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Talk outline
1. Isomorphism problems: from graphs and matrices to tensors

2. Complexity: Tensor Isomorphism as a unifying problem for some algebraic 
isomorphism problems

3. Algorithms: Exciting progress, but still exponential…

4. Cryptography: Group action based cryptography

5. Conclusion and open problems

Based on joint works with many collaborators, including Josh Grochow, Gábor Ivanyos, 
Markus Bläser, Alexander Rogovskyy, Xiaorui Sun, Kate Stange, Yinan Li, Chuanqi Zhang, 
Antoine Joux, Anand Narayanan…
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* The most famous example is Graph Isomorphism

- Given two graphs, decide if they are the same up to relabelling the vertices

* Isomorphism problems: given two (combinatorial or algebraic) structures, 
whether they are essentially the same
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Isomorphism testing in computer science

* The most famous example is Graph Isomorphism

- Given two graphs, decide if they are the same up to relabelling the vertices
- One of the earliest problems considered in the framework of P and NP
- Motivated permutation group algorithms [Babai, Luks…];
  Classical examples for interactive protocols [Goldwasser—Sipser, Schöning],    
zero-knowledge [Goldreich—Micali—Wigderson]

* Isomorphism problems: given two (combinatorial or algebraic) structures, 
whether they are essentially the same
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Isomorphism testing in computer science

* The most famous example is Graph Isomorphism

- Given two graphs, decide if they are the same up to relabelling the vertices

* Another classical example is Matrix Equivalence

- Given two matrices A and B, decide if A=LBR for invertible matrices L and R
- A basic linear algebra fact: A and B are equivalent iff rank(A)=rank(B)
- Two related notions: matrix similarity (R=L ) and matrix congruence (R=L ) are 
important topics in linear algebra

* Isomorphism problems: given two (combinatorial or algebraic) structures, 
whether they are essentially the same

-
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* A main object of interest in this workshop is tensors, or multiway arrays

From matrices to tensors
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* A main object of interest in this workshop is tensors, or multiway arrays

From matrix equivalence to tensor equivalence

- Note: a matrix is a 2-way array. Matrix equivalence is defined as

∃ L, R
Invertible matrices

A = L BR
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- Note: a matrix is a 2-way array. Matrix equivalence is defined as

From matrix equivalence to tensor isomorphism

7 : row operations
A = L S R : column operations
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* A main object of interest in this workshop is tensors, or multiway arrays
- Note: a matrix is a 2-way array. Matrix equivalence is defined as

- Next step: 3-way arrays. Tensor isomorphism is defined as

From matrix equivalence to tensor isomorphism

∃ L, R
Invertible matrices

A = L BR

E
=

A B



Tensor isomorphism problem

Definition. 

∃ L, R, T
Invertible matrices

Let = (Ai
, .... An) ,

B = /B
,,

"

, Bn) ,
Ai

, Bj : nxnmatrices overF
.

Decide ifI uxn invertible matrices L ,
R

.
T= (tij) ,

S .t
.

Vie[n] . Ai= tijLBjR

E
A

=

L5&
em

R
# = (A1,-

,
An) ,

B = (B
, . . ., Bn)



Some basic facts and relations

* Tensor Iso appears in coding theory (matrix codes) and quantum info (SLOCC 
equivalence between quantum states)



Some basic facts and relations

* The complexity of Tensor Iso depends on the underlying field

- Finite field: in NP ∩ coAM
- Complex number field: AM assuming Generalised Riemann Hypothesis [Koiran] 
  Question: TI over C in AM ∩ coAM?

* Tensor Iso appears in coding theory (matrix codes) and quantum info (SLOCC 
equivalence between quantum states)



Some basic facts and relations

* The following problems are shown to be poly-time reducible to Tensor Iso:
- Graph Iso and Code Equivalence: whether two linear codes are the same up to 
permuting the coordinates. Studied in coding theory since 1980s

Graph Iso Code Eq Tensor Iso

* The complexity of Tensor Iso depends on the underlying field

- Finite field: in NP ∩ coAM
- Complex number field: AM assuming GRH [Koiran] Q: TI over C in AM ∩ coAM?

* Tensor Iso appears in coding theory (matrix codes) and quantum info (SLOCC 
equivalence between quantum states)

[Petrank—Roth] [Grochow—Q]
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2. Complexity: Tensor Isomorphism as a unifying problem for algebraic 
isomorphism problems



Tensor Isomorphism as a new complexity class

Definition. [Grochow-Q.] The Tensor Isomorphism (TI) complexity class consists of 
problems that are poly-time reducible to the tensor isomorphism problem.
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Tensor Isomorphism as a new complexity class

Definition. [Grochow-Q.] The Tensor Isomorphism (TI) complexity class consists of 
problems that are poly-time reducible to the tensor isomorphism problem.

* This is in analogy with the Graph Isomorphism (GI) complexity class

* So far a series of five papers: Tensor Isomorphism I to V, from 2021 to 2025

- III: Also with Zhili Chen, Gang Tang, Chuanqi Zhang
- V: Also with Kate Stange, Xiaorui Sun

* Motivated by complexity considerations, leading to unexpected connections :)



A synopsis of TI series

1. TensorIso captures iso problems for many algebraic structures (TI1)

2. TensorIso acted by different groups leads to connections to quantum 
information, geometry, and number theory (TI3 and TI5)
  - TI3: from GL(n, F) to O/U/Sp
  - TI5: from GL(n, F) to GL(n, R), R a commutative ring

3. TI2 and TI4: more on the technical aspects of complexity
  - TI2: search- and counting-to-decision reductions for Tensor Iso
  - TI4: more efficient reductions



A synopsis of TI series

1. This talk: TensorIso captures iso problems for many algebraic structures (TI1)

2. TensorIso acted by different groups leads to connections to quantum 
information, geometry, and number theory (TI3 and TI5)
  - TI3: from GL(n, F) to O/U/Sp
  - TI5: from GL(n, F) to GL(n, R), R a commutative ring
(There is a recorded talk at IAS on these aspects on YouTube)

3. TI2 and TI4: more on the technical aspects of complexity
  - TI2: search- and counting-to-decision reductions for Tensor Iso
  - TI4: more efficient reductions



Some algebraic isomorphism problems: Group Isomorphism

* Finite group isomorphism: Given two finite groups, decide if they are isomorphic
- Studied in TCS and computational group theory since 1970s

- For two groups of order N, a natural             -time algorithm [Tarjan]
- Verbose version: Cayley tables are given
- Succinct version: generators of matrix groups over finite fields

NlogiN) +O(1)
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Some algebraic isomorphism problems: Group Isomorphism

* Finite group isomorphism: Given two finite groups, decide if they are isomorphic
- Studied in TCS and computational group theory since 1970s

- For two groups of order N, a natural             -time algorithm [Tarjan]
- Verbose version: Cayley tables are given
- Succinct version: generators of matrix groups over finite fields

* Polynomial-time algorithms are known for some groups
- Groups without abelian normal subgroups [Babai—Codenotti—Grochow—Q], Groups with 
abelian Sylow towers [Babai—Q], Quotients of generalised Heisenberg groups [Lewis—Wilson]

* One group class that resisted decades of efforts: 
               p-groups of nilpotency class 2 and exponent p

NlogiN) +O(1)

- A group G , IG1 = 2
, z(G) [ [G

, G] , YgEG , gP = id



Bilinear maps underlying groups
* Group Isomorphism: for p-groups of class 2 and exponent p (odd p), by taking the 
commutator map, we get: 

* Skew-symmetric bilinear map isomorphism: finite-dim vector spaces U, V over GF(p) 

Input: Skew-sym bilinear maps f, g: UxU →V
Output: “True” if ∃ A in GL(U), B in GL(V), s.t. ∀u, u’ in U, f(A(u), A(u’))=B(g(u, u’))
          “False” otherwise



Bilinear maps underlying groups
* Group Isomorphism: for p-groups of class 2 and exponent p (odd p), by taking the 
commutator map, we get: 

* Skew-symmetric bilinear map isomorphism: finite-dim vector spaces U, V over GF(p) 

Input: Skew-sym bilinear maps f, g: UxU →V
Output: “True” if ∃ A in GL(U), B in GL(V), s.t. ∀u, u’ in U, f(A(u), A(u’))=B(g(u, u’))
          “False” otherwise

* Suppose LEFP . VEFY -
Then f : UxU + V is stored in

algorithms as a 3-way array F
n F

F(i , j , k) = f(ei , ej)p



Bilinear map isometry

* Skew-symmetric bilinear map isomorphism: finite-dim vector spaces U, V over GF(p) 
Input: Skew-sym bilinear maps f, g: UxU →V
Output: “True” if ∃ A in GL(U), B in GL(V), s.t. ∀u, u’ in U, f(A(u), A(u’))=B(g(u, u’))
          “False” otherwise

* Testing if f andg are isomorphic as himaps translates to find AEGL(n , p) ,
Bech(m,p)

m

=E



Algebra isomorphism
* Algebra isomorphism: finite-dim vector space U over a field F 
Input: Bilinear maps f, g: UxU →U
Output: “True” if ∃ A in GL(U) s.t. ∀u, u’ in U, f(A(u), A(u’))=A(g(u, u’))
          “False” otherwise



* Imposing conditions (alternating, associativity, Jacobi) give associative or 
Lie algebras

Algebra isomorphism

* Studied in theoretical computer science and computer algebra [Agrawal—
Saxena, Saxena—Kayal, Grochow, Brooksbank—Wilson]

* Algebra isomorphism: finite-dim vector space U over a field F 
Input: Bilinear maps f, g: UxU →U
Output: “True” if ∃ A in GL(U) s.t. ∀u, u’ in U, f(A(u), A(u’))=A(g(u, u’))
          “False” otherwise



Algebra isomorphism
* Algebra isomorphism: finite-dim vector space U over a field F 
Input: Bilinear maps f, g: UxU →U
Output: “True” if ∃ A in GL(U) s.t. ∀u, u’ in U, f(A(u), A(u’))=A(g(u, u’))
          “False” otherwise

* Suppose V = FC Representf by its structure constants

un
F(i

, j .
k) = f(ei , ej)m

n F



Algebra isomorphism
* Algebra isomorphism: finite-dim vector space U over a field F 
Input: Bilinear maps f, g: UxU →U
Output: “True” if ∃ A in GL(U) s.t. ∀u, u’ in U, f(A(u), A(u’))=A(g(u, u’))
          “False” otherwise

* Testing if f and g are isomorphic as algebrac translates to find AEGLIn , #) s
.

t.

Az
↓

A

A F = E



* Cubic form equivalence:

Cubic form equivalence

Input : cubic forms f. ge F[X1 ,
X2

,
. .

.. Xn]

Output : True if A = (aij) =GL(n.) ,
s .
t

. f(x) , "Xn) =g(Xi,nixi)
False otherwise



* Cubic form equivalence:

Cubic form equivalence

* Studied in multivariate cryptography [Patarin, Bouillaguet—Fouque—Véber, Beullens]
  and complexity theory [Agrawal—Saxena]
  - Agrawal—Saxena: poly-time equivalence between cubic form iso and algebra iso

Input : cubic forms f. ge F[X1 ,
X2

,
. .

.. Xn]

Output : True if A = (aij) =GL(n.) ,
s .
t

. f(x) , "Xn) =g(Xi,nixi)
False otherwise



* Cubic form equivalence:

Cubic form equivalence

Input : cubic forms f. ge FIX ,
X2

,
. .

.. Xn]

Output : True if A = (aij) =GL(n.) ,
s .
t

. f(x) , "Xn) =g(Xi,nixi)
False otherwise

* Suppose char(#) #2 or 3
. F : F"+ #

.

Let F(u . v , w) = f(u + v+w) - f(u+-) - f(n+w) - f(u+w) + f(u) + f(v) + f(w)

&: #"

x F
* xF" + # is a symmetric trilinear form

U

n

# (i , j ,
k) = Flei , ej , em)

n F



* Cubic form equivalence:

Cubic form equivalence

Input : cubic forms f. ge FIX ,
X2

,
. .

.. Xn]

Output : True if A = (aij) =GL(n.) ,
s .
t

. f(x) , "Xn) =g(Xi,nixi)
False otherwise

* Suppose char(#) #2 or 3. By examining symmetric trilinear forms
we need to find AEGLIn ,

#) s .

t.

At
↓

A

A # = E



A brief recap…

* class-2 exp-p p-group iso:

* Algebra iso:

* Cubic form iso:

* Tensor iso: XB

f
. g : HxVXW-F Au E

=

E

f, g : UxH + V
=

Az
↓

A

A+ E = E
f , g : n xn + U

A7y

f
, g : u xux4 + # A F = E



Theorem. [Futorny-Grochow-Sergeichuk, TI1] These problems are TI-complete:
* Succinct Group Isomorphism with p-groups of class 2 and exponent p
* Polynomial Isomorphism (for cubic forms) 
* Algebra Isomorphism (for associative or Lie algebras)

TI-complete problems



Theorem. [Futorny-Grochow-Sergeichuk, TI1] These problems are TI-complete:
* Succinct Group Isomorphism with p-groups of class 2 and exponent p
* Polynomial Isomorphism (for cubic forms) 
* Algebra Isomorphism (for associative or Lie algebras)

Graph Iso Code Eq Tensor Iso

Succinct p-Group Iso

Polynomial Iso

Algebra Iso

Poly-time eq
Verbose 
Group Iso

TI-complete problems

=p E *
P



Theorem. [Futorny-Grochow-Sergeichuk, TI1] These problems are TI-complete:
* Succinct Group Isomorphism with p-groups of class 2 and exponent p
* Polynomial Isomorphism (for cubic forms) 
* Algebra Isomorphism (for associative or Lie algebras)

TI-complete problems

Note. Subject to appropriate underlying fields.
- p-Group Iso is over GF(p)
- Cubic form iso: field characteristic not 2 or 3

Technical version: U, V, W are vector spaces. The orbit structures of 
                U⊗V⊗W, U⊗U⊗V, U⊗U*⊗V, U⊗U⊗U, U⊗U⊗U*
  are equivalent under the containment relation in the sense of [Gelfand—
Panomerav] (even assuming natural symmetries and certain algebraic conditions)



* Recall that matrix (2-tensor) equivalence is in P

* As we will see, 3-Tensor Iso is much harder 

* How about 4-Tensor Iso, or d-Tensor Iso in general? 

d-Tensor Iso and 3-Tensor Iso

- = (ijke) and B = (bijke) are the same up to invertible matrice L
,
R

,
T

.
S.



Theorem. [Grochow-Q] For d>3, d-Tensor Iso poly-time reduces to 3-Tensor Iso

* This is like: 2SAT is in P, but d-SAT reduces to 3-SAT which is NP-complete

* Recall that matrix (2-tensor) equivalence is in P

* As we will see, 3-Tensor Iso is much harder 

* How about 4-Tensor Iso, or d-Tensor Iso in general? 

d-Tensor Iso and 3-Tensor Iso

- = (ijke) and B = (bijke) are the same up to invertible matrice L
,
R

,
T

.
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* Unlike Graph Isomorphism, tensor/group/algebra/polynomial isomorphism problems 
seem to be much more difficult

Algorithms for Tensor Isomorphism
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Average-case
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* Unlike Graph Isomorphism, tensor/group/algebra/polynomial isomorphism problems 
seem to be much more difficult

Algorithms for Tensor Isomorphism

Graphs withn vertices nxnxn tensors over #q

Brute-force n ! qnz

Worst-case nOllogin) [Babai] gin') [Ivanyos - Mendon

- Q-Sun-Zhang]

Average-case O (n2) [Babai-Erdos-Selkow] gO(n) [Brooksbank - Li

-Q-Wilson]

Practical n = 18 [McKay-Piperno) gin [Narayanan - Q
- Tang]

↳ Not effective for n = 20
, % = 1/



On worst-case algorithms for TensorIso

Theorem. [Ivanyos-Mendoza-Q-Sun-Zhang] There exists a          -time algorithm 
to test isomorphism of nxnxn tensors over GF(q) for odd q.
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Theorem. [Ivanyos-Mendoza-Q-Sun-Zhang] There exists a          -time algorithm 
to test isomorphism of nxnxn tensors over GF(q) for odd q.

* Improving from the          -time algorithm by Sun (the first breakthrough!) 

* A wonderful combination of probabilistic methods, maximum versus non-commutative 
rank of matrix spaces, and classification of simple algebras with involutions!
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On worst-case algorithms for TensorIso

Theorem. [Ivanyos-Mendoza-Q-Sun-Zhang] There exists a          -time algorithm 
to test isomorphism of nxnxn tensors over GF(q) for odd q.

* Improving from the          -time algorithm by Sun (the first breakthrough!) 

* Using linear-length reductions in [TI4], we have:

Corollary. [Ivanyos-Mendoza-Q-Sun-Zhang] For odd p, there is an              -time 
algorithm to test isomorphism of p-groups of class 2, exponent p, and order N.

gln"

goin

NITEgN)



On worst-case algorithms for TensorIso

Theorem. [Ivanyos-Mendoza-Q-Sun-Zhang] There exists a          -time algorithm 
to test isomorphism of nxnxn tensors over GF(q) for odd q.

* Improving from the          -time algorithm by Sun (the first breakthrough!) 

* Using linear-length reductions in [TI4], we have:

Corollary. [Ivanyos-Mendoza-Q-Sun-Zhang] For odd p, there is an              -time 
algorithm to test isomorphism of p-groups of class 2, exponent p, and order N.

* Again, the first breakthrough was by Sun (                 -time)
  - Breaking the decades-long barrier of 

gln"

goin

NITEgN)

NO(llog N(516)
N(ogN + O(k)
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2. Complexity: Tensor Isomorphism as a unifying problem

3. Algorithms: Exciting progress, but still exponential…

4. Cryptography: Group action based cryptography
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- Seems unlikely, not just because of Babai, but also McKay (Nauty, ~1980)
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Isomorphism problems in cryptography

* Discrete logarithm: S=Cp\{id}, G=Aut(Cp) ≅  
  Given g and h in S, compute a in G such that

* GraphIso: S is the set of subsets of       , G=Sym([n])
  Given E and F in S, compute g in G sending E to F (as sets)

* Group action framework: let f:GxS→S be a group action of G on S

- Suppose group operations, actions, and sampling from G and S, are efficient
- Orbit problem: given s and t in S, are they in the same orbit?
- Search version: given s and t in the same orbit, compute g in G sending s to t

* TensorIso: S is the set of trilinear forms UxVxW→F, G=GL(U)xGL(V)xGL(W)

#

ga = h

(in)



Isomorphism problems in cryptography

* Group action framework: let f:GxS→S be a group action of G on S
- Search orbit: given s and t in the same orbit, compute g in G sending s to t

Definition. [Brassard—Yung] A group action f is one-way, if for some s in S, 
fs:G→S by fs(g):=f(g, s) is a one-way function.



Isomorphism problems in cryptography

* Group action framework: let f:GxS→S be a group action of G on S
- Search orbit: given s and t in the same orbit, compute g in G sending s to t

Definition. [Brassard—Yung] A group action f is one-way, if for some s in S, 
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Definition. [Ji-Q-Song-Yun] Let G be a group acting on a set S.
- Random distribution: (s, t), where s and t are randomly sampled from S.
- Pseudorandom distribution: (s, t), where s is randomly sampled from S, and t is 
randomly sampled from the orbit of s
This action is pseudorandom, if no poly-time algorithms distinguish these two.

* To recover decisional Deffie—Hellman, consider 
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Isomorphism problems in cryptography

Question. Candidates for one-way or pseudorandom group actions?

* Cryptographic applications of cryptographic group actions: bit commitment 
[Brassard—Yung], digital signature [Goldreich—Micali—Wigderson, Fiat—Shamir], 
quantum public-key encryption [Hhan—Morimae—Yamakawa]…
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[Brassard—Yung], digital signature [Goldreich—Micali—Wigderson, Fiat—Shamir], 
quantum public-key encryption [Hhan—Morimae—Yamakawa]…

* TensorIso seems to be difficult in practice and also inherits the resistance to 
quantum “standard techniques”
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- Pseudorandom distribution: A random nxnxn tensor A, and another B from 
the same orbit of A

* To distinguish these two distributions, it is enough to find a useful invariant

- Efficiently computable
- Distinguishing enough: two random tensors have different values

* TI-complete problems are also eligible [Tang-Duong-Joux-Plantard-Q-Susilo]
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* One desirable feature of digital signature schemes is to have the so-called 
Quantum Random Oracle Model (QROM) security

Crypto as a nice motivation for math questions

* For G acting on S, a digital signature design has QROM security, if the 
stabiliser group of a random s is trivial

Theorem. [Bläser—Li—Q—Rogovskyy] When n is large enough, a random nxnxn tensor 
over GF(q) has the trivial stabiliser group.

* As a consequence, we could improve the estimation on the number of isomorphism 
classes of p-groups of class 2 and exponent p by Higman from the 1960’s



Summary
1. Tensor Isomorphism problem

2. Complexity: Tensor Isomorphism as a unifying problem for some 
algebraic isomorphism problems

3. Algorithms: Exciting progress, but still exponential…

4. Cryptography: Group action based cryptography
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Many questions remain…

* Symmetric trilinear forms are alternating trilinear 
forms are irreducible reps of GL(n, C)

- Orbit problems for these actions are TI-complete
- How about the other one?

* Tensor Iso over GL(n, Q): is this decidable?
* Lysikov and Walter introduced a complexity class Tensor Orbit Closure Intersection
  - The relation between TOCI and TI?

* 2x2x2 TensorIso over GL(2, Z) is in BQP [Bhargava, Hallgren]
  - How about 3x3x3? (Only known to be decidable)

* Is Tensor Iso group action pseudorandom?
  - A possible approach via hyperdeterminant [Joux—Narayanan]

* nxnx2 TensorIso over GF(q): polynomial-time?
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Thank you!

And questions please :)


