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Group theory approach [cuos]

ldea: reduce matrix multiplication to group
algebra multiplication

— group algebra: C[G] has elements ., a,g
— C[G] = (Cd1xd1) x (Cd2xd2) x .. x (Cdk*dk)



The basic idea

Find a group G that permits an embedding
matrix A — A € C[G], matrix B —» B € C[G]

so that can read off entries of AB from A-B



Reduction via 3 subgroups:

Subgroups X, Y, Z of G satisfy the
triple product property (TPP)
ifforallxeX, yeY, ze€Z:

xXyz =1 iff x=y=z=1.

A = Zx,y Alx, y](xy™1) When does
B=Y,,Blyzlyz)) (0 )=

(AB)[x,z] = coefficient on xz~1in A-B



Irrep dimensions govern bound

o if [X|=|Y|=|Z]=k, this is reduction from k x k
mat. mult. to block-diagonal mat. muilt.

Theorem: in finite group G with irrep
dimensions d,, d,, ds,..., we obtain:

k® < Z d?’
« Usually use: k® < d®72 - |G|

need k > dpax
want k =~ |G|/?

‘If d..x = |G|*?, prove nothing until prove w = 2.
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Example TPP

* In G = SL,(F,):

X

Z

x €F} Y ={

. Z € By}

1+y | vy 1|z

vy | 1y
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Example TPP

* In G = SL,(F,):

1
X={xT1]:x€E} Y={
Z={" 1z € B}
1 1
1 1 1| ~
Nontrivial: |G| = p3- p; |X| =

1+y

'y € E,}

Y[=|Z[=p



Which groups can prove w = 27

~ no abelian group

* no group G with |G|€ -size abelian normal
subgroup with bounded exponent sccensu2om)

* no group G with with |G|€ -size normal p-
subgroup with mild extra conditions gcceu 201
e simple groups:
—no 3 Young subgroups in alt. group [scccu 2017
— no matrix group (finite of Lie Type) scaru 2023
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Analog In infinite matrix groups

- e.g. GL(n, F), SL(n, F), O(n, F)
—-F=CorR
— also unitary, symplectic...

* These groups, and nice subgroups of
them, have a notion of dimension:

—e.g. dim of GL,, is n?, dim of subgroup of
lower-unitriangular matrices is (n? —n)/2

Analog TPP goal: subgroups of sqrt size
< subgroups of half dimension

11




Example construction

~ Three subgroups in GL(n, R):
— lower uni-triangular, orthogonal, upper uni-tri.

00..0 1/100...0 1

000w
=
0”00 |
=
=

1 1 1

Lower Tri.  Orthogonal  Upper Tri.

“sum of squares =0 = each summand = 0"
Is powerful and enables good constructions
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Finite algorithms from
from Infinite group
TPP constructions
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Original framework: computing AB

 Given X, Y, Z in finite G, satisfying TPP:
— for each irrep p: G = C%*? compute:

p (Zx,yA [x, ¥ (xy‘l)) P (ny,z Bly’, z] (y’Z‘l))

=2y yy' 2 Alx,YIBlY, 2] p(xy~ty'z™")

—the p; ;: G —» C form a basis for all f: G — C.

— “read off AB[x,z]” means take the linear
combination for fn. f that is 1 only on xz™*
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New framework for infinite grps

e Givenfinitesubsets X c X, YCY,Z<C ZiIn
infinite group G, satisfying TPP:
— for some irreps p: G —» C%*4 compute

p (ZxyAlx,yIey™)) - p (2,7, Bly', 21y'z 1))

=2,z AlXyIBlY, 2] pxy~'y'z™")

— “read off AB[x,z]” means: find lin. ¢ombo of p; ;
equalto f, ,(M)=1if M = xz™*

=0 if M = any other xy~1y’z™1



Separating polynomials

* Irreps of GL(n, R) indexed by Young C
diagrams. EEER
—the p; ; forirreps up to size D span exactly the

set of total-degree D polynomials
— cut off at size D; now to “read off AB[x,z]"
— find “separating polynomial of deg D”:
fez(M)=1ifM = xz~*
0 if M = any other xy~1y'z™1
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Separating polynomials example

* Three subgroups in GL(n, R):

1 2(00..0 1(227?..

w1 = 1

=) o

w) .

: 1| |° 1

Lower Tri.  Orthogonal  Upper Tri.
xr yly—]_ Zr

frz(M) = 6;(M[1,1])

ind. degree equals #
possible values in

each entry of M

S

4' 0(z,.2,.) (M[top row])

o 6(x1,x2,...) (M [IEft COID
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Target degree and dimension

- Given finite subsets X € X, YC Y,Z S Z In
GL,, satisfying TPP: ga;greete
— each of size qdlm of subgroup
— separating polynomials of total degree 0(q)
—dim(X) = dim(Y) = dim(Z) = - o(n)

 This would prove w = 2.
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Target degree and dimension

* Given finite subsets X C X, YC Y,ZC Z in
GL,, satisfying TPP: target
. degree
— each of size qdlm of subgroup

— separating polynomials of total degree 0(q)
2

—dim(X) = dim(Y) = dim(2) = "?- o(n)

 This would prove w = 2. Previous slide:
— degree 0(g?)

— dim(X) = dim(Y) = dim(Z) = % - 0 (n)

19



Getting the right degree

2
Theorem [sceruzozs]: In U n ) (dimension —
72} 2

there are three subgroups X, Y, Z, each of
2
dimension — — @ (n) satisfying the TPP,

and finite subsets X C X,YC Y, ZC Z
each of size g™ °fsubgroup wjth
separating polynomials of degree O(q).

(proof sketch at end of talk)
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Two ideas for designing
separating polynomials
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Setup so far

- X, Y, Z subgroups in GL,, satisfying the
Triple Product Property

* design finite subsetsX c X,YC Y, Z<c 7
— each of size qdim of subgroup

* design separating polynomials of deg 0(q)
—argument M=xy ly'z7!

fez(M)=1ifM = xz71
=0 if M = any other xy~1y’'z~1
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Setup so far

- design finite subsetsX c X,YC Y, Z<c 7
— each of size qdim of subgroup

- design separating polynomials of deg 0(q)
—argument M=xy ly'z71

for(M)=1ifM = xz~2
=0 if M = any other xy~1y’'z~1

Idea #1- |design fo(xy~ty'z7t) = 1if y~ty' =1
=0ify~'y' #1
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Invariant polynomials

Select f, from ring of invariant polynomials

— under left-multiplication by X
— under right-multiplication by Z

Example: subgroups in GL(n, R)

1

1

1

1

invariant ring

canaedapt §ebyRelySppearlier e

\“M

1~

\|/ ‘ ae .
Vleading principle
minors are invariant
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Remaining task:

* finite subsets of 2 subgroups in GL(n, R):

1 1

1 —1. 1Z
xl yy 1 I\/I

1 1

Lower Tri. \ Upper Tri.

fo(M) vanishes unless
this is the identity matrix




Remaining task:

~ finite subsets of 2 subgroups in GL(n, R):

1 1

1 1 Z
x 1 1
1 1
Lower Tri. Upper Tri.

— find “separating polynomials” (to be mutiplied with f,)
feoz(M)=1if M = xz7*
0 if M = any other x'z'~1

M

| g values in entries of x, z = 0(g?) values in entries of M
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ldea #2: use Lie algebra

* Lie Group G has associated Lie Algebra g
— g Is a vectorspace

—forany A € g, we have exp(eA) € G
(e.g. Orthogonal Group = skew-symmetric matrices)

 finite subsets of X, Y, Z can be defined via
finite subsets of associated Lie algebras

— the matrices have €’s in their entries, which in
turn means the irreps have €’s in their entries

— final bound is on border-rank rather than rank
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Remaining task now easier

0 0

exp(e-| L° 0 )exp(e-| L° O'B) —

A 0 0

M

M=1+¢€(A—B) + 0(€?)

— choose entries of A, Bin {0,1,2, ..., q}
- 0(q) values in entries of (M — 1) /e, up to 0(e)
- separating polynomials of deg. 0(q):

fx,z(M) = hA,B (M_I

€
hyg(M') =1if M' = A — B; otherwise 0

28
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Lie algebra trick works in general

Theorem [sccruzs]: Given X, Y € Y, Z with
Y| = gdim ofsubgroup gnd polynomial p in

Invy , for which
« p(M)=1ifM=1,
« p(M) = 0 for any other M in yy !

If XN Z = {I}then there exist finite
subsets X € X,Y € Y,Z < Z satisfying TPP,
each of size g™ ofsubgroup wjith separating

polynomials of total degree O(q + deg(p)).




Design task: putting it all together

* X, Y, Zsubgroups in GL,, satisfying the
Triple Product Property

» determine the ring of polynomials invariant
under left-mult. by X, right-mult by Z

» design subsetY C Y of size q4im of subgroup
- design sep. poly in inv. ring, of deg 0(q)

oy ty')=1ify~ly' =1
=0ify 1y #1
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Getting the right degree



Getting the right degree: proof

2
Theorem [sccruzezs]: In U ) (dimension —)
2’2

there are three subgroups X, Y, Z, each of
2
dimension — — @ (n) satisfying the TPP,

and finite subsets X C X,YC Y, ZC Z
each of size g™ °fsubgroup wjth
separating polynomials of degree O(q).
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Getting the right degree: proof

- Proof sketch:
— start with a construction in GL,,(C)
- Invyy 3 “complex-Frobenius-squared”

p(M) = Zi,j‘Mi,j‘z
— compose with a polynomial: separating function
fo of correct “degree”, but not a polynomial
— restrict entire construction to unitary group
- M;; is now an entry of M~*
— p is now a polynomial in entries of M

33



Conclusions

 find a Triple Product Property construction
—in GL,
* we know several constructions
— subgroups of dimension n%/2 - o(n)
* we know how to do this but in an affine group

— finite subsets of size qdi™ °ofsubgroup yjith
separating polys of degree O(q)
* we know how to do this but in a unitary group

e Then w = 2.
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Thank you!



Invariant polynomials

_ leading principle
* subgroups in GL(n, R): minors are invariant

1 ?210pP..40 1 ?
1 o 1
.. c .'

1 e 1

Lower Tri.  Orthogonal  Upper Tri.
x y~ 1y’ z

fo(M) = 6;(lpm;(M)) - §;(lpm,(M)) -+

Claim: fy(xy~'y'z™") = foy™'y) =1
impliesy 1y’ =1
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