Stabilizer Limits and Alignment - Lie Algebraic Methods for the Orbit Closure Problem.

Bharat Adsul, Milind Sohoni - IIT Bombay K V Subrahmanyam - CMI, Chennai

Key Reference: Orbit Closures, Stabilizer Limits and Intermediate Gvarieties, arxiv 2309.15816. Also: Lie Algebraic Methods for Orbit Closures, arxiv 2201.00135.

Stabilizer Limits and Alignment - Lie Algebraic Methods for the Orbit Closure Problem.

Bharat Adsul, Milind Sohoni - IIT Bombay K V Subrahmanyam - CMI, Chennai

Key Reference: Orbit Closures, Stabilizer Limits and Intermediate G-varieties, arxiv 2309.15816.

Also: Lie Algebraic Methods for Orbit Closures, arxiv 2201.00135.

Model agnostic !

1st April 2025, WACT 2025, Ruhr University, Bochum

- Introduction det_n as the master function and GCT
- The Geometric Approach λ and the tangent of approach Stabilizer Limits, Theorem 1 and the question of "genericity"
- Alignment, the classical $P(\lambda)$, $U(\lambda)$ and Theorem 2 alignment or nilpotency
- Determinant as the master group and compactification of \mathcal{K}_n
- Overall...
- Connecting with classical GIT limits what holds and what are its analogues
- Other work in progress

Outline

- Introduction det_n as the master function and GCT
- The Geometric Approach λ and the tangent of approach Stabilizer Limits, Theorem 1 and the question of "genericity"
- Alignment, the classical P(λ), U(λ) and Theorem 2 alignment or nilpotency
- Determinant as the master group and compactification of \mathcal{K}_n
- Overall...
- Connecting with classical GIT limits what holds and what are its analogues
- Other work in progress

Determinant: The master function and the 1-PS

- Let X_n = C^{n×n} be an n×n-matrix of indeterminates, and let det_n(X_n) ∈ Symⁿ(X_n) be the usual determinant.
- Valiant. Let X_m ⊆ X_n and f ∈ Sym^m(X_m). Suppose that f has a formula of size n/c (where c is a constant) then there a linear map A : X_m → X_n such that f'_A = x^{n-m}_{nn}f = det(AX_m).
- The form f'_A is called the padded form. The smallest *n* is called the determinantal complexity of *f*. We call *A* as the implementation of *f* as a determinant.

Valiant's Result

Establishes *det_n* as a master function for coding computations.

The Permanent as Determinant Question

•
$$X_m = \mathbb{C}^{m \times m}$$
, $f = perm_m(X_m)$. Let
 $V = Sym^n(X)$ and $y = det_n(X)$,
 $z = x_{nn}^{n-m}perm_m(X_m) \in V$.

Algebraic Question: What is the smallest n such that det_n(AX) = x^{n-m}_{nn} perm_m(X_m) (where A ∈ M_n).

• Both *y*, *z* have large stabilizers in *GL*(*X*)..but so far, no direct connection between stabilizers!

$$K = K_n =$$
 Stabilizer of det_n in $GL(X_n)$

- $X_n \to CX_nD$ such that $C, D \in GL_n$ and $det_n(CD) = 1$ and $X \to X^T$.
- K = G_y is reductive, dim(G_y) = 2n² 2 and X_n is an irreducible G_y-module.

Stabilizers

$H_m =$ Stabilizer of $z' = perm_m(X_m)$ in $GL(X_m)$

- $X_m \to CX_mD$ such that $C, D \in D_m$ and $det_m(CD) = 1$ and $X \to PX^TP'$, with P, P' permutation matrices.
- $G_{z'}$ is reductive, $dim(G_{z'}) = 2m 2$ and X_m is an irreducible H_m -module.

 $H = H_{n,m}$ = The stabilizer of the homogenized permanent $z = x_{nn}^{n-m} perm_m(X_m) \in Sym^n(X_n)$. We may partition $X_n = \overline{X'_m} \oplus \mathbb{C}x_{nn} \oplus X_m \cong X_1 \oplus X_0$. Then $H_{n,m} = G_z \subseteq GL(X_n)$ in the ordered basis is as below:

$$\begin{bmatrix} * & * & * \\ 0 & * & 0 \\ \hline 0 & 0 & g \end{bmatrix} \text{ with } g \in tH_m$$

The Geometric Complexity Approach

- The stabilizers of forms are consequential in their computational complexity and universality.
- An algebraic framework based on Geometric Invariant Theory (GIT) to approach the problem The orbit closure problem.
- Stabilizer data enough to determine if z = x^{n-m}_{nn} perm_m may be obtained as a limit of y = det_n.
- Two key entry points:
 - Algebraic Consequence of Valiant's construction: There is a 2-block 1-PS λ_A(t) ⊆ GL(X_n) such that:

$$\lambda_A(t)det_n = x_{nn}^{n-m}perm_m + \sum_{i>0} t^i y_i$$

where λ_A has weight spaces $X = X_0 \oplus X_1$.

 Key GIT properties - stability of y, z', partial (or L(λ)) stability of z.

GIT Notation

- X over C. G ⊆ GL(X), connected reductive algebraic group over C. Typically G = GL(X).
- $\rho: GL(X) \to GL(V), \mathbb{C}[V]$ ring of polynomial functions. Think $V = Sym^d(X^*)$.
- ρ representation such that the center $Z_{GL(X)} = \{tl | t \in \mathbb{C}^*\}$ acts as $\rho(tl)(v) = t^d v$ for a fixed d. Moreover, $Z_{GL(X)} \subseteq G$.
- For y ∈ V, Orbit, O(y) := {g ⋅ y | g ∈ G}. O(y) need not be closed, it is constructible.
- O(y), orbit closure of y Zariski topology or Euclidean topology. O(y) is a cone and its ideal I(y) ⊆ C[V] is homogeneous.

Key Example: $GL(X_n)$ acting on $V = Sym^n(X_n)$, with $y, z \in V$. Note that det_n , $perm_m$ are (resp.) SL_n -stable and SL_m -stable. Let $\lambda(t) \subseteq G$ be a 1-PS and suppose we have:

 $\lambda(t)y = t^d z + \ldots + t^D y_D$ (Notation: $y \stackrel{\lambda}{\to} z$)

Recall $Z_{GL(X)} \subseteq G$. By applying a suitable power $t^a I$, we have: $\lambda'(t)y = t^0 z + \ldots + t^{D'} y_{D'}$

Thus $z \in \overline{O(y)}$. Applying this to λ_A and $y = det_n$, and $z = x_{nn}^{n-m} perm_m$, we see that $z \in \overline{O(y)}$. That's the orbit closure.

Problem of Existence of $A \Rightarrow$ The Orbit Closure Problem λ, y, z

- Given $z, y \in V$, is $z \in \overline{O(y)}$? Distinctive stabilizers, G_z, G_y .
- What connects $K = G_y$ and $H = G_z$ when $y \xrightarrow{\lambda} z$?

GCT and Representations as Obstructions

- Let $Y = \overline{O(y)}$ and $Z = \overline{O(z)}$, and $\mathbb{C}[Y] = \sum_{\mu} d_{\mu}V_{\mu}$ and $\mathbb{C}[Z] = \sum_{\mu} p_{\mu}V_{\mu}$ be their coordinate rings as *G*-modules.
- Stability of det_n, perm_m and Peter-Weyl determine exactly which G-modules V_u appear in C[Y] and C[Z].
- $Z \subseteq Y \Rightarrow \mathbb{C}[Y] \twoheadrightarrow \mathbb{C}[Z]$ and thus $d_{\mu} \ge p_{\mu}$ for all μ .

GCT-II Conjecture

If $z \notin Y$ then there is a μ such that $p_{\mu} > 0$ and $d_{\mu} = 0$.

And its failure...

All V_{μ} which appear in $\mathbb{C}[Z]$, or for that matter, for the coordinate ring $\mathbb{C}[W]$ of the orbit closure $\overline{O(w)}$ of any homogenized form w, appear in $\mathbb{C}[Y]$.

So the numbers do matter.

Outline

- Introduction *det_n* as the master function and GCT
- The Geometric Approach λ and the tangent of approach Stabilizer Limits, Theorem 1 and the question of "genericity"
- Alignment, the classical P(λ), U(λ) and Theorem 2 alignment or nilpotency
- Determinant as the master group and compactification of \mathcal{K}_n
- Overall...
- Connecting with classical GIT limits what holds and what are its analogues
- Other work in progress

Our work - more geometric

We begin with:

$$y(t) = \lambda(t).y = y_d t^d + y_e t^e + \sum_{i=e+1}^D y_i t^i$$

with $z = y_d$. We call y_e as the tangent of approach. We use the notation $y \xrightarrow{\lambda} z, z \xleftarrow{\lambda} y$ or $z = \hat{y}^{\lambda}$ or simply $z = \hat{y}$.

Transversality. Vector space spanned by y_e, \ldots, y_D intersects $T_g O(g)$ trivially. Let $\mathcal{G} = Lie(G)$ and $\mathcal{K} = Lie(\mathcal{K})$, $\mathcal{H} = Lie(\mathcal{H}) \subseteq \mathcal{G}$. These are infinitesimal group elements with the Lie bracket.

Question

How do we connect \mathcal{K} with \mathcal{H} using λ ?

Groups \Leftrightarrow Lie Algebras

- G ⊆ GL(X) of dimension r associated with a linear space Lie(G) = G of matrices of the same dimension.
- These are closed under the Lie bracket $\mathfrak{a}, \mathfrak{b} \in \mathcal{G}$ then so is $[\mathfrak{a}, \mathfrak{b}] = \mathfrak{a}\mathfrak{b} \mathfrak{b}\mathfrak{a}.$
- For an g ∈ G, the family exp(g, t) = e^{gt} ⊂ G is a curve with tangent g at e.
- Finally, for $g \in G$, $\mathfrak{g} \in \mathcal{G}$, we have $g\mathfrak{g}g^{-1} \in \mathcal{G}$ as well, and is a group action.

Functorial equivalence between connected matrix groups and matrix Lie algebras and their modules.

Group	Lie Algebra
GLm	$M_m = \mathbb{C}^{m \times m}$
SLm	$\{m \in M_m, tr(m) = 0\}$
D _n	\mathbb{C}^n (diagonal matrices)
On	$\{m \in M_m m + m^T = 0\}$

Preliminaries

- We have the usual action of λ on V and the weight space decomposition V = ⊕V_i. λ(t)v = ∑_i tⁱv_i with v_i ∈ V_i.
- $\lambda(t)$ also acts on \mathcal{G} by conjugation and thus we have $\mathcal{G} = \oplus \mathcal{G}_i$.
- For any v ∈ V, v = ∑_i v_i, let the leading term v^λ or simply v̂ be v_j where v_j ≠ 0 and v_i = 0 for all i < j. Similarly, we define ĝ^λ or simply ĝ̂ for any g ∈ G.

Basic result: For any $\mathfrak{g} \in \mathcal{G}$ and $v \in V$:

Either $\hat{\mathfrak{g}}\hat{v} = 0$ or $\widehat{\mathfrak{g}v} = \hat{\mathfrak{g}}\hat{v}$ and $deg(\mathfrak{g}v) = deg(v) + deg(\mathfrak{g})$.

$$\begin{aligned} \lambda(t)(\mathfrak{g} v) &= (\lambda(t)\mathfrak{g}\lambda^{-1}(t))(\lambda(t)v) = \mathfrak{g}(t)v(t) \\ &= (\sum_{i=a}^{A} t^{i}\mathfrak{g}_{i})(\sum_{j=b}^{B} t^{j}v_{j}) = t^{a+b}\mathfrak{g}_{a}v_{b} + \dots \end{aligned}$$

Then either $deg(\widehat{\mathfrak{g}v}) = a + b$ and then $\widehat{\mathfrak{g}v} = \widehat{\mathfrak{g}}\widehat{v}$, or $deg(\widehat{\mathfrak{g}v}) < a + b$, and then $\widehat{\mathfrak{g}}\widehat{v} = 0$.

Proposition

Let \mathcal{K} be a Lie subalgebra of \mathcal{G} and $M \subseteq V$ a \mathcal{K} -module. Let $\hat{\mathcal{K}}$ (resp. \hat{M}) be the vector space generated by leading terms. Then (i) $\hat{\mathcal{K}}$ is a graded Lie subalgebra of \mathcal{G} , and $\dim_{\mathbb{C}}(\hat{\mathcal{K}}) = \dim_{\mathbb{C}}(\mathcal{K})$, (ii) $\hat{M} \subseteq V$ is a $\hat{\mathcal{K}}$ -module with $\dim_{\mathbb{C}} \hat{M} = \dim_{\mathbb{C}} M$.

$$\begin{aligned} \lambda(t)([\mathfrak{k},\mathfrak{k}']) &= [\lambda(t)\mathfrak{k},\lambda(t)\mathfrak{k}'] \\ &= [\sum_{i=a}^{A} t^{i}\mathfrak{k}_{i},\sum_{j=b}^{B} t^{j}\mathfrak{k}'_{j}] = t^{a+b}[\mathfrak{k}_{a},\mathfrak{k}'_{b}] + \dots \end{aligned}$$

Thus either $\widehat{[\mathfrak{k}, \mathfrak{k}']} = [\hat{\mathfrak{k}}, \hat{\mathfrak{k}}']$ or $[\hat{\mathfrak{k}}, \hat{\mathfrak{k}}'] = 0$. This proves that $\hat{\mathcal{K}}$ is a Lie algebra. That $\hat{\mathcal{M}}$ is a $\hat{\mathcal{K}}$ -module is clear from the last lemma. The dimension assertion is delicate but easily proved.

Corollary

If $m \in M$ and $\mathfrak{k} \in \mathcal{K}$ such that $\mathfrak{k}m = 0$, then $\hat{\mathfrak{k}}\hat{m} = 0$.

Example: Grading and Pose.

 $G = GL_4(\mathbb{C}), X$ a G-module, $y \in X$ and \mathcal{K} as below. Let $\lambda(t)$ be as below.

$$\mathcal{K} = \begin{bmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{bmatrix} \quad \lambda(t) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & t & 0 \\ 0 & 0 & 0 & t \end{bmatrix},$$

We see that:

$$\lambda(t) M \lambda(t)^{-1} = \left[egin{array}{cc} M_{11} & t^{-1} M_{12} \ t M_{21} & M_{22} \end{array}
ight]$$

Pose matters... (2)

Let
$$\mathcal{K}' = A\mathcal{K}A^{-1}$$
.

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathcal{K}' = \begin{bmatrix} a & b & c & d - a \\ c & d & 0 & -c \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{bmatrix}$$
If $\mathcal{K}'(t) = \lambda(t)\mathcal{K}'\lambda(t)^{-1}$, and so:

$$\mathcal{K}'(t) = \begin{bmatrix} a & b & t^{-1}c & t^{-1}(d-a) \\ c & d & 0 & -t^{-1}c \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{bmatrix} \qquad \widehat{\mathcal{K}}' = \begin{bmatrix} u & t & s & r \\ 0 & u & 0 & -s \\ 0 & 0 & u & t \\ 0 & 0 & 0 & u \end{bmatrix}$$

 $\hat{\mathcal{K}}'$ is a solvable Lie algebra.

The dimension vector is
$$\begin{array}{c|c} weight & -1 & 0 & 1 \\ \hline dimension & 2 & 2 & 0 \\ \end{array}$$

The \overline{N} as an \mathcal{H} -module

Back to geometry.

- Let T_z(O(z)) ⊆ V be the tangent space of O(z) at z and N be a complement.
- $T_z \subseteq V$ is an \mathcal{H} -module and so is $\overline{N} = V/T_z$.

•
$$\overline{y_e} \in \overline{N}$$
 and $\mathcal{H}_{\overline{y_e}}$ its stabilizer.

Theorem 1 (ASS)

Let $y \xrightarrow{\lambda} z$ with stabilizers Lie algebras \mathcal{K}, \mathcal{H} as above. Let \overline{N} be the the quotient $V/T_zO(z)$ and $\overline{y_e} \in \overline{N}$. Then we have $\hat{\mathcal{K}} \subseteq \mathcal{H}_{\overline{y_e}} \subseteq \mathcal{H}$.

Proof: (Assume e = d + 1). If $\mathfrak{k} \in \mathcal{K}$, then $\mathfrak{k}y = 0$. Whence $(\lambda(t)\mathfrak{k})(\lambda(t)y) = \mathfrak{k}(t)y(t) = 0$. If $\mathfrak{k}(t) = \sum_{i \ge a} t^i \mathfrak{k}_i$ and $y(t) = \sum_{j \ge d} t^j y_j$ then we have $\mathfrak{k} = \mathfrak{k}_a$ and :

$$\begin{aligned} \hat{\mathfrak{k}} y_d &= \hat{\mathfrak{k}} \hat{y} &= 0 \Rightarrow \hat{\mathfrak{k}} \in \mathcal{H} \\ \hat{\mathfrak{k}} y_e &+ \mathfrak{k}_{a+1} y_d &= 0 \Rightarrow \hat{\mathfrak{k}} \in \mathcal{H}_{\overline{y_e}} \end{aligned}$$

The Theorem holds even when $\gamma(t) \subset G$ is a 1-parameter family.

Theorem 1 (ASS)

Let $y \xrightarrow{\lambda} z$ with stabilizers Lie algebras \mathcal{K}, \mathcal{H} as above. Let \overline{N} be the quotient $V/T_zO(z)$ and $\overline{y_e} \in \overline{N}$. Then we have $\hat{\mathcal{K}} \subseteq \mathcal{H}_{\overline{y_e}} \subseteq \mathcal{H}$.

For $\lambda(t)$ be as below, see the weight-spaces:

$$\lambda(t) = \begin{bmatrix} t^2 & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathcal{G} = \begin{bmatrix} \underline{\mathcal{G}_0} & \underline{\mathcal{G}_{-1}} & \underline{\mathcal{G}_{-2}} \\ \underline{\mathcal{G}_1} & \underline{\mathcal{G}_0} & \underline{\mathcal{G}_{-1}} \\ \underline{\mathcal{G}_2} & \underline{\mathcal{G}_1} & \underline{\mathcal{G}_0} \end{bmatrix}$$

Given a $\mathfrak{k} \in \mathcal{K}_n$ with

 $\mathfrak{k} = \mathfrak{k}_{-2} + \mathfrak{k}_{-1} + \mathfrak{k}_0 + \mathfrak{k}_1 + \mathfrak{k}_2$

The first non-zero \mathfrak{k}_i determines $\hat{\mathfrak{k}}$. Thus $\hat{\mathcal{K}} = \bigoplus_i \hat{\mathcal{K}}_i$, with $dim(\hat{\mathcal{K}}_i) = k_i$. 20/53

Example

 $X = \mathbb{C} < x_1, x_2, x_3 > \text{and } G = GL_3 \text{ acts on act on } V = Sym^4(X).$ Let $f = (x_1^2 + x_2^2 + x_3^2)^2, g = (x_1^2 + x_2^2)^2$ and λ be as below. Note that $f \xrightarrow{\lambda} g$.

$$\mathcal{G}_{f} = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix} \lambda(t) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & t \end{bmatrix} \mathcal{G}_{g} = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ 0 & 0 & d \end{bmatrix}$$

. $h = 2(x_1^2 + x_2^2)x_3^2$, tangent of approach.

$$\lambda(t)\mathcal{G}_f\lambda(t)^{-1} = \begin{bmatrix} 0 & a & t^{-1}b \\ -a & 0 & t^{-1}c \\ -tb & -tc & 0 \end{bmatrix} \widehat{\mathcal{G}_f} = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ \hline 0 & 0 & 0 \end{bmatrix} \subseteq \mathcal{G}_g.$$

 $\widehat{\mathcal{G}_f} = (\mathcal{G}_g)_{\overline{h}} \subset \mathcal{G}_g, \ \dim((\mathcal{G}_f)_{-1}) = 2, \ \dim((\mathcal{G}_f)_0) = 1.$

The first theorem - Geometric content

Note that...

Let
$$\lambda(t) = t^{\ell}$$
. Then $\ell' \in \mathcal{H}_0$.
How does H_0 act?
 $\lambda(t)hy =$
 $z + t^1(hy_1) + \ldots + t^D(hy_0)$.

Theorem 1 (ASS)

In the equation $\lambda(t)y = t^d z + t^e y_e + \ldots + t^D y_D$ $\hat{\mathcal{K}} \subseteq \mathcal{H}_{\overline{y_e}} \subseteq \mathcal{H} \text{ tell us that } d, e, y_e \text{ are}$ important pieces connecting z and y. y_e depends on the model!

- *H*₀: The interesting part of the stabilizer of *z*.
- $\mathcal{H}_{\overline{y_e}}/\hat{\mathcal{K}}$: The collapse of the orbit O(y) as it approaches O(z). Indicates simpler forms $y' \in O(y)$ with $\hat{y'}^{\lambda} = z$.
- $\mathcal{H}/\mathcal{H}_{\overline{y_e}}$: The space of limits $z' = \widehat{y'}^{\lambda}$ obtained from elements of $y' \in O(y)$. 22/53

Permanent vs. Determinant

Therefore...

If
$$z = x_{nn}^{n-m} perm_m = det_n(AX_n)$$
, then $z = \widehat{det_n}^{\lambda}$ for a suitable 2-block λ_A . Thus $\hat{\mathcal{K}}_n \subseteq \mathcal{H}_{n,m}$. How does $\hat{\mathcal{K}}_n$ sit inside $\mathcal{H}_{n,m}$?

Recall

 $X_n = \overline{X'_m} \oplus \mathbb{C}x_{nn} \oplus X_m \cong X_1 \oplus X_0.$ Then $H_{n,m}$ is as below (with $g \in H_m$):

$$\begin{bmatrix} * & * & * \\ 0 & * & 0 \\ 0 & 0 & g \end{bmatrix}$$

Given a $\mathfrak{k} \in \mathcal{K}_n$ with $\mathfrak{k} = \mathfrak{k}_{-1} + \mathfrak{k}_0 + \mathfrak{k}_1.$ As per the weights of λ_A , we have:

What if \mathfrak{k} , $\hat{\mathfrak{k}} = \mathfrak{k}_{-1}$ for all \mathfrak{k} ? Then the stabilizer of det_n will be tucked away from H_m ! **Can** λ_A **be "generic"?**

Measuring Generic-ness

For $\lambda(t)$ be as below, see the weight-spaces:

$$\lambda(t) = \begin{bmatrix} t^2 & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathcal{G} = \begin{bmatrix} \underline{\mathcal{G}_0} & \underline{\mathcal{G}_{-1}} & \underline{\mathcal{G}_{-2}} \\ \underline{\mathcal{G}_1} & \underline{\mathcal{G}_0} & \underline{\mathcal{G}_{-1}} \\ \underline{\mathcal{G}_2} & \underline{\mathcal{G}_1} & \underline{\mathcal{G}_0} \end{bmatrix}$$

Thus, for a general λ , $\hat{\mathcal{K}} = \bigoplus_i \hat{\mathcal{K}}_i$, with $dim(\hat{\mathcal{K}}_i) = k_i$. The vector $\overline{k} = (k_i)$ measures the generic-ness of λ vis a vis \mathcal{K} . The more negative the weights, the more generic is λ .

What if, λ_A is completely generic and \overline{k} is as follows:

weight	-2	-1	0	1	2
dimension	$dim(\mathcal{K}_n)$	0	0	0	0

Measuring Generic-ness

For $\lambda(t)$ be as below, see the weight-spaces:

$$\lambda(t) = \begin{bmatrix} t^2 & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathcal{G} = \begin{bmatrix} \underline{\mathcal{G}_0} & \underline{\mathcal{G}_{-1}} & \underline{\mathcal{G}_{-2}} \\ \underline{\mathcal{G}_1} & \underline{\mathcal{G}_0} & \underline{\mathcal{G}_{-1}} \\ \underline{\mathcal{G}_2} & \underline{\mathcal{G}_1} & \underline{\mathcal{G}_0} \end{bmatrix}$$

Thus, for a general λ , $\hat{\mathcal{K}} = \bigoplus_i \hat{\mathcal{K}}_i$, with $dim(\hat{\mathcal{K}}_i) = k_i$. The vector $\overline{k} = (k_i)$ measures the generic-ness of λ vis a vis \mathcal{K} . The more negative the weights, the more generic is λ .

What if, λ_A is completely generic and \overline{k} is as follows:

weight	-2	-1	0	1	2
dimension	$dim(\mathcal{K}_n)$	0	0	0	0

Can interesting forms and stabilizers be generic limits of *det_n*? Like to believe that the answer is NO

Example: *det*₃ - **stabilizer of limit and limit of stabilizer.**

Let $X = X_3$ be as below and let $det_3(X) \in Sym^3(X)$ be the usual determinant and three 2-block 1-PS with a 6-3 break:

$$\lambda_{A} = \begin{bmatrix} tx_{1} & tx_{2} & tx_{3} \\ x_{4} & x_{5} & x_{6} \\ x_{7} & x_{8} & x_{9} \end{bmatrix} \lambda_{B} = \begin{bmatrix} tx_{1} & x_{2} & x_{3} \\ x_{4} & tx_{5} & x_{6} \\ x_{7} & x_{8} & tx_{9} \end{bmatrix} \lambda_{C} = \begin{bmatrix} x_{1} & tx_{2} & tx_{3} \\ x_{4} & x_{5} & tx_{6} \\ x_{7} & x_{8} & x_{9} \end{bmatrix}$$

Let λ_D be a generic conjugate of a 3-6 break. Now let $\lambda(t)det_3 = t^d z + \ldots +$ higher terms.

What is the limit z, stabilizer $\mathcal H$ and $\hat{\mathcal K}$ and its dimension vector?

	limit	degree	$dim(\mathcal{H})$	Remark	-1	0	1
$\hat{\mathcal{K}}_{\mathcal{A}}$	det ₃	1	16	$= dim(\mathcal{K}_n)$	0	16	0
$\hat{\mathcal{K}}_B$	derangements	0	31	9 * 3 + 4	12	4	0
ĈC	<i>x</i> ₁ <i>x</i> ₅ <i>x</i> ₉	0	56	9 * 6 + 2	14	2	0
$\hat{\mathcal{K}}_D$	generic form	0	54	9 * 6	16	0	0

25 / 53

Outline

- Introduction *det_n* as the master function and GCT
- The Geometric Approach λ and the tangent of approach Stabilizer Limits, Theorem 1 and the question of "genericity"
- Alignment, the classical $P(\lambda)$, $U(\lambda)$ and Theorem 2 alignment or nilpotency
- Determinant as the master group and compactification of \mathcal{K}_n
- Overall...
- Connecting with classical GIT limits what holds and what are its analogues
- Other work in progress

Effectiveness of $\widehat{\mathcal{K}} \to \mathcal{H}_{\overline{y_e}} \to \mathcal{H}$

Alignment

A semisimple element $\mathfrak{s} \in \mathcal{K}$ is called an alignment if it commutes with λ . Consequence: \mathfrak{s} stabilizes every y_i and therefore $y_d = z$.

Two questions.

- Plan A. (Alignment) Is there a common semisimple element in gKg⁻¹ ∩ H while retaining that gy → z? What are its consequences? What if there is none?
- Plan B (Lie algebra) Are there intermediate orbits $\overline{O(z)} \subset \overline{O(w)} \subset \overline{O(y)}$ which have this property?

Plan B: We may have $z \stackrel{\lambda}{\leftarrow} w$ or $w \stackrel{\lambda}{\leftarrow} y' \in O(y)$ and an intermediate form to det_n and $x_{nn}^{n-m}perm_m$. What are tangent vectors $y_e \in N$ so that $\mathcal{H}_{\overline{y_e}}$ may be lifted to points $y' \in \overline{O(y)}$ such that $\widehat{\mathcal{G}_{y'}} = \mathcal{H}_{\overline{y_e}}$. -"infinitesimal determinants"

Let $T \supseteq \lambda(t)$ be a maximal torus and $\Xi(V)$, the weight space. Let $\mathcal{T} = Lie(T)$. For any $\mathfrak{t} \in \mathcal{T}$, let $t^{\mathfrak{t}}$ be the 1-PS corresponding to \mathfrak{t} . Let us assume that $\lambda(t)$ is such that d = 0, i.e.,

 $y(t) = y_0 + t^1 y_1 + \ldots + t^D y_D$ with $z = y_0$.

Let ℓ be such that $t^{\ell} = \lambda(t)$. Thus λ stabilizes z and $\ell \in \mathcal{H}$.

For $T \supseteq \lambda(t)$ above, let $V = \bigoplus_{\chi} V_{\chi}$ be the weight space decomposition. Note that $\ell \in \mathcal{T}$. We have:

$$\lambda(t) {m v} = \sum t^{\langle \chi, \ell
angle} {m v}_\chi$$

The Alignment Theorem - The groups $P(\lambda), U(\lambda)$

Motivation

How to analyse across all g such that $gy \xrightarrow{\lambda} z$?

Recall:

- $P(\lambda) = \{ p \in G \mid \lim_{t \to 0} \lambda(t) p \lambda(t)^{-1} \text{ exists} \}.$
- L(λ) is precisely elements of P(λ) which commute with λ.
- There is a Levi decomposition $P(\lambda) = L(\lambda) \ltimes U(\lambda)$, with $L(\lambda)$ reductive and $U(\lambda)$ unipotent.
- $Lie(P(\lambda)) = \mathcal{P}(\lambda) = \bigoplus_{i \ge 0} \mathcal{G}_i$, $Lie(U(\lambda)) = \mathcal{U}(\lambda) = \bigoplus_{i > 0} \mathcal{G}_i$ and $Lie(L(\lambda)) = \mathcal{L}(\lambda) = \mathcal{G}_0$.

Theorem: Alignment or Nilpotency

Let $\overline{U}(\lambda) = U(\lambda(t^{-1}))$ be the *opposite* unipotent group and $\overline{U}(\lambda) = \bigoplus_{i < 0} \mathcal{G}_i$ be its Lie algebra. We then have:

 $\mathcal{G} = \overline{\mathcal{U}}(\lambda) \oplus \mathcal{L}(\lambda) \oplus \mathcal{U}(\lambda)$

Proposition

Either there is a $\mathfrak{t} \in \mathcal{P}(\lambda) \cap \mathcal{K}$ or $\hat{\mathcal{K}} \subseteq \overline{\mathcal{U}}(\lambda)$ and is nilpotent and there is a $\mathfrak{u} \in \overline{\mathcal{U}}(\lambda)$ such that $[\mathfrak{u}, \hat{\mathcal{K}}] = 0$. For λ_A in Valiant's construction, $\mathfrak{u} \in \mathcal{H} - \hat{\mathcal{K}}$. The extra normalizer!

Theorem

Let y, z, λ be as above and $\mathcal{H} = \mathcal{G}_z$ and $\mathcal{K} = \mathcal{G}_y$. Then either (i) there is a $u \in U(\lambda)$ such that $\widehat{uy}^{\lambda} = z$ and a semisimple $\mathfrak{s} \in \mathcal{G}_{uy}$ which commutes with λ , OR (ii) $\hat{\mathcal{K}} \subseteq \mathcal{H}$ is a nilpotent Lie alegbra. There is a $\mathfrak{u} \neq \ell, \mathfrak{u} \notin \hat{\mathcal{K}}$ which normalizes $\hat{\mathcal{K}}$.

Consequences of Alignment - Rectangular Decomposition

Theorem - alignment along standard tori

If there is an alignment $\mathfrak{s} \in \mathcal{K}_n \cap \mathcal{H}_{n,m}$, the stabilizer of det_n and the padded permanent $x_{nn}^{n-m}perm_m$ via λ_A for some A. Then there is a 1-PS $u^{\mathfrak{s}} = \mu(u)$ such that the weight spaces of $X_m \dot{\cup} \{x_{nn}\}$ and X_n are linked by A.

- Variables {x₁₁,..., x_{mm}} ∪ {x_{nn}} of x^{n-m}_{nn} perm_m get partitioned into rectangles, and variables {x₁₁,..., x_{nn}} of the determinant get partitioned into rectangles.
- Each rectangle corresponds to the weight spaces w.r.t $\boldsymbol{\mu}.$
- The map A puts the permanent variables into the corresponding rectangles of the determinant.
- For both the permanent and the determinant, these rectangular spaces are also linear subspaces within their respective hypersurfaces.

Entry point for combinatorial analysis.

Alignment in Grenet's construction

• Grenet's implementation of the permanent is also via rectangular partitions

0	0	0	0	<i>x</i> 33	<i>x</i> ₃₂	x ₃₁
x ₁₁	X77	0	0	0	0	0
x ₁₂	0	X77	0	0	0	0
x ₁₃	0	0	X77	0	0	0
0	x ₂₂	<i>x</i> ₂₁	0	X77	0	0
0	x ₂₃	0	<i>x</i> ₂₁	0	X77	0
0	0	<i>x</i> ₂₃	<i>x</i> ₂₂	0	0	X77

- $I = \{1\}\{2\}\{3\}\{7\}$ and $J = \{1, 2, 3\}\{7\}$ for permanent variables.
- $I = J = \{1\}\{2, 3, 4\}\{5, 6, 7\}$ for determinant variables.

- Let $\phi_A : X_m \oplus \mathbb{C} \cdot x_{nn} \to X_n$ be an embedding such that $\phi_A^*(det_n) = x_{nn}^{n-m} perm_m$. We say ϕ_A is *equivariant*, if the pull-back of $P(\lambda_A) \cap K_n$ is surjective onto H_m .
- If ϕ_A is equivariant then $n > 2^m$.
- Grenet's construction forms an important piece.

Alignment

Equivariance is complete alignment. Grenet's construction is partially equivariant. Alignment does lead to lower bounds!

The eigenspaces of semi-simple elements of $perm_n$ or det_n happen to be similar. Moreover, these are linear supspaces of the corresponding hypersurfaces.

Result (Ressayre - Mignon)

If $perm_m$ is obtained as a pull-back of det_n , then $n > m^2/2$. Analysis of the curvature tensor of the hypersurfaces.

Proposition (ASS)

Suppose that, there is a sequence of points $(p_m) \in P_m$ and a function k(m), and the guarantee that the dimension of any linear subspace $L \subseteq P_m$ containing p_m is bounded by k(m). If $perm_m$ is obtained as a pull-back of $det_n(X)$ is $perm_m(W)$. Then $n \ge m^2 - k(m)$.

Conjecture:
$$k(m) = o(m^2)$$
.

Outline

- Introduction *det_n* as the master function and GCT
- The Geometric Approach λ and the tangent of approach Stabilizer Limits, Theorem 1 and the question of "genericity"
- Alignment, the classical P(λ), U(λ) and Theorem 2 alignment or nilpotency
- Determinant as the master group and compactification of \mathcal{K}_n
- Overall...
- Connecting with classical GIT limits what holds and what are its analogues
- Other work in progress

det_n-the master of all stabilizers

Since all forms f arise out of some det_n , perhaps all stabilizers arise out of a sequence of **good** limits:

$$det_n \stackrel{\lambda_1}{\rightarrow} F_1 \dots \stackrel{\lambda_k}{\rightarrow} F_k = f$$

Important to analyse how $\mathcal{H}_i = \mathcal{G}_{F_i}$ change.

What is good?

- The sequence $\mathcal{K}_n = \mathcal{H}_0, \mathcal{H}_1, \dots, \mathcal{H}_k$ reflects progression.
- Where there is alignment. Where $\mathcal{H}_i/\widehat{\mathcal{H}_{i-1}}$ is a gadget.
- For the limit $F_{i-1} \xrightarrow{\lambda_i} F_i$, the computability of F_i from F_{i-1} is elementary.

det_n-the master of all stabilizers

Since all forms f arise out of some det_n , perhaps all stabilizers arise out of a sequence of **good** limits:

$$det_n \stackrel{\lambda_1}{\to} F_1 \dots \stackrel{\lambda_k}{\to} F_k = f$$

Important to analyse how $\mathcal{H}_i = \mathcal{G}_{F_i}$ change.

A key first step is F_1 . Since det_n is stable with reductive stabilizer, $\overline{O(det_n)} - O(det_n)$ is of codimension 1. Suppose that:

$$\overline{O(det_n)} - O(det_n) = D_1 \cup \ldots \cup D_r \cup E_1 \cup \ldots \cup E_s$$

where $D_i = \overline{O(Q_i)}$ and $Q_i \stackrel{\lambda_i}{\leftarrow} det_n$, i.e., orbit closures of 1-PS limits of det_n . Let us call D_i as good divisors and E_j as bad divisors.

Plan A and B for det_n : Codimension 1 forms in $\overline{O(det_n)}$.

det_n-the master of all stabilizers

Since all forms f arise out of some det_n , perhaps all stabilizers arise out of a sequence of limits:

$$det_n \stackrel{\lambda_1}{\to} F_1 \dots \stackrel{\lambda_k}{\to} F_k = f$$

Important to analyse how $\mathcal{H}_i = \mathcal{G}_{F_i}$ change.

Corollary (ASS)

Suppose that $W = \overline{O(Q)}$, a component of the boundary, and $Q = \widehat{\det}_n^{\lambda}$. Then $\mathcal{G}_Q = \widehat{\mathcal{K}}_n \oplus \ell$ (where $t^{\ell} = \lambda$). Moreover, if there is no alignment, then $\widehat{\mathcal{K}}_n$ is nilpotent.

So must all limits Q be aligned with det_n ? And what do the other divisors look like? The evidence from det_3 is Good with large subgroups of K_3 as alignments!

Alignment - The co-dimension 1 forms for det₃

Let $X = X_3$ be as below and let $det_3(X) \in Sym^3(X)$ be the usual determinant:

$$\lambda_1(t)X_3 = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & -x_1 - x_5 \end{bmatrix} + tx_9 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Thus $X = X_0 \oplus X_1$ where X_0 are trace zero matrices and $X_1 = \mathbb{C}I$, the multiples of the identity. Then $\mathcal{H}_1 = \mathcal{G}_{Q_1}$ is of dimension 17, $\mathcal{H}_1 = \widehat{\mathcal{K}_3} \oplus \ell$, and $Lie(R_1) \subseteq (\mathcal{H}_1)_0$.

 $R_1 = \{X \to AXA^{-1}\} \subseteq K_3$

Note that $R_1 \cong SL_3 \subseteq K_3$ commutes with λ_1 . Then

 $\lambda_1(t)det_3 = Q_1 + tQ_1'$

$$\widehat{\mathcal{K}_3} = \begin{bmatrix} \ast & \mathfrak{u} \\ \hline 0 & \mathfrak{r} \end{bmatrix} \overline{k} = \begin{bmatrix} -1 & 0 & 1 \\ \hline 8 & 8 & 0 \end{bmatrix}$$

8-dimensional alignment.

40 / 53

Alignment - The co-dimension 1 forms for det₃

Let $X = X_3$ be as below and let $det_3(X) \in Sym^3(X)$ be the usual determinant:

$$\lambda_2(t)X_3 = \begin{bmatrix} 0 & -x_3 & -x_7 \\ x_3 & 0 & -x_8 \\ x_7 & x_8 & 0 \end{bmatrix} + t \begin{bmatrix} x_1 & x_2 & x_3 \\ x_2 & x_5 & x_6 \\ x_3 & x_6 & x_9 \end{bmatrix}$$

Thus $X = X_a \oplus X_a$ where X_a is the space of anti-symmetric and X_s , symmetric matrices. Let

$$R_2 = \{X \to AXA^T | A \in SL_3\} \subseteq K_3$$

 $R_2 \cong SL_3 \subseteq K_3$ commutes with λ_2 .

Is this the Recipe ?

Then

$$\lambda_2(t)det_3 = tQ_2 + t^3Q_2'$$

Notice top degree cancellation Then $\mathcal{H}_2 = \mathcal{G}_{Q_2} = \widehat{\mathcal{K}_3} \oplus \ell$ and $Lie(R_2) \subseteq (\mathcal{H}_2)_0$. Structure and alignment as before.

Pick a reductive $R \subset K_n$ and let $X|_R = X = \bigoplus_i X_i$. Choose λ suitably. Compute $\widehat{det_n}^{\lambda}$ and check cancellation.

The orbit of \mathcal{K}_n and its compactification

- W = ∧^r(G) (with r = 2n² 2) is a G = GL(X)-module. For any L ∈ W, G_L is N_G(L), the normalizer.
- For $\mathcal{K}_n \in W$, $G_{\mathcal{K}_n} = K_n$ is reductive and therefore SL(X)-stable. Its orbit isomorphic to $det_n \in Sym^n(X)$.

Boundary and divisors?

By Matsushima, its divisors are co-dimension 1. Again let these be $D'_1 \cup \ldots \cup D'_r \cup E$, where D'_i are obtained as limits with $D' = O(\widehat{\mathcal{K}_n}^{\lambda}).$

If λ is not aligned then $\widehat{\mathcal{K}_n}$ is nilpotent. It has an extra normalizer besides ℓ . Then $\widehat{\mathcal{K}_n}$ is *not* a divisor of $\overline{O(\mathcal{K}_n)}$.

GCT: The Correspondence between forms and stabilizers

• Let $p = (\mathcal{K}_n, det_n) \in W \times V$ and $P = \overline{O(p)} \subseteq W \times V$.

What is its boundary and divisors?

- We have $\pi_1 : P \to \overline{O(\mathcal{K}_n)}$ and $\pi_2 : P \to \overline{O(det_n)}$, surjections.
- If $Q = \widehat{det_n}^{\lambda}$ is such that $\widehat{\mathcal{K}_n}$ is nilpotent then $\widehat{\mathcal{K}_n}$ is not a divisor of $\overline{O(\mathcal{K}_n)}$. What is its fiber in P?

Outline

- Introduction det_n as the master function and GCT
- The Geometric Approach λ and the tangent of approach Stabilizer Limits, Theorem 1 and the question of "genericity"
- Alignment, the classical P(λ), U(λ) and Theorem 2 alignment or nilpotency
- Determinant as the master group and compactification of \mathcal{K}_n

• Overall...

- Connecting with classical GIT limits what holds and what are its analogues
- Other work in progress

Orbit closures and stabilizer limits - Summary

- The 1-PS λ and y_e, the tangent of approach, and the containment ⊆ H_{y_e} ⊆ H.
- The notion of alignment geometric as well as combinatorial entry points.
- The classical groups P(λ), U(λ) and their role in the interaction with K.
- The orbit sequence for a form, the boundary of $\overline{O(det_n)}$ and that of $\overline{O(\mathcal{K}_n)}$.

For us...

The GCT approach - a relationship between stabilizers and special points. Stabilizer limits and Orbit closures illustrate the connection. Brings additional insights and classical tools to bear on the permanent vs. determinant question!

Outline

- Introduction *det_n* as the master function and GCT
- The Geometric Approach λ and the tangent of approach Stabilizer Limits, Theorem 1 and the question of "genericity"
- Alignment, the classical P(λ), U(λ) and Theorem 2 alignment or nilpotency
- Determinant as the master group and compactification of \mathcal{K}_n
- Overall...
- Connecting with classical GIT limits what holds and what are its analogues
- Other work in progress

Primary concern

Existence on invariants $\mathbb{C}[V]^{G'}$ and ability to separate orbits. Classification of \mathcal{N} , i.e., of unstable $y \xrightarrow{\gamma} 0$, for a 1-PF γ . Orbit typology:

- w is stable, if O(w) is closed det_n , $perm_m$.
- z is unstable if $0 \in O(z)$ these form the Nullcone \mathcal{N} .
- y is semistable if $w \in O(y)$, $w \neq 0$, w is stable.

Hilbert, Mumford, Kempf

- 1-PS limits $y \stackrel{\lambda}{\rightarrow} 0$ detect closure.
- Existence of an optimal μ and a canonical parabolic subgroup $P_y = P(\mu)$, with $G_y \subseteq P_y$.
- Generalized to $y \xrightarrow{\gamma} w$, where S = O(w) is closed, i.e. w is stable and y is semistable.

For Kempf-optimal μ and Luna

For Kempf-optimal μ , the classical situation presents two cases:

 $\mu(t)y = t^d z + t^e y_e \ldots + t^D y_d$ with $d \ge 0$

- z = 0 and $y \in \mathcal{N}$ (such as the padded $x_{nn}^{n-m}perm_m$).
 - μ can be chosen to align with any reductive subgroup of $K = G_y$. In fact, $K \subseteq L(\mu) \subseteq P(\mu) = P_y$.
 - y_e , tangent of approach is unique up to $U(\mu)$.
 - If $\hat{\mathcal{K}} \subsetneq \mathcal{G}_{y_e}$, then $\overline{O(y_e)}$ is the intermediate orbit.
- d = 0 and z is stable (such as perm_m, det_n) and y is semi-stable.
 - The stabilizer *H*, of *z* is reductive and there is an *H*-module *N* complement to the orbit.
 - We may choose y' ∈ N ∩ O(y), and λ ⊆ H. (Luna) G ×^H N is a local model of the vicinity of O(z). We are in Case 1.

Thus in both cases, alignment holds and intermediate tangent varieties exist.

• For every unstable z, and Kempf-optimal μ , we have:

$$\mu(t)z = t^d \overline{z} + \text{ higher terms}$$

This \overline{z} is the tangent of the optimal path which takes z to 0.

• Let $\overline{\mathcal{N}} = \{\overline{z} | z \in \mathcal{N}\} \subseteq T_0 \mathcal{N}$ is related to the Hesselink strata of \mathcal{N} and their $P(\mu)$ -structure.

What happens when $y \xrightarrow{\lambda} z$ (with y_e as the tangent) and z is partially stable $(x_{nn}^{n-m}perm_m)$ and y is stable (det_m) ?

- Then (i) $\lambda \in P_z = P(\mu)$ and (ii) μ may be chosen such that $y \xrightarrow{\lambda} z \xrightarrow{\mu} \overline{z}$ and λ and μ commute. For $z = x_{nn}^{n-m} perm_m$, we have $z = \overline{z}$.
- $\overline{\mathcal{N}}(z) = \{\overline{w} \in \overline{N} | w \text{ is a tangent for some } y \xrightarrow{\lambda} z\}.$
- $K \not\subset P(\mu)$ but $K \subset \bigcup_{w \in W} P(\mu) w P(\mu)$ for some collection W.

Outline

- Introduction *det_n* as the master function and GCT
- The Geometric Approach λ and the tangent of approach Stabilizer Limits, Theorem 1 and the question of "genericity"
- Alignment, the classical P(λ), U(λ) and Theorem 2 alignment or nilpotency
- Determinant as the master group and compactification of \mathcal{K}_n
- Overall...
- Connecting with classical GIT limits what holds and what are its analogues
- Other work in progress

Plan B - More Pictures - The tangent vector

Lets look at..

The two block case and $\hat{\mathcal{H}} \subseteq \mathcal{H}_{\overline{y_e}} \subseteq \mathcal{H}$.

This examines the gap $\hat{\mathcal{K}} \subsetneq \mathcal{H}_{\overline{y_e}}$. Then dim(O(y)) in V is greater than $dim(O(\overline{y_e}))$ in $G \times^H \overline{N}$.

So is there...

an element $w \in V$ with stabilizer \mathcal{H}' such that $\widehat{\mathcal{H}'}^{\mu} = \mathcal{H}_{\overline{y_e}}$? Is there an "extension" of y_e into V?

Would indicate $\overline{O(z)} \subsetneq \overline{O(w)} \subsetneq \overline{O(y)}$, help in finding forms simpler than det_n with $x_{nn}^{n-m}perm_m$ as limits.

Plan B - More Pictures - Co-limits

This examines the gap $\mathcal{H}_{\overline{y_e}} \subsetneq \mathcal{H}$. Let $Y_d = O(y) \cap V_{\geq d}$ and $Z_d = \pi_d(Y_0)$. Note that $y \in Y_d$ and $z \in Z_d$, the space of co-limits of z. Let $Z = \overline{O(Z_d)}$, then $\overline{O(z)} \subseteq Z \subseteq \overline{O(y)}$ is an intermediate variety.

What is $T_z Z_d$?

Let $\mathcal{G}_{y,d} = \{\mathfrak{g} \in \mathcal{G} | \mathfrak{g}y \in V_{i \geq d}\}$. Then $\pi_d(\mathfrak{g} \cdot y) = T_z Z_d$. How does H_0 act?

The Claims B1 and B2

- If dim(H_{ye}/K̂) > 0 then there is a suitable extension of y_e into V.
- $dim(\mathcal{H}/\mathcal{H}_{\overline{y_e}})_{(-1)} > 0$ indicates the presence of a $z' \notin O(z)$.

Others forms in $\overline{O(det_n)}$

Let $X_m \subset X_n$ as before. Let $A_1, A_2 : X_m \to X_m$ be two linear maps and let B_1, B_2 be the $m \times m$ -matrices $B_i = A_i X_m$, i.e., with entries as formal linear combinations of entries of X_m . Let $f_i = det(B_i)$, then $f_i \in \overline{O(det_m)}$. Let G be the $r \times r$ -gadget matrix constructed out of B_1 and B_2 such that $det(G) = f_1 + f_2$. Let Y be the $n \times n$ -matrix below:

$$\begin{bmatrix} G & 0 \\ 0 & I_{n-r} \end{bmatrix}$$

Then $f = det(Y) = f_1 + f_2 \in Sym^m(X_m)$, is of degree *m*. The homogenization of *f* is indeed $f' = x_{nn}^{n-m} f \in Sym^n(X_n)$, and thus $W = \overline{O(f')} \subseteq \overline{O(det_n)}$ and we have the surjection.

$$\mathbb{C}[\overline{O(det_n)}] \twoheadrightarrow \mathbb{C}[W]$$

What are the *G*-modules in $\mathbb{C}[W]$?