Matrix multiplication algorithms from infinite groups

Chris Umans

Caltech

Joint work with: Jonah Blasiak, Henry Cohn, Josh Grochow, Kevin Pratt

WACT 2025

Group theory approach [CU03]

Idea: reduce matrix multiplication to group algebra multiplication

- group algebra: C[G] has elements $\sum_{g} a_{g}g$
- $-C[G] \simeq (C^{d_1 \times d_1}) \times (C^{d_2 \times d_2}) \times ... \times (C^{d_k \times d_k})$

The basic idea

Find a group G that permits an embedding

matrix $A \rightarrow \underline{A} \in C[G]$, matrix $B \rightarrow \underline{B} \in C[G]$

so that can read off entries of AB from A.B.

Reduction via 3 subgroups:

Subgroups X, Y, Z of G satisfy the triple product property (TPP) if for all $x \in X$, $y \in Y$, $z \in Z$: xyz = 1 iff x = y = z = 1.

$$\underline{A} = \sum_{x,y} A[x,y](xy^{-1})$$

$$\underline{B} = \sum_{y,z} B[y,z](yz^{-1})$$
When does
$$(x'y^{-1})(y'z'^{-1}) = xz^{-1}?$$

(AB)[x,z] = coefficient on xz^{-1} in $\underline{A} \cdot \underline{B}$

Irrep dimensions govern bound

 if |X|=|Y|=|Z|=k, this is reduction from k × k mat. mult. to block-diagonal mat. mult.

Theorem: in finite group G with irrep dimensions d_1 , d_2 , d_3 ,..., we obtain:

$$k^{\omega} \leq \sum_{i} d_{i}^{\omega}$$

need $k > d_{\text{max}}$ want $k \approx |G|^{1/2}$

• Usually use: $k^{\omega} \leq d_{\max}^{\omega-2} \cdot |G|$

If $d_{\text{max}} \approx |G|^{1/2}$, prove nothing until prove $\omega = 2$.

$$X = \{ \begin{bmatrix} 1 & & \\ & \times & 1 \end{bmatrix} : x \in F_p \} \quad Y = \{ \begin{bmatrix} 1+y & y & \\ & -y & & 1-y \end{bmatrix} : y \in F_p \}$$

$$Z = \{ \begin{array}{c|c} 1 & z \\ \hline & 1 \end{array} : z \in F_p \}$$

1		1+ y	у	1	Z		1	
Х	1	-у	1-y		1	=		1

$$X = \{ \begin{bmatrix} 1 & & \\ & \times & 1 \end{bmatrix} : x \in F_p \} \quad Y = \{ \begin{bmatrix} 1+y & y & \\ & -y & & 1-y \end{bmatrix} : y \in F_p \}$$

$$Z = \{ \begin{array}{c|c} 1 & z \\ \hline & 1 \end{array} : z \in F_p \}$$

1		1+ y	у	1	Z		1	
X	1	-у	1-y		1	=		1

$$X = \{ \begin{bmatrix} 1 & & \\ & \times & 1 \end{bmatrix} : x \in F_p \} \quad Y = \{ \begin{bmatrix} 1+y & y & \\ & -y & 1-y \end{bmatrix} : y \in F_p \}$$

$$Z = \{ \begin{array}{c|c} 1 & z \\ \hline & 1 \end{array} : z \in F_p \}$$

1		1		1	Z		1	
X	1		1		1	=		1

$$X = \{ \begin{bmatrix} 1 \\ x & 1 \end{bmatrix} : x \in F_p \} \quad Y = \{ \begin{bmatrix} \frac{1+y}{y} & \frac{y}{y} \\ \frac{-y}{y} & \frac{1-y}{y} \end{bmatrix} : y \in F_p \}$$

$$Z = \{ \begin{array}{c|c} 1 & z \\ \hline & 1 \end{array} : z \in F_p \}$$

1		1		1			1	
	1		1		1	=		1

Nontrivial:
$$|G| = p^3 - p$$
; $|X| = |Y| = |Z| = p$

Which groups can prove $\omega = 2$?

- no abelian group
- no group G with $|G|^{\epsilon}$ -size abelian normal subgroup with bounded exponent [BCCGNSU 2017]
- no group G with with $|G|^{\epsilon}$ -size normal p-subgroup with mild extra conditions [BCCGU 2017]
- simple groups:
 - no 3 Young subgroups in alt. group [BCCGU 2017]
 - no matrix group (finite of Lie Type) [BCGPU 2023]

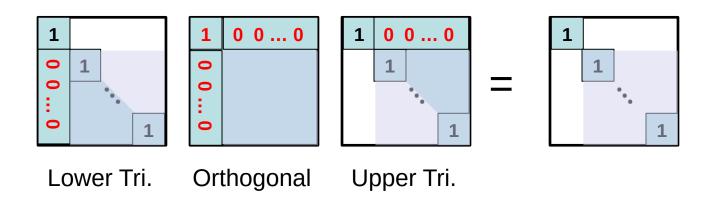
Analog in infinite matrix groups

- e.g. GL(n, F), SL(n, F), O(n, F)
 - -F = C or R
 - also unitary, symplectic...
- These groups, and nice subgroups of them, have a notion of dimension:
 - e.g. dim of GL_n is n^2 , dim of subgroup of lower-unitriangular matrices is $(n^2 n)/2$

Analog TPP goal: subgroups of sqrt size ⇔ subgroups of half dimension

Example construction

- Three subgroups in GL(n, R):
 - lower uni-triangular, orthogonal, upper uni-tri.



"sum of squares = $0 \Rightarrow$ each summand = 0" is powerful and enables good constructions

Finite algorithms from from infinite group TPP constructions

Original framework: computing AB

- Given X, Y, Z in finite G, satisfying TPP:
 - for each irrep $\rho: G \to C^{d \times d}$ compute:

$$\rho \left(\Sigma_{x,y} A[x,y](xy^{-1}) \right) \cdot \rho \left(\Sigma_{y',z} B[y',z](y'z^{-1}) \right)$$

$$= \Sigma_{x,y,y',z} A[x,y] B[y',z] \rho (xy^{-1}y'z^{-1})$$

- the $\rho_{i,j}: G \to C$ form a basis for all $f: G \to C$.
- "read off AB[x,z]" means take the linear combination for fn. f that is 1 only on xz^{-1}

New framework for infinite grps

- Given finite subsets X ⊆ X, Y ⊆ Y, Z ⊆ Z in infinite group G, satisfying TPP:
 - for some irreps $\rho: G \to C^{d \times d}$ compute

$$\rho \left(\Sigma_{x,y} A[x,y](xy^{-1}) \right) \cdot \rho \left(\Sigma_{y',z} B[y',z](y'z^{-1}) \right)$$

$$= \Sigma_{x,y,y',z} A[x,y] B[y',z] \rho (xy^{-1}y'z^{-1})$$

- "read off AB[x,z]" means: find lin. Sombo of $\rho_{i,j}$ equal to $f_{x,z}(M) = 1$ if $M = xz^{-1}$ $= 0 \text{ if } M = \text{any other } xy^{-1}y'z^{-1}$

Separating polynomials

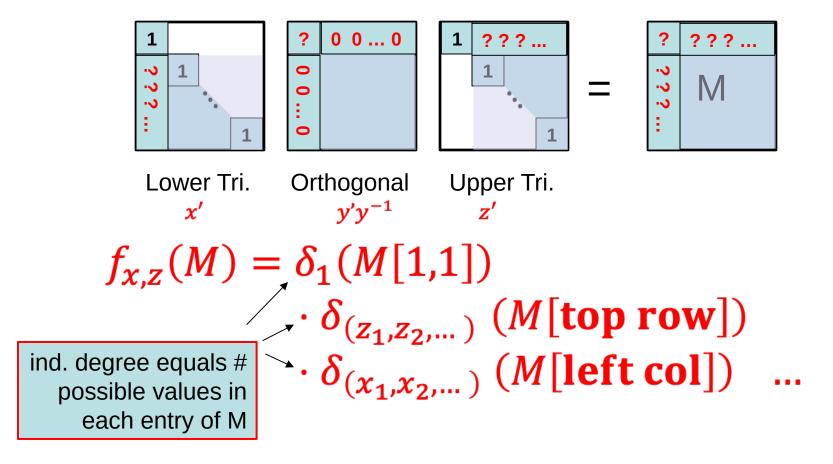
- Irreps of GL(n, R) indexed by Young diagrams.
 - the $\rho_{i,j}$ for irreps up to size D span exactly the set of total-degree D polynomials
 - cut off at size D; now to "read off AB[x,z]":
 - find "separating polynomial of deg D":

$$f_{x,z}(M) = 1 \text{ if } M = xz^{-1}$$

0 if $M = \text{any other } xy^{-1}y'z^{-1}$

Separating polynomials example

Three subgroups in GL(n, R):



Target degree and dimension

- Given finite subsets $X \subseteq X$, $Y \subseteq Y$, $Z \subseteq Z$ in GL_n , satisfying TPP:
 - each of size q^{dim of subgroup}
 - separating polynomials of total degree O(q)

$$-\dim(X) = \dim(Y) = \dim(Z) = \frac{n^2}{2} - o(n)$$

• This would prove $\omega = 2$.

Target degree and dimension

- Given finite subsets $X \subseteq X$, $Y \subseteq Y$, $Z \subseteq Z$ in GL_n , satisfying TPP:
 - each of size q^{dim of subgroup}
 - separating polynomials of total degree O(q)
 - $-\dim(X) = \dim(Y) = \dim(Z) = \frac{n^2}{2} o(n)$
- This would prove $\omega = 2$. Previous slide:
 - degree $O(q^2)$
 - $\dim(X) = \dim(Y) = \dim(Z) = \frac{n^2}{2} \Theta(n)$

Getting the right degree

Theorem [BCGPU2025]: In $U_{\left\{\frac{n}{2},\frac{n}{2}\right\}}$ (dimension $\frac{n^2}{2}$) there are three subgroups X, Y, Z, each of dimension $\frac{n^2}{4} - \Theta(n)$ satisfying the TPP, and finite subsets $X \subseteq X, Y \subseteq Y, Z \subseteq Z$ each of size qdim of subgroup with separating polynomials of degree O(q).

(proof sketch at end of talk)

Two ideas for designing separating polynomials

Setup so far

- \sim X, Y, Z subgroups in GL_n satisfying the Triple Product Property
- design finite subsets $X \subseteq X$, $Y \subseteq Y$, $Z \subseteq Z$
 - each of size q^{dim of subgroup}
- design separating polynomials of deg O(q)
 - argument $M = xy^{-1}y'z^{-1}$

$$f_{x,z}(M) = 1 \text{ if } M = xz^{-1}$$

= 0 if $M = \text{any other } xy^{-1}y'z^{-1}$

Setup so far

- design finite subsets $X \subseteq X$, $Y \subseteq Y$, $Z \subseteq Z$
 - each of size q^{dim of subgroup}
- design separating polynomials of deg O(q)
 - argument $M = xy^{-1}y'z^{-1}$

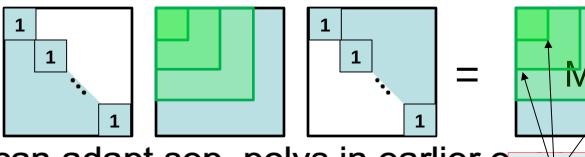
$$f_{x,z}(M) = 1 \text{ if } M = xz^{-1}$$

= 0 if $M = \text{any other } xy^{-1}y'z^{-1}$

Invariant polynomials

Select f_0 from ring of invariant polynomials

- under left-multiplication by X
- under right-multiplication by Z
- Example: subgroups in GL(n, R)



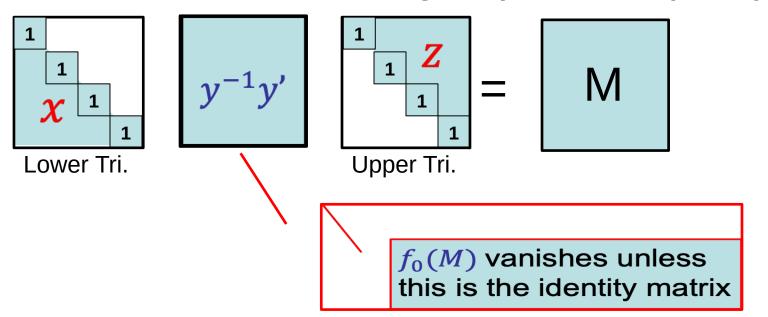
can, adapt sepgopolys jpe darlier e invariant ring

leading principle

minors are invariant

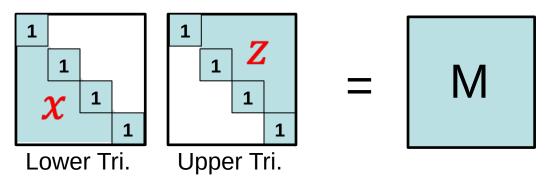
Remaining task:

• finite subsets of 2 subgroups in GL(n, R):



Remaining task:

finite subsets of 2 subgroups in GL(n, R):



- find "separating polynomials" (to be multiplied with f_0)

$$f_{x,z}(M) = 1$$
 if $M = xz^{-1}$
0 if $M =$ any other $x'z'^{-1}$

q values in entries of x, $z \Rightarrow O(q^2)$ values in entries of M

Idea #2: use Lie algebra

- Lie Group G has associated Lie Algebra g
 - g is a vectorspace
 - for any $A \in \mathbf{g}$, we have $exp(\epsilon A) \in G$ (e.g. Orthogonal Group ⇒ skew-symmetric matrices)
- finite subsets of X, Y, Z can be defined via finite subsets of associated Lie algebras
 - the matrices have ϵ 's in their entries, which in turn means the irreps have ϵ 's in their entries
 - final bound is on border-rank rather than rank

Remaining task now easier

$$\exp(\epsilon \cdot \bigcup_{A=0}^{0}) \exp(\epsilon \cdot \bigcup_{0=0}^{0} \bigcup_{0=0}^{-B}) = M$$

$$M = I + \epsilon(A - B) + O(\epsilon^{2})$$

- choose entries of A, B in $\{0,1,2,...,q\}$
- O(q) values in entries of $(M-I)/\epsilon$, up to $O(\epsilon)$
- separating polynomials of deg. O(q):

$$f_{x,z}(M) = h_{A,B}\left(\frac{M-I}{\epsilon}\right)$$
, where $h_{A,B}(M') = 1$ if $M' = A - B$; otherwise 0

Lie algebra trick works in general

```
Theorem [BCGPU2025]: Given X, Y \subseteq Y, Z with
     = q^{\dim of subgroup} and polynomial p in
Inv_{X,Z} for which
   • p(M) = 1 \text{ if } M = I,
   • p(M) = 0 for any other M in yy^{-1}
If X \cap Z = \{I\} then there exist finite
subsets X \subseteq X, Y \subseteq Y, Z \subseteq Z satisfying TPP,
each of size qdim of subgroup with separating
polynomials of total degree O(q + deg(p)).
```

Design task: putting it all together

- X, Y, Z subgroups in GL_n satisfying the Triple Product Property
- determine the ring of polynomials invariant under left-mult. by X, right-mult by Z
- design subset $Y \subseteq Y$ of size $q^{\dim of subgroup}$
- design sep. poly in inv. ring, of deg O(q)

$$f_0(y^{-1}y') = 1 \text{ if } y^{-1}y' = I$$

= 0 if $y^{-1}y' \neq I$

Getting the right degree

Getting the right degree: proof

Theorem [BCGPU2025]: In $U_{\left\{\frac{n}{2},\frac{n}{2}\right\}}$ (dimension $\frac{n^2}{2}$) there are three subgroups X, Y, Z, each of dimension $\frac{n^2}{4} - \Theta(n)$ satisfying the TPP, and finite subsets $X \subseteq X, Y \subseteq Y, Z \subseteq Z$ each of size qdim of subgroup with separating polynomials of degree O(q).

Getting the right degree: proof

Proof sketch:

- start with a construction in $GL_n(C)$
- $Inv_{X,Y} \ni$ "complex-Frobenius-squared"

$$p(M) = \sum_{i,j} |M_{i,j}|^2$$

- compose with a polynomial: separating function f_0 of correct "degree", but not a polynomial
- restrict entire construction to unitary group
- $M_{i,j}^*$ is now an entry of M^{-1}
- p is now a polynomial in entries of M

Conclusions

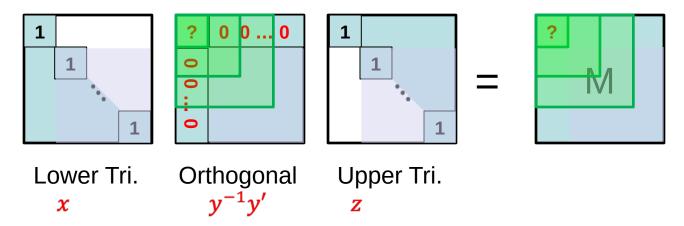
- find a Triple Product Property construction
 - in GL_n
 - we know several constructions
 - subgroups of dimension $n^2/2 o(n)$
 - · we know how to do this but in an affine group
 - finite subsets of size q^{dim of subgroup} with separating polys of degree O(q)
 - we know how to do this but in a unitary group
- Then $\omega = 2$.

Thank you!

Invariant polynomials

subgroups in GL(n, R):

leading principle minors are invariant



$$f_{\mathbf{0}}(M) = \delta_1(lpm_1(M)) \cdot \delta_1(lpm_2(M)) \cdots$$

Claim:
$$f_0(xy^{-1}y'z^{-1}) = f_0(y^{-1}y') = 1$$

implies $y^{-1}y' = I$