points in a polytope to the
case of quivers.
This is based on our note
MV, Michael Walter Moment cone membership for quivers in strongly
polynomial time ; arXiv :2303.14821 and previous articles.

I will also discuss more specifically questions on semi-invariants.
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Volume of polytopes and number of integral points

Formulae A = B relating volume of polytopes and number of
integral points with M.Brion Residue formulae, vector partition
functions and lattice points in rational polytopes, 1997
and with
A. Szenes Residue formulae for vector partitions and EulerMacLaurin
sum, 2003
BUT ... impossible to compute either A or B.

Less ambitious goals :
Say something on what type of functions are multiplicity functions and
their support.
Deciding if a Clebsh-Gordan coefficient cλ,µ,ν is non zero?
Deciding if a Kronecker coefficient g(λ, µ, ν) is non zero?
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G = (S1)r acting on a complex vector space H.

We write an element z in H = CN : z =
∑N

i=1 ziei .
We write an element g in G = (S1)r : g = (eiθ1 , . . . ,eiθr ).

A polynomial function on H is a polynomial function of z1, z2, . . . , zN .
Thus g ∈ G acts on P = C[z1, z2, . . . , zN ]

Let
λ = (n1,n2, . . . ,nr ) ∈ Zr , gλ = ein1θ1 · · · einrθr .

Pλ = {P ∈ P,P(gz) = gλP(z); for all g ∈ G, z ∈ H}

the space of semi-invariant polynomials of weight λ ;
Definition

mH(λ) := dimPλ
the multiplicity of the weight λ in P.
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Questions

• A : Can we give a description of the set ΣH consisting of the
elements λ such that mH(λ) > 0, or of the cone generated by ΣH ?
• B : If λ ∈ ΣH , can we give a geometric meaning to mH(λ).
• C : What type of function is λ→ mH(λ) as a function of λ, and
eventually of H.
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Example 1 : Action of (S1)2 on C2 ;
(z1, z2) 7→ (eiθ1z1,eiθ2z2)

Consider

G = {g =

(
eiθ1 0
0 eiθ2

)
}

The function p(z1, z2) = zn1
1 zn2

2 is in P(n1,n2)

Q2 = {(x1, x2), x1 ≥ 0, x2 ≥ 0}

mH(λ) = 1, ifλ ∈ Q2 ∩ Z2.

mH(λ) = 0 otherwise
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H = C3, g(z1, z2, z3) = (eiθ1z1,eiθ2z2,eiθ1+iθ2z3)

Drawing of the multiplicity function mH(n1,n2). For example
mH(1,1) = 2, since z1z2 and z3 are semi-invariants of weight (1,1)

n1

n2

(n2 + 1)

(n1 + 1)

0

0

0

0

Remark : the function (defined only on Z2) is piecewise polynomial and
”continuous”. It is the restriction of two linear functions y +1 or x +1 on
the two cones above, and these functions match on the intersection.
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Results : G a torus acting on H

P the space of polynomial functions on H (or more generally the space
of polynomials on a G-invariant affine subvariety M of H)
A : The set ΣH of elements λ such that mH(λ) > 0 generates a rational
polyhedral cone.
B : The function λ→ mH(λ) is piecewise (quasi) -polynomial on cones
Ci and ”continuous”. The polynomials obtained satisfies a system of
difference equations (Dahmen-Micchelli polynomials) with finite
number of solutions (De Concini, Procesi,V.)
C : It can be ”computed” using Jeffrey-Kirwan residues or using
Paradan wall crossing formulae. (Christandl, Doran, Walter,),or by
Latte program (de Loera et al).
D : When H is a vector space, the number mH(λ) is the number of
integral points in a convex rational polytope, equivalently dimension of
a space of holomorphic sections of a line bundle on a toric variety. For
M affine subvariety, interpretation in terms of the GIT quotient of M at
λ.
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Example : A multiplicity function for the action of
G = S2

1 on an affine variety

We look at the space
M = {(X1,X2),X1,X2 ∈ End(C3),X 2

1 = 0,X 2
2 = 0} and the space P of

polynomial functions on M.
Action of the torus

G =

 eiθ1 0 0
0 eiθ2 0
0 0 1


by simultaneous conjugacy (gX1g−1,gX2g−1) on the 3 times 3
matrices X1,X2.
In the following drawing, we draw the multiplicity function mH(n1,n2, t).
of polynomial functions homogeneous of degree t , t in X1,X2 and
satisfying P(gX1g−1,gX2g−1) = ein1θ1ein2θ2P(X1,X2)
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Here is a picture of multiplicities on a slice

10 / 33



Multiplicities for a compact group action

Let G be compact connected Lie group (products of groups U(n) for
this talk) acting on a Hermitian vector space H.
Let P be the space of polynomial functions on H (or on a G-invariant
affine subvariety M of H)
Write the decomposition of P in irreducible representations :

P = ⊕
λ∈ĜmH(λ)Vλ

Then mH(λ) is called the multiplicity of the representation Vλ in P.
Determining mH(λ) is a part of invariant theory. Here we assume that
the space of G invariant polynomials on H is reduced to the constants.
Otherwise mH(λ) is∞.
An important case is the case where G = U(n), and λ(g) = det(g)σ.
Then mH(λ) is the dimension of the space of semi-invariant
polynomials P(gv) = det(g)σP(v).
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Some Results

We assume that there are no invariant polynomials except constants
A : the set ConeH generated by the elements λ such that mH(λ) > 0 is
a convex rational polytope.
Guillemin-Sternberg, Mumford
Usually difficult to describe the inequalities defining this cone

B : In general mH(λ) can be interpreted geometrically as a space of
holomorphic sections on a GIT quotient H//λG, but it not the number
of integral points in a polytope. Plethysm and lattice point counting : T
Kahle, M Michalek (2015)

C : The function λ 7→ mH(λ) is piecewise quasi-polynomial and
”continuous” on ConeH .
Singular reduction and quantization E Meinrenken, R Sjamaar , 1999.
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An emblematic example : Clebsch-Gordan coefficients

G = U(n), λ = (λ(1) ≥ λ(2) ≥ · · · ≥ λ(n)). We write λ ≥ 0 if λ(n) ≥ 0.

Define |λ| =
∑n

i=1 λ(i).
Let Vλ be the irreducible representation of G with highest weight λ.
The dual representation has weight
λ∗ = (−λ(n) ≥ −λ(n − 1) ≥ · · · ≥ −λ(1)). We identify holomorphic
representations of Gl(n,C) or representations of U(n).

We denote by Cλ,µ,ν the multiplicity of the trivial representation of G in
Vλ ⊗ Vµ ⊗ Vν .

Cλ,µ,ν := cν∗
λ,µ.

Need |λ|+ |µ|+ |ν| = 0 for Cλ,µ,ν > 0
Knutson-Tao described Cλ,µ,ν as the number of integral points in a
polytope.
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Knutson-Tao Polytope KT (λ, µ, ν)
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Knutson-Tao Polytope inequalities

Variables (ti,j) ∈ R(n+1)(n+2)/2. Example n = 3
Boundary equations

[t1,2 − t0,3 = λ1, t2,1 − t1,2 = λ2, t3,0 − t2,1 = λ3]

[t2,0 − t3,0 = µ1, t1,0 − t2,0 = µ2, t0,0 − t1,0 = µ3]

[t0,1 − t0,0 = ν1, t0,2 − t0,1 = ν2, t0,3 − t0,2 = ν3]

Weyl inequalities λ1 ≥ λ2 ≥ λ3,µ1 ≥ µ2 ≥ µ3, ν1 ≥ ν2 ≥ ν3
Rhombi inequalities ≤ 0

[t1,1 − t1,0 + t0,0 − t0,1, t1,2 − t1,1 + t0,1 − t0,2, t2,1 − t2,0 + t1,0 − t1,1,

t1,0 − t1,1 + t0,2 − t0,1, t1,1 − t1,2 + t0,3 − t0,2, t2,0 − t2,1 + t1,2 − t1,1,

t0,1 − t1,1 + t2,0 − t1,0, t0,2 − t1,2 + t2,1 − t1,1, t1,1 − t2,1 + t3,0 − t2,0]
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Meaning of inequalities

ti,j height function for a roof made with triangle tiles :
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Results of Knutson-Tao for G = U(n)

A : The set Conen = {(λ, µ, ν)} with Cλ,µ,ν > 0 is described by the
”explicit” inequalities conjectured by Horn (see later).
But the Horn conditions are determined by recurrence, and
exponential number of them, so no way to decide in polynomial time if
Cλ,µ,ν > 0 using Horn inequalities.

B : if CNλ,Nµ,Nν > 0 for some N ≥ 1, then Cλ,µ,ν > 0.
Saturation property

C : Cλ,µ,ν is the number of integral points in the convex polytope
KT (λ, µ, ν) and Cλ,µ,ν > 0 if and only the polytope KT (λ, µ, ν) is non
empty.

D : The polytope KT (λ, µ, ν) is described by linear inequalities with
coefficients 0 or ±1. Consequently, there is a strongly polynomial
algorithm to determine if Cλ,µ,ν > 0
Mulmuley-Narayanan-Sohoni, ...
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Representations of quivers

Quiver Q : Q0 set of vertices, Q1 set of arrows. Denote by x ∈ Q0
vertices, a ∈ Q1 arrows
The Horn quiver Horns :

s + 1

1 . . . s
(1)

The quiver Q4 :

2
↗ ↘

1 4 ,

↘ ↗
3

(2)

Why quivers : easier and more general
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Representation of Q4 of dimension n = (n1,n2,n3,n4)

By definition a representation of Q = Q4 with dimension vector
n = (n1,n2,n3,n4) is the following data :

2

↗A21 ↘A42

1 4

↘A31 ↗A43

3

(3)

The space HQ(n) of representations is

Hom(Cn1 ,Cn2)⊕ Hom(Cn1 ,Cn3)⊕ Hom(Cn2 ,Cn4)⊕ Hom(Cn3 ,Cn4).

GQ = GL(n1)×GL(n2)×GL(n3)×GL(n4) acts on HQ(n) by

(g1,g2,g3,g4) · (A21,A31,A42,A43) =

(g2A21g−1
1 ,g3A31g−1

1 ,g4A42g−1
2 ,g4A43g−1

3 )
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Weights of Semi-invariants

Let Q be a quiver, n ∈ ZQ0
≥0 be a dimension vector Let HQ(n) be the

space of representations of Q of dimension n.
G = GQ = {(gx),gx ∈ GL(nx)}.
σ = σx a collection of integers : σ ∈ ZQ0 .
Let Pσ(n) be the space of semi-invariant polynomials functions p on
HQ(n) of weight σ, that is

P(grg−1) =
∏

x

det(gx)
−σx P(r).

Definition : Let m(σ,n) be the dimension of Pσ(n).
Definition : Σ(n) = {σ,m(σ,n) > 0}
Let N be any integer. It is easy to see that m(σ,n) > 0 implies
m(Nσ,n) > 0 Indeed if P,P ′ ̸= 0 are semi-invariants of weight σ, σ′,
PP ′ is of weight σ + σ′.
We can also vary dimension vectors.
It is easy to see that if m(σ,Nn) > 0 then m(σ,n) > 0
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Questions

Q with no loops.
A : Can we describe Σ(n), the set of elements σ ∈ ZQ0 such that
m(σ,n) > 0 by explicit inequalities. (existence of ”semi-stable”
representations of Q)
B : Is it possible to answer the question m(σ,n) > 0 in polynomial time.

Answer to A : yes ;
B : Open question. Some positive examples The Horn quiver, the
quiver Q4 MV-MW, the Kronecker quiver Kac, Reineke.

21 / 33



Subrepresentations and Inequalities

Let Q = (Q0,Q1) be a quiver, and n be a dimension vector. Let
r = (ra) : Ex → Ey be a representation of Q, with dimEx = nx . A
subrepresentation of r is the data of S = (Sx ,Sx ⊆ Ex), such that
ra(Sx) ⊆ Sy for any a : x → y . We write r(S) ⊆ S.

Notation : Let 0 ≤ αx ≤ nx integers. We denote α ⊆Q n if every
representation r of Q of dimension vector n has a subrepresentation
S, with dimSx = αx

In other words, HQ(n) is the orbit by GL(Q) of elements

r =

(
r11 r12
0 r22

)
with r11 : Cαx → Cαy , r22 : Cβx → Cβy .
Here αx + βx = nx . αy + βy = ny .
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Subrepresentations and King’s inequalities

If P is a nonzero semi-invariant polynomial with weight σ = (σx) , and
α ⊆Q n, there exist r as above such that P(r) ̸= 0. Consider g = (gx)
with gx in blocks αx × αx , βx × βx

gx(t) =
(

et 0
0 1

)
By the semi-invariance condition :

P(g(t)rg(t)−1) = e−t(
∑

σxαx )P(r)

But g(t)rg(t)−1 has limit when t → −∞ the matrix
(

r11 0
0 r22

)
. So

∑
σxαx ≤ 0.

So we obtain inequalities associated to subrepresentations and their
dimension vectors αx .
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Some Answers to Existence of semi-invariants

A : m(σ,n) > 0 if and only if
∑

x σxnx = 0 and
∑

x σxαx ≤ 0 for all
α ⊆Q n
Inequalities of A. King
B : m(σ,n) > 0 if and only if m(Nσ, n) > 0 for some N > 0
Derksen Weyman : Saturation property
We can also vary dimension vectors and obtain the remarkable
property : C : Σ(n) = Σ(Nn)
Derksen Weyman : Duality
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How to determine explicitly the elements α ⊆Q n

Euler form :
Euler(α, β) =

∑
x

αxβx −
∑

a:x→y

αxβy .

If α ⊆Q n, βx = nx − αx then Eul(α, β) ≥ 0 : ( comes easily from
{grg−1,g ∈ GLQ, r(S) ⊆ S} = HQ)

Theorem
(Schoffield, V.-Walter)
α ⊆Q n if and only if
1 Euler(α, β) ≥ 0 for β = n− α
2 if β ⊆Q α and β ̸= α, then β ⊆Q n.

This condition be transformed to a numerical recurrence conditions
Euler(α,n− β) ≥ 0 for β ⊆Q α and we can minimize the possible
β ⊆Q α to check by various conditions ;
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Example : Q4

Let us consider the dimension vector n = [2,2,2,3].
The following α′s

[0,0,0,1], [1,1,2,2], [1,2,1,2]

are such that α ⊆Q n.
To describe if (σ1, σ2, σ3, σ4) ∈ ΣQ(n) we need to check Equality

2σ1 + 2σ2 + 2σ3 + 3σ4 = 0

King’s Inequalities

σ4 ≤ 0, , σ1 + σ2 + 2σ3 + 2σ4 ≤ 0, σ1 + 2σ2 + σ3 + 2σ4 ≤ 0

Thus σ = (1,1,1,−2) is a weight of a semi-invariant polynomial

P(A21,A31,A43,A42) = det

 I3 A42 0 0
I3 0 A43 0
I3 0 0 A43A31 + A42A21


where I3 is the identity matrix of dimension 3 so this is 9 by 9 matrix.
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Polytopes for multiplicities

Q quiver dimension vector n ∈ ZQ0
≥0. HQ(n) the corresponding space of

representations . GLQ(n) =
∏

x GL(nx) acts on the space
Sym∗(HQ(n)) of polynomial functions on HQ(n). λ⃗ = (λx)x∈Q0 a
sequence of highest weights for Gl(nx). V

λ⃗
= ⊗xVλx .

Decompose
Sym∗(HQ(n)) =

⊕
λ⃗

mQ(λ⃗)V λ⃗

When Q is the quiver
1→ 3← 2 (4)

and the dimension vector is n = [n,n,n], then mQ(λ1, λ2, λ3) is the
multiplicity of the trivial representation of GL(n) in Vλ1 ⊗ Vλ2 ⊗ Vλ3 ,
that is C(λ1, λ2, λ3) = cλ∗

3
λ1,λ2

.
So multiplicities for quivers : generalisation of the Clebsch-Gordan
coefficients.
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Multiplicity function

A : The cone Cone(Q,n) = {λ⃗;mQ(λ⃗) > 0} generates a rational
polyhedral cone with Horn inequalities of the form∑

x

∑
j∈Ix

λx(j) ≤ 0

where I = (Ix), Ix subsets of [1,2, . . . ,nx ] determined by an induction
relation. I ⊆Q,B nV-Walter, other proof Bertozzi-Reineke
B The cone Cone(Q,n) is saturated. Any integral point λ⃗ satisfying the
Horn inequalities is such that mQ(λ⃗) > 0. follows from
Derksen-Weyman saturation)
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Polytopes for multiplicity

The question to find a polytopal description for mQ(λ⃗) was raised by
Chindris-Collins-Kline, and solved for bipartite quivers with a beautiful
polytope generalizing the Knutson-Tao Hive polytope.
We remarked :
for any quiver Q and dimension vector n, there exists a family of
polytopes PQ(λ⃗) such that, when λ⃗ is a dominant weight, the number
of integral points in PQ(λ⃗) equals mQ(λ⃗).
Moreover, PQ(λ⃗) can be described by a combinatorial linear program
that can be generated in strongly polynomial time given Q (given by
the number of vertices and the list of arrows, encoded by pairs of
integers) and λ⃗ (given by a list of integer vectors λx of size nx ) ; the
right-hand side of the inequalities depend linearly on λ⃗ and all
coefficients are in {0,1,−1}.
So there exists a strongly polynomial time algorithm that decides
membership in the moment cone when given as input a quiver Q and a
dominant weight λ⃗.
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An example

Consider the quiver Q4, and (to simplify) n = (n,n,n,n).

2
↗ ↘

1 4 ,

↘ ↗
3

(5)

mQ(λ1, λ2, λ3, λ4)

=
∑

α,β,γ,δ≥0

C(λ∗
1, α, β)C(λ∗

2, α
∗, γ)C(λ∗

3, β
∗, δ)C(λ∗

4, γ
∗, δ∗).

Follows from Cauchy formula

Sym∗(Hom(Cn,Cn)) = ⊕µ≥0Vµ ⊗ V (µ)∗

under GL(n)×GL(n).
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A polytope

We can write this multiplicity as the number of integral points in the
following polytope :

PQ(λ1, λ2, λ3, λ4) =
{
(α, β, γ, δ, p1,p2,p3,p4)

}
with α, β, γ, δ ∈ Rn

≥0 satisfying Weyl inequalities,
p1 ∈ KT (λ∗

1, α, β), p2 ∈ KT (λ∗
2, α

∗, γ), p3 ∈ KT (λ∗
3, β

∗, δ),
p4 ∈ KT (λ∗

4, γ
∗, δ∗).

Similar formulae for all quivers Q and any dimension vector.
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A polytope for mQ4(λ1, λ2, λ3, λ4)

Example n = [3,3,3,3]
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