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Introduction

Disclaimer

(Biased) selection of results and open questions

Focused on factorization and complexity of factors

Both univariate and multivariate polynomials
(di�erent notions of sparsity)

Restricted domains: Z for Univariate, C for multivariate
(many results relevant for other domains as well)

No proofs, just (many) sketches

Many open problems
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Introduction De�nition

Sparse Polynomials

Sparse Polynomials

Polynomials with few monomials (compared to dimension of space)
∥f ∥0 denotes number of monomials in f

Two very di�erent settings:

Univariate: f ∈ Z[x ], deg(f ) = exp(n), ∥f ∥0 = poly(n)

Example: f (x) = x2
n − 1

Multivariate: n-variate f ∈ C[x ], deg(f ) = poly(n), ∥f ∥0 = poly(n)

Example: f (x) =
∏n

i=1 xi +
∏2n

i=n+1 xi

In General: Polynomial computed by poly-size ΣΠ circuits
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Introduction Motivation

Motivation

Practical importance: used by computer algebra systems and libraries
(Maple, Mathematica, Sage, and Singular)

Simple model for studying basic questions

Many open problems
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Introduction Challenges

Key Problems

Decision Problems:

Divisibility testing: does g divide f ?
Factors: does f have a low degree factor?

Algorithmic:

Find irreducible factors of f
Find a sparse/low-degree factor of f

Complexity of factors:

Sparsity of factors
ℓ∞ norm of factors

Related Problems:

Behavior of complexity measures under products

Introduction Sparse Challenges WACT 2025 6 / 33



Divisibility Testing

Divisibility Testing
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Divisibility Testing

Divisibility Testing

Task:

Given sparse polynomials g , f , decide whether g divides f ?

Di�erent complexity for Univariate and Multivariate

Univariate: No known algorithms; hardness result for similar problems
Can't use simple division: co-factor may have ∥f /g∥0 = exp(n)

x2
n − 1 = (x − 1) ·

(
1+ x + . . .+ x2

n−1)
Multivariate: Kaltofen's factoring algorithm [Kal89] + randomize
polynomial identity testing (PIT). No deterministic algorithm.
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Divisibility Testing Univariate Polynomials

Divisibility Testing:

Univariate Polynomials
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Divisibility Testing Univariate Polynomials

Related NP Hardness Results

Theorem ([Pla77, Pla84])

The following are NP-hard problems:

Do sparse f1, . . . , fn have a common zero?

Determine whether xN − 1 does not divide
∏

n fi for sparse fi

Does a sparse f have a zero on the complex unit circle?

Proof sketch - Reduction from 3SAT:

Let N = q1 · · · qn product of �rst n primes.

Assignment are roots of unity ω: xj(ω) = True i� ωN/qj = 1

Clauses C1, . . . ,Cm encoded as sparse polynomials with small
coe�cients such that: fi (w) = 0 i� w |= Ci

A common root to all polynomials is a satisfying assignment
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Divisibility Testing Univariate Polynomials

Positive Results (over Z)

Theorem ([GKO92])

Sparse polynomials divisibility testing in coNP (assuming ERH)

Proof sketch:

By ERH: if g ̸ | f then, ∃ prime p = exp(n), α ∈ Fp, m < ∥g∥0
such that (x − α)m | g but (x − α)m̸ | f

Theorem ([Len99])

Can compute all irreducible degree-d factors in time poly(n, d)

Proof sketch:

If [Q(α) : Q] = d and α not a root of unity, then ∥α̃∥ = Ωd(1)

If f (α̃) = 0 then, f = flow + x r · fhigh where flow(α̃), fhigh(α̃) = 0
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Divisibility Testing Univariate Polynomials

Open Problems

Challenge of [DC09]:

Either

Find a class of problems for which divisibility testing is coNP-complete;
or

�nd a polynomial-time algorithm for divisibility testing;
or,

�nd a polynomial-time algorithm for divisibility testing of
cyclotomic-free polynomials

Open:

Prove hardness results not using cyclotomic polynomials
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Divisibility Testing Multivariate Polynomials

Divisibility Testing:

Multivariate Polynomials
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Divisibility Testing Multivariate Polynomials

Algorithms for Divisibility Testing

Randomized algorithm:

Run [Kal89] randomized factorization algorithm

Check if g is one of the factors using PIT for sparse polynomials

Theorem (Deterministic low degree divisibility testing [For15])

Quasi-poly time divisibility testing algorithm when deg(g) = O(1)

Proof sketch:

If h = f /g and g(0) = 1, then h = H≤deg h[f ·
∑

i (1− g)i ]

Multiplying by g , reduces to PIT of f −
∑

mi · g ei , for monomials mi

By considering shifted partial derivatives, for an appropriate translation
of x, polynomial has a low-support monomial
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Divisibility Testing Multivariate Polynomials

Open Problems

Sub-exp∗ := faster than PIT for bounded-depth circuits [LST24]

Sub-exp∗ time deterministic divisibility testing for sparse g , f

If deg(g) = O(1) then quasi-poly algorithm [For15]

Polynomial time deterministic divisibility testing of sparse by quadratic

For deg(g) = 1 can test using the PIT of [RS05]
If degi (f ) ≤ d and deg(g) = 2 then can test divisibility in time
poly(∥f ∥0, nd) using PIT for sparse polynomials a-la [For15]

Sub-exp∗ time deterministic irreducibility testing of sparse polynomials

Even with bounded-individual degrees ≥ 3
([Vol17] solved the case of ind-deg = 2)
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Complexity of Factors Univariate Polynomials

Complexity of Factors:

Univariate Polynomials
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Complexity of Factors Univariate Polynomials

Factors of Sparse Univariate polynomials

Examples:

xN − 1 = (x − 1) · (1+ x + x2 + . . .+ xN−1)

xN − 1 has exponentially hard factors (counting arguments)

ΦN | xN − 1, Nth-cyclotomic polynomial. For in�nitely many N:

log ∥ΦN∥∞ ≥ NΩ(1/ log logN)

Take away:

Factors may have exponential many monomials (unavoidable)

Factors may have exponential complexity

ℓ∞ norm of factors doubly exponentially large

Question:

Complexity of factors for cyclotomic-free f ?

If g is sparse, can we obtain better upper bound on ∥f /g∥∞?
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Complexity of Factors Univariate Polynomials

Height of the Cofactor Polynomial

Theorem (Gel'fond's Lemma[Gel60])

∥f /g∥∞ ≤ 2deg f ∥f ∥∞

Theorem (Mignotte's Bound [Mig74])

∥f /g∥1 ≤ 2deg f /g ∥f ∥2

Bound is tight up to basis of exponent (but examples not sparse)

Theorem ([NS24])

∥f /g∥2 ≤ ∥f ∥1 · (deg f )O(∥g∥0)

Open problem:

Prove tight bound for sparse polynomials

Complexity of Factors Sparse Challenges WACT 2025 18 / 33



Complexity of Factors Univariate Polynomials

Norm of Cofactors

Theorem ([NS24])

∥f /g∥2 ≤ ∥f ∥1 · (deg f )O(∥g∥0)

Proof sketch:

Fourier: ∃ deg(f ) < p-th root of unity θ s.t. ∥f /g∥2 ≤ ∥f ∥1 / |g(θ)|
Claim: ∃ small B(g) ⊂ D such that ∀α ∈ D far from B , g(α) �large�

Density of primes: ∃p ≈ deg f whose primitive roots far from B(g)

Pf. by induction: Base case ∥g∥0 = 2: holds for α far from roots of g

Induction step: set B(g) := Z (Re(g ′)) ∪ Z (Im(g ′)) ∪ B(g ′)

Signs of R(g ′) and Im(g ′) �xed within intervals in D \ B(g)
As ∥g ′∥0 = ∥g∥0 − 1, by induction: g ′(α) large for α far from B(g ′)

Simple calculus: g(α) large for α far from B(g)
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Complexity of Factors Multivariate Polynomials

Complexity of Factors:

Multivariate Polynomials
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Complexity of Factors Multivariate Polynomials

Sparsity of Factors of Sparse Polynomials

Example [vzGK85]:

n∏
i=1

(xni − 1) =

(
n∏

i=1

(xi − 1)

)
·

(
n∏

i=1

(1+ xi + x2 + . . .+ xn−1i )

)
LHS has sparsity s = 2n, RHS has sparsity nn = s log s

Open Problems:

Can the sparsity of a factor exceed sO(log s)?

What is the sparsity of f /g when deg(g) = 2?

Bounded depth circuit complexity of factors?
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Complexity of Factors Multivariate Polynomials

Complexity of Factors

Known results:

[Kal89] proved factors have small algebraic circuits

Moreover, if degi (f ) = O(1) (or deg(g) = loga n), then depth = 5
(or depth = 2+ a) [DSY10, Oli16, CKS19]

If degi (f ) ≤ d then factors sO(d2 log n) sparse factors
(and deterministic factorization) [BSV20]

If also symmetric then (sn)poly(d) time [BS22]

Deterministic quasi-poly (sub-exp) algorithm computing a list of
polynomials (circuits with ÷) that contains all bounded degree (all)
factors (and some �junk�) [KRS24, DST24], [KRSV24]

Note:

Sub-exp bound on sparsity of factors only when degi (f ) = O(1)
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Complexity of Factors Multivariate Polynomials

Bounded individual degrees

Theorem ([BSV20])

If degi (f ) ≤ d then factors are sO(d2 log n) sparse

Proof sketch:

If f = gh then Newton(f ) = Newton(g) + Newton(h)
(Newton polytope = convex hull of exponent vectors)

∥f ∥0 small ⇒ Newton(f ) has few vertices, hence also Newton(g)

degi (g) = O(1) ⇒ bound on ℓ∞ of integral points in Newton(g)

Claim: This implies that Newton(g) has few integral points

Proof: by Cherno�, sampling O(d2 log n) vertices from convex
combination, gives unique approximation to each inner integral point

Count number of possible approximations
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Complexity of Factors Multivariate Polynomials

Bounded Degree Factors

Theorem ([KRS24, DST24])

Can compute all O(1)-degree factors in quasi-polynomial time

Proof sketch (of [DST24]):

E�ective Hilbert Irreducibility: ∃φ(s, t), deg(φ) = d5, such that
φ(α,β) ̸= 0 ⇒ g(z , u ·α+ β) is irreducible, for every deg(g) = d
irreducible factor of f

Find small number of weight functions {ω(i) ∈ Nn} such that

{(yω(i)
, yω

(j)
)} hitting set for φ

degree d factor g reconstructible from g(z , u · yωi + yωj )
di�erent degree d factors remain coprime under substitution

Factor f (z , u · yωi + yωj )

Reconstruct degree d factors and verify using PIT
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Complexity of Factors Multivariate Polynomials

Beck to the Example

Question: can we improve the example:
n∏

i=1

(xni − 1) =

(
n∏

i=1

(xi − 1)

)
·

(
n∏

i=1

(1+ xi + x2 + . . .+ xn−1i )

)
Theorem ([BS17] (unpublished, M.Sc. thesis))

f = (
∏k

i=1 ℓi ) · g , ℓi linear with ∥ℓi∥0 ≥ 2 ⇒ r := dim({ℓi}) = Õ(log ∥f ∥0)
⇒ No signi�cantly better example with many independent linear factors

Proof sketch.

If ∃ set of variables |J| = Õ(log r) such that f |J←0 = 0, then, setting
|J| − 1 of them to zero we get ∥f ∥0 → ∥f ∥0/|J| and r → r − |J|
Otherwise, set variables to zero (carefully) with probability ≈ 1/ log r
w.h.p. rank remains large, monomial support drops
dimension of partial derivatives ⇒ ∥f ∥0 = exp(O(r))

Complexity of Factors Sparse Challenges WACT 2025 25 / 33



Complexity of Factors Multivariate Polynomials

Obstacles for Higher Degrees

Proof relied on partial derivative method: dim (∂ (
∏n

i=1 xi )) = 2n

Questions:
1 Assume g1, . . . , gn algebraically independent polynomials

does dim (∂ (
∏n

i=1 gi )) = exp(n)?

2 How small can dim(∂(g1 · g2)) be compared to
dim(∂(g1)) + dim(∂(g2))?

3 Assume g1, . . . , gn algebraically independent polynomials
does

∏n
i=1 gi contain a monomial with Ω(n) many variables?

4 If g1 has a monomial with t di�erent variables, how small can the
maximal support of a monomial in g1 · g2 be?

Example: (x2 + xy + y2)(x − y) = x3 − y3
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More Open Problems

More Problems
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More Open Problems

Questions

U: Bound sparsity of non-cyclotomic factors of univariate sparse polys

U: Lower bound ∥f 2∥0 in terms of ∥f ∥0 [SZ09, CD91]:

∀. Ω(log ∥f ∥0) ≤ ∥f 2∥0 ≤ ∃. (∥f ∥0)12/13

M: Find all sparse factors of a sparse f in deterministic subexp∗ time
* Faster than PIT for bounded depth circuits

Find bounded ind-deg sparse factors in quasi-poly time [DST24]
Find a multilinear factors of a sparse polynomial in deterministic
polynomial time [Vol15]

M: Polynomial time factorization of f =
∏m

i=1 g
ei
i for sparse gi

Open even if m = 2 or if gi are of bounded degree [DST24]

M: What is the bounded depth complexity of factors? degi (f ) = O(1), or
small degree factors ⇒ depth is = O(1) [DSY10, Oli16, CKS19]
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More Open Problems
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More Open Problems
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More Open Problems
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