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Overall...
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@ [ntroduction - det, as the master function and GCT
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Determinant: The master function and the 1-PS

e Let X, = C"™" be an n x n-matrix of indeterminates, and let
det,(X,) € Sym"(X,) be the usual determinant.

e Valiant. Let X, C X, and f € Sym™(X,,). Suppose that f
has a formula of size n/c (where c is a constant) then there a
linear map A : Xy — X, such that fy = x], " = det(AXm).

e The form f, is called the padded form. The smallest n is
called the determinantal complexity of . We call A as the
implementation of f as a determinant.

Valiant’s Result
Establishes det, as a master function for coding computations.
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The Permanent as Determinant Question

o X, =Cm™ ™ f = permm,(Xm). Let i
V = Sym"(X) and y = det,(X),
z = x7 "permm(Xm) € V.

x_mm

e Algebraic Question: What is the smallest n
such that det,(AX) = x/- " permm,(Xm) (where
Ae Mp,).

e Both y, z have large stabilizers in GL(X)..but
so far, no direct connection between stabilizers!

K = K, = Stabilizer of det, in GL(X),)
e X, — CX,D such that C,D € GL, and det,(CD) =1 and
X = XT.
e K = G, is reductive, dim(G,) = 2n> — 2 and X, is an
irreducible G,-module.
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Stabilizers

Hp, =Stabilizer of z’ = perm,(Xy,) in GL(Xn)
e X, = CXmD such that C,D € Dy, and det,,(CD) =1 and
X — PXT P, with P, P’ permutation matrices.

e G, is reductive, dim(G,/) =2m — 2 and X, is an irreducible

H,-module.

H = Hpm =The stabilizer of the homogenized permanent
z = X} " permm(Xm) € Sym"(X,). We may partition
X = X, D Cxpp ® X = X1 @ Xo. Then Hypm = G, C GL(X,) in

the ordered basis is as below:

*
0|*|0 | with g€ tHp,
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The Geometric Complexity Approach

e The stabilizers of forms are consequential in their

computational complexity and universality.

e An algebraic framework based on Geometric Invariant Theory
(GIT) to approach the problem - The orbit closure problem.

e Stabilizer data enough to determine if z = x;, " perm, may
be obtained as a limit of y = det,,.
e Two key entry points:

e Algebraic Consequence of Valiant’s construction: There is a
2-block 1-PS Aa(t) C GL(X,) such that:

Aa(t)det, = x) " perm,, + Z t'y;
i>0
where A4 has weight spaces X = Xy & Xj.
e Key GIT properties - stability of y, z’, partial (or L(\)) stability
of z.
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GIT Notation

e X over C. G C GL(X), connected reductive algebraic group
over C. Typically G = GL(X).

e p: GL(X)— GL(V), C[V] ring of polynomial functions.
Think V = Sym?(X*).

e p representation such that the center Zg;(xy = {tl|t € C*}
acts as p(tl)(v) = t?v for a fixed d. Moreover, Zoix) € G.

e Fory € V, Orbit, O(y) :={g - ylg € G}. O(y) need not be
closed, it is constructible.

° W orbit closure of y - Zariski topology or Euclidean
topology. O(y) is a cone and its ideal /(y) C C[V] is
homogeneous.

Key Example: GL(X,) acting on V = Sym"(X,), with y,z € V.
Note that det,, permp, are (resp.) SL,-stable and SL,,-stable.
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The 1-PS and orbit closure

Let A(t) € G be a 1-PS and suppose we have:
At)y =tz + ...+ tPyp (Notation: y A z)
Recall Zg;(x) € G. By applying a suitable power t?/, we have:

Nty =t%2+...+tPyp

Thus z € O(y). Applying this to Aa and y = det,, and

z = x) " permp,, we see that z € O(y).That's the orbit closure.

Problem of Existence of A = The Orbit Closure Problem
A Y,z

e Given z,y € V, is z € O(y)? Distinctive stabilizers, G, G,.

e What connects K = G, and H = G, when y A 27
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GCT and Representations as Obstructions

e Let Y =0(y) and Z = O(z2), and C[Y] =} d,,V, and
C[Z] = >_,, pu V. be their coordinate rings as G-modules.

e Stability of det,, perm,, and Peter-Weyl determine exactly
which G-modules V,, appear in C[Y] and C[Z].

e ZC Y = C[Y]— C[Z] and thus d,, > p,, for all p.

GCT-Il Conjecture
If z & Y then there is a p such that p, >0 and d, = 0.

All' V,, which appear in C[Z], or for that matter, for the
coordinate ring C[W] of the orbit closure O(w) of any
homogenized form w, appear in C[Y].

So the numbers do matter.
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@ The Geometric Approach - A and the tangent of approach -
Stabilizer Limits, Theorem 1 and the question of " genericity”
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Our work - more geometric

We begin with:

D
y(£) = Mt).y = yat? + yet®+ Y yit’
i—e+1
with z = y4. We call y, as the tangent of approach.
We use the notation y A z,z yal y or z=y” or simply z = .

Transversality. Vector space spanned by
Ye,--.,yp intersects TgO(g) trivially.
Let G = Lie(G) and K = Lie(K),

H = Lie(H) C G. These are infinitesimal
group elements with the Lie bracket.

Question

How do we connect I with H using A7
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Groups < Lie Algebras

e G C GL(X) of dimension r associated with a linear space
Lie(G) = G of matrices of the same dimension.

e These are closed under the Lie bracket - a,b € G then so is
[a,b] = ab — ba.

e For an g € G, the family exp(g, t) = €% C G is a curve with
tangent g at e.

e Finally, for g € G,g € G, we have ggg~! € G as well, and is a

group action.

‘ Group ‘ Lie Algebra

Functorial equivalence GL, M,, = Cmxm

between connected SL,, | {mé€ M.y, tr(m) =0}
matrix groups and D, C"(diagonal matrices)
matrix Lie algebras and On {m & My|m+ m" =0}

their modules.
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Preliminaries

e We have the usual action of A on V and the weight space
decomposition V = @V;. A(t)v =Y, t'v; with v; € V;.

e \(t) also acts on G by conjugation and thus we have G = ©3;.
e Forany ve V,v=>.v, let the leading term V* or simply
V be v; where v; # 0 and v; = 0 for all / < j. Similarly, we

define g* or simply § for any g € G.
Basic result: For any g € G and v € V:

Either §0 = 0 or gv = §¥ and deg(gv) = deg(v) + deg(g).

At)(gv) = (AM)aA (1) (M(t)v) = 9( ) ( )
(ZL, )l ¥vy) = t74Pgavs + .
Then either deg(gv) = a+ b and then gv = §?, or
deg(gv) < a+ b, and then §0 = 0.
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Leading term algebras and modules

Proposition

Let K be a Lie subalgebra of G and M C V a K-module. Let K
(resp. I\7I) be the vector space generated by leading terms. Then
(i) K is a graded Lie subalgebra of G, and dim¢(K) = dime(K),
(i) M C V is a K-module with dimcM = dimeM.

([ E]) = [Mo)e, A0)E]
= [CA, the, 0, U] = 2P, t] 4
Thus either [{T,{’\’] = [£,#] or [¢,#] = 0. This proves that K is a Lie
algebra. That M is a K-module is clear from the last lemma. The
dimension assertion is delicate but easily proved.

If me M and & € K such that €m = 0, then £/ = 0.
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Example: Grading and Pose.

G = GL4(C), X a G-module, y € X and K as below. Let A(t) be

as below.

o o n w
o o Q o
0 v O o
Q T O O

We see that:

ME)MA(t) L

:[ M1

tM>q

o O O =

o O = O

t_l/\/llz
M2

O ~+~ O O

|

~+~ O O O

KC commutes with A and therefore K = K, is reductive. Ko = K.

Thus the dimension vector is

weight

=il

0

1

dimension

0

4

0

16 /53



Pose matters... (2)

Let K" = AKAL.
1 001 a b c d—a
A 0100 | d 0 —c
0 010 0 0 a b
0 001 0 0 ¢c d
If KK'(t) = A(t)K'A(t)7 L, and so:
a b tlc t7i(d-a) u t s r
K/(t) = cd 0 -t [ 0 v 0 —s
0 0 a b 0 0 u t
0 0 ¢ d 0 00 wu

K’ is a solvable Lie algebra.

weight | =101

dimension| 2 |20

The dimension vector is
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The N as an H-module

Back to geometry.

o Let T,(O(z)) C V be the tangent
space of O(z) at z and N be a
complement.

e T, C Visan H-module and so is
N=V/T,.
e Y. € N and Hy; its stabilizer.
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Theorem 1 - connecting K and H

Theorem 1 (ASS)

Let y A 7 with stabilizers Lie algebras KC, H as above. Let N be
the the quotient V/T,0(z) and Yz € N. Then we have
K C Hy; CH.

Proof: (Assume e =d +1). If £ € K, then
ty = 0. Whence

(A(®))(A(t)y) = E(t)y(t) = 0. If

8(t) =2 >, t't and y(t) = > ;54 t/y; then
we have £ = ¢, and :

bygy=tp = 0=>teH
%ye+ka+1yd = 0:>%EH}T€

The Theorem holds even when (t) C G is a
1-parameter family.
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Theorem 1 - connecting K and - Understanding the grading

Theorem 1 (ASS)

Let y A 7 with stabilizers Lie algebras KC, H as above. Let N be
the the quotient V/T,0(z) and Yz € N. Then we have
K C Hy; CH.

For A(t) be as below, see the weight-spaces:

2 0 0 Go | G-1|G-2
AMt)=] 0 t 0| G=1|Gi| G |G_1
0 01 Go| G1 | Go

Given a t € IC,, with

b=t ,+t 1 +6+8t +8&

The first non-zero £; determines . Thus
I@ = EB,‘,@,', with dlm(,@,) = k,‘. 20/53




X =C < x1,x,x3 > and G = GL3 acts on act on V = Sym*(X).
Let f = (x2 +x2 +x2)%,g = (x? + x2)? and \ be as below.
Note that f 2 g.

0 a 1 0(0 0 a b
Gr=| —-a 0 c | ANt)=]0 1|0 | Gs=| -a 0 ¢
—b —c O 0 0|t 0 0 d
. h=2(x? + x2)x2, tangent of approach.
0 a t1p 0 a|b
A(t)GeA(t) = —a 0 tlc|Gr=| —a 0|c | CG,.

—tb —tc 0 0 0

Gr = (G)5 C Ge, dim((Gr)-1) = 2, dim((Gr)o) = 1.

21/53



The first theorem - Geometric content

-

0®z)

Let A\(t) = t*. Then ¢’ € H,.

How does Hy act?
A(t)hy =
z+ t(hy) + ...+ tP(hyp)

Theorem 1 (ASS)

In the equation

Mt)y =tz +teye +...+tPyp

K c Hy. € H tell us that d, e, ye are
important pieces connecting z and y. ye
depends on the model!

e Hp: The interesting part of the
stabilizer of z.

e Hy./K: The collapse of the orbit
O(y) as it approaches O(z). Indicates
simpler forms y’ € O(y) with )7’)\ =z

e H/Hy:: The space of limits 2/ = )7’/\

obtained from elements of y’ € O(y).
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Permanent vs. Determinant

Therefore...

—
If z = x] ™permy, = det,(AXp,), then z = det, for a suitable
2-block Aa. Thus I@,, C Hp,m- How does I@n sit inside H, m?

Recall

Xn = X ® Cxpn © X = X1 © Xo.
Then Hp, m, is as below (with

g € Hp):
* | % | %
0 0
0/0]|g

Given a t € KC,, with
E=¢0t_1+ € +¢.

As per the weights of A4, we have:

What if €, £ = £_; for all £? Then the
stabilizer of det, will be tucked away
from H,! Can \4 be “generic”?
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Measuring Generic-ness

For A(t) be as below, see the weight-spaces:

2 0 0 Go | G-1|G-2
AMt)=] 0 t 0| G=]|G1| Go |G
0 01 G| G1 | Go

Thus, for a general \, K = ®;K;, with dim(l@,-) = k;. The vector
k = (ki) measures the generic-ness of \ vis a vis K. The more
negative the weights, the more generic is \.

What if, A4 is completely generic and k is as follows:

weight 2 [-1fol1]2
dimension || dim(K,)| 0 |0[0|0
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Measuring Generic-ness

For A(t) be as below, see the weight-spaces:

2 0 0

At)=] 0 t 0| G=

0 01

Go | G-1|G-2
Gi| Go | G-1
G| G1 | Go

Thus, for a general \, K = ®;K;, with dim(l@,-) = k;. The vector
k = (ki) measures the generic-ness of \ vis a vis K. The more

negative the weights, the more generic is \.

What if, Ay is completely generic and k is as follows:

weight

=

=i

0

1

2

dimension

dim(KC,)

0

0

0

0

Can interesting forms and stabilizers be generic limits of
det,? Like to believe that the answer is NO
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Example: det; - stabilizer of limit and limit of stabilizer.

Let X = X3 be as below and let det3(X) € Sym3(X) be the usual
determinant and three 2-block 1-PS with a 6-3 break:

txy txo tx3 txy X2 X3 X1 txo tx3
M= xa x5 X |AB=| xa txs x5 | Ac=1| x» x5 txg
X7 Xg Xg X7 Xg ItXg X7 Xg Xog

Let Ap be a generic conjugate of a 3-6 break.
Now let A(t)det; = t9z + ...+ higher terms.

What is the limit z, stabilizer H and K and its dimension vector?

’ H limit ‘ degree ‘ dim(H) ‘ Remark H -1 ‘ 0 ‘ 1 ‘
Ka dets 1 16 | =dm(K,) | 0 [16]|0
Kg || derangements 0 31 9344 12| 4 |0
Kc X1X5X9 0 56 9x6+2 | 14| 2|0
Kp || generic form 0 54 9% 6 16 | 0 [0




e Alignment, the classical P(\), U(X) and Theorem 2 - alignment
or nilpotency
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Effectiveness of K — Tl = T

Alignment
A semisimple element s € K is called an alignment if it commutes
with X\. Consequence: s stabilizes every y; and therefore yy = z.

Plan A. (Alignment) Is there a common semisimple element in
gKg~' NH while retaining that gy A 2?7 What are its
consequences? What if there is none?

Plan B (Lie algebra) Are there intermediate orbits
O(z) € O(w) C O(y) which have this property?

Plan B: We may have z 2 worwd y' € O(y) and an
intermediate form to det, and x; " perm,. What are tangent

vectors ye € N so that Hyz may be lifted to points y' € O(y) such
o~ Ye

that G,» = Hy,. —"infinitesimal determinants”
27/53



The Alignment Theorem - Weight Space

Let T 2 A(t) be a maximal torus and =(V/), the weight space. Let
T = Lie(T). For any t € T, let t' be the 1-PS corresponding to t.
Let us assume that A(t) is such that d =0, i.e.,

y(t) =yo+tlyr +... + tPyp with z = yo.
Let ¢ be such that t* = A(t). Thus X stabilizes z and £ € H.
For T 2 A(t) above, let
V = @, Vy be the weight
space decomposition. Note
that £ € T. We have:

A(t)v = Z t06by,
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The Alignment Theorem - The groups P(\), U()\)

Recall:
e P(A)={pe
o G|lims_o A(t)pA(t) ! exists}.
e L(\) is precisely elements of P(\)
which commute with A.

e There is a Levi decomposition
P(\) = L(N\) x U(N), with L(X)
reductive and U(\) unipotent.

® LIG(P()\)) = P()\) = @,‘Zog;,

Motivation Lie(U()\)) _ u()\) = ®i>0Gi and

How to analyse across all g Lie(L(\)) = £(\) = Go.

A
such that gy = z7
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Theorem: Alignment or Nilpotency

Let U()\) = U(A(t™1)) be the opposite unipotent group and
U(N) = Di<0G; be its Lie algebra. We then have:

G=UN)® L) DU

Proposition
Either there is a £ € P(A\) N K or K C U()\) and is nilpotent and

there is a u € Z(\) such that [u, K] = 0. For A4 in Valiant's
construction, u € H — K. The extra normalizer!

Theorem

Let y,z, A be as above and H = G, and K = G,. Then either (i)
there is a u € U()) such that 7y = z and a semisimple s € o
which commutes with A, OR (ii) K C # is a nilpotent Lie

alegbra. There is a u # £,u ¢ K which normalizes K.
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Consequences of Alignment - Rectangular Decomposition

Theorem - alignment along standard tori

If there is an alignment s € K, N H, m, the stabilizer of det, and
the padded permanent x; " perm,, via Aa for some A. Then
there is a 1-PS u® = p(u) such that the weight spaces of
XmU{xnn} and X, are linked by A.

e Variables {x11,...,Xmm} U {xan} of x}, ™ permy, get
partitioned into rectangles, and variables {xi1, ..., xnn} of the
determinant get partitioned into rectangles.

e Each rectangle corresponds to the weight spaces w.r.t .

e The map A puts the permanent variables into the
corresponding rectangles of the determinant.

e For both the permanent and the determinant, these
rectangular spaces are also linear subspaces within their

respective hypersurfaces.
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Entry point for combinatorial analysis.

7.
|

W
/\
[

NN
N\

)
===
i\

Rec TANGU LA TALTITioNgS.
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Alignment in Grenet’s construction

e Grenet's implementation of the permanent is also via
rectangular partitions

x1|x7 0 00 0 O
x2] 0 x7 0[O0 O O
X13 0 0 X717 0 0 0
0 X202  X21 0 X717 0 0

0

0 | xo3 0 x9 0 X7
0 0 X23 X292 0 0 X177

o | ={1}{2}{3}{7} and J = {1,2,3}{7} for permanent
variables.

o | =J={1}{2,3,4}{5,6,7} for determinant variables.
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Landsberg-Ressayre lower bound

o Let ¢pp: X @ C - x, — X, be an embedding such that
¢4 (dety) = x) " permp,. We say ¢4 is equivariant, if the
pull-back of P(Aa) N K, is surjective onto H,,.

o If ¢4 is equivariant then n > 2.

e Grenet's construction forms an important piece.

Alignment
Equivariance is complete alignment. Grenet's construction is
partially equivariant. Alignment does lead to lower bounds!
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Relating eigenspaces of stabilizers

The eigenspaces of semi-simple elements of perm,, or det,, happen
to be similar. Moreover, these are linear supspaces of the

corresponding hypersurfaces.
Result (Ressayre - Mignon)

If perm, is obtained as a pull-back of det,, then n > m?/2.
Analysis of the curvature tensor of the hypersurfaces.

Proposition (ASS)

Suppose that, there is a sequence of points (p;,) € Pp, and a
function k(m), and the guarantee that the dimension of any
linear subspace L C P, containing p,, is bounded by k(m). If
permy, is obtained as a pull-back of det,(X) is perm,(W). Then
n > m? — k(m).

Conjecture: k(m) = o(m?). 5



@ Determinant as the master group and compactification of /C,
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Geometric combinatorics of det,

Since all forms f arise out of some det,, perhaps all stabilizers
arise out of a sequence of good limits:

det, 3 Fy ... % Fo=f
Important to analyse how H; = GF, change.

What is good?

e The sequence K, = Ho, Hi, ..., Hy reflects progression.

e Where there is alignment. Where 7{,/77,,\1 is a gadget.

e For the limit F;_1 /\% F;, the computability of F; from F;_1 is
elementary.
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Geometric combinatorics of det,

Since all forms f arise out of some det,, perhaps all stabilizers
arise out of a sequence of good limits:

dety 3 Fy ... X% F=f
Important to analyse how H; = Gf, change.

A key first step is F1. Since det, is stable with reductive stabilizer,
O(det,) — O(dety) is of codimension 1. Suppose that:

O(det,) — O(det,) =D1U...UD, UEL U...UE;

where D; = O(Q;) and Q; il det,, i.e., orbit closures of 1-PS limits
of det,. Let us call D; as good divisors and E; as bad divisors.
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Plan A and B for det, : Codimension 1 forms in O(det,).

Since all forms f arise out of some det,, perhaps all stabilizers
arise out of a sequence of limits:

det, S F . M F =f

Important to analyse how #; = GF. change.

Corollary (ASS)

Suppose that W = O(Q), a component of the boundary, and
) g
Q = det, . Then Gg = K, @ £ (where t* = )\). Moreover, if

there is no alignment, then /C, is nilpotent.

So must all limits Q be aligned with det,? And what do the other
divisors look like? The evidence from dets is Good with large

i |
subgroups of K3 as alignments! 39/53



Alignment - The co-dimension 1 forms for det;

Let X = X3 be as below and let det3(X) € Sym3(X) be the usual
determinant:

X1 X2 X3 1 00
M()X3=| x4 x5 X6 +tx| 0 1 O
X7 Xg —X1 — X5 0 0 1
Thus X = Xy ® Xi1 where Xy are Then Hq1 = Gg, is of
trace zero matrices and X; = C/, the  dimension 17, H1 = l/@ P2,
multiples of the identity. and Lie(R1) € (H1)o-

Ri={X = AXA™'} C K3

Note that R; = SL3 C K3 commutes I/C\3 N ‘ u %= -1]0)1
with A1. Then K 8 [8]0
M(t)dets = Q + t@, 8-dimensional alignment.
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Alignment - The co-dimension 1 forms for det;

Let X = X3 be as below and let det3(X) € Sym3(X) be the usual
determinant:

0 —x3 —xy X1 Xo X3
E)Xs=|x3 0 —xg|+t| x2 x5 x
X7  Xg 0 X3 Xe Xo
Thus X = X, @ X, where Xj is the Then
space of anti-symmetric and X, Ao(t)dets = tQy + t3Q
symmetric matrices. Let Notice top degree cancellation

Ry = {X = AXAT|A € SL3} C K3  1hen Ha =0q, = K3 @ L and
Lie(R,) C (Hz)o. Structure and

Ry, =2 S35 C K3 commutes with As. alignment as before.
Is this the Recipe ?
Pick a reductive R C K, and let X|g = X = @;X;. Choose A

. — )
suitably. Compute det, and check cancellation. g



The orbit of I, and its compactification

e W= A"(G) (with r =2n? —2) is a G = GL(X)-module. For
any L € W, Gg is Ng(L), the normalizer.

e For I, € W, Gi, = Kj, is reductive and therefore
SL(X)-stable. Its orbit isomorphic to det, € Sym"(X).

Boundary and divisors?
codimension 1 By Matsushima, its divisors are
oundary
/o co-dimension 1. Again let these be
DiU...UD/UE, where D/ are
obtained as limits with

D' = O(KG)).

If X is not aligned then /C, is nilpotent. It has an extra normalizer

besides ¢. Then K, is not a divisor of (Khn).
42/53



GCT: The Correspondence between forms and stabilizers

o Let p=(Kp,det,) € Wx Vand P=0(p) C W x V.

co—dimension I
oundary

What is its boundary and divisors?

e We have 7r1 P — O(K,) and 73 : P — O(det,), surjections.

o If Q= det,, is such that IC,, is nilpotent then IC,, is not a
divisor of O(K,). What is its fiber in P?

43/53



@ Overall...
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Orbit closures and stabilizer limits - Summary

e The 1-PS X and y., the tangent of approach,
and the containment K. C Hy: CH.

e The notion of alignment - geometric as well
as combinatorial entry points.

e The classical groups P()\), U(A) and their
role in the interaction with K.

e The orbit sequence for a form, the boundary

of O(det,) and that of O(KC,).

The GCT approach - a relationship between stabilizers and
special points. Stabilizer limits and Orbit closures illustrate the
connection. Brings additional insights and classical tools to bear

: -
on the permanent vs. determinant question! 4553



@ Connecting with classical GIT limits - what holds and what are

its analogues
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Connecting with classical GIT limits - G’ = SL(X)

Existence on invariants C[V]¢" and ability to separate orbits.
Classification of V, i.e., of unstable y NN 0, for a 1-PF ~.

Orbit typology:
w is stable, if O(w) is closed - det,, permp,.

z is unstable if 0 € O(z) - these form the Nullcone N.
y is semistable if w € O(y), w # 0, w is stable.

Hilbert, Mumford, Kempf

e 1-PS limits y 2 0 detect closure.

e Existence of an optimal © and a canonical parabolic subgroup
P, = P(p), with G, C P,.

e Generalized to y - w, where S = O(w) is closed, i.e. w is

stable and y is semistable. 47 /53



For Kempf-optimal 1 and Luna

For Kempf-optimal i, the classical situation presents two cases:
w(t)y = t9z + teye ... + tPyy with d > 0

e z=0and y € N (such as the padded x/,™permy,).
e 4 can be chosen to align with any reductive subgroup of
K = G,. Infact, K C L(1) € P(u) = P,.
e y., tangent of approach is unique up to U(pu).
e If K C G, then O(y.) is the intermediate orbit.
e d =0 and z is stable (such as permp,, det,) and y is
semi-stable.

e The stabilizer H, of z is reductive and there is an H-module N
complement to the orbit.

e We may choose y’ € NN O(y), and A C H. (Luna) G x" N is
a local model of the vicinity of O(z). We are in Case 1.

Thus in both cases, alignment holds and intermediate tangent
varieties exist. 48 /53



Moreover...

e For every unstable z, and Kempf-optimal u, we have:
p(t)z = t9Z + higher terms

This Z is the tangent of the optimal path which takes z to 0.

o Let N = {Z|z € N} C ToN is related to the Hesselink strata
of A and their P(u)-structure.

What happens when y A, (with ye as the tangent) and z is
partially stable (x; "permp,) and y is stable (dety,)?

e Then (i) A € P, = P(u) and (ii) u may be chosen such that
y Az 7and A and @ commute. For z = x; """ permy,, we
have z = Z.

e N(z) = {w € N|w is a tangent for some y A z}.
e K¢ P(u) but K C UyewP()wP () for some collection W.
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@ Other work in progress
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Plan B - More Pictures - The tangent vector

The two block case and H C Hy: CH.

This examines the gap K C Hy,. Then
dim(O(y)) in V is greater than
dim(O(¥e)) in G x" N.

an element w € V with stabilizer H' such
/\’LL h - ”
that H" = Hy,7? Is there an “extension

of ye into V7

Would indicate O(z) € O(w) € O(y),
help in finding forms simpler than det,

with x/ =" permy, as limits.
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Plan B - More Pictures - Co-limits

. This examines the gap Hy; C H.

Let Yqy = O(y) N V>4 and
Zy = m4(Yo). Note that y € Yy and

]
O z € Zy, the space of co-limits of z. Let

T Z = 0(Zy), then O(z) CZ C O(y) is

=

an intermediate variety.

z What is 7,247

Let G, g = {g € Glgy € Vi>q}. Then
7d(g-y) = T:Z4. How does Hy act?

If dim(Hyz/K) > 0 then there is a suitable extension of y.
into V.
dim(H /Hy;)(—1) > 0 indicates the presence of a z’ ¢ O(z).
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Others forms in O(det,)

Let X, C X, as before. Let A1, Ay : X, — X, be two linear maps
and let By, B, be the m x m-matrices B; = A; X, i.e., with entries
as formal linear combinations of entries of Xp,,. Let f; = det(B;),
then f; € O(det,,). Let G be the r x r-gadget matrix constructed
out of By and B; such that det(G) = f; + f,. Let Y be the

n X n-matrix below:
G 0
0 Infr

Then f = det(Y) = fi + f» € Sym™(Xp), is of degree m. The
homogenization of f is indeed f' = x].™f € Sym"(X,), and thus
W = O(f’) C O(det,) and we have the surjection.

C[O(det,)] — C[W]

What are the G-modules in C[W]?
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