Computational complexity of representation theoretic multiplicities and characters

Greta Panova

University of Southern California

Workshop on Algebraic Complexity Theory, Bochum, April 1 2025

Integer partitions and Young diagrams:

$$\lambda = (\lambda_1, \lambda_2, \ldots), \ \lambda_1 \ge \lambda_2 \ge \cdots \ge 0, \ \lambda_1 + \lambda_2 + \cdots = n.$$
 $\lambda = (2, 2, 1)$

Integer partitions and Young diagrams:

$$\lambda = (\lambda_1, \lambda_2, \ldots), \ \lambda_1 \ge \lambda_2 \ge \cdots \ge 0, \ \lambda_1 + \lambda_2 + \cdots = n.$$
 $\lambda = (2, 2, 1)$

Standard Young Tableaux of shape λ :

Integer partitions and Young diagrams:

$$\lambda = (\lambda_1, \lambda_2, \ldots), \ \lambda_1 \geq \lambda_2 \geq \cdots \geq 0, \ \lambda_1 + \lambda_2 + \cdots = n.$$
 $\lambda = (2, 2, 1)$

Standard Young Tableaux of shape λ :

Integer partitions and Young diagrams:

$$\lambda = (\lambda_1, \lambda_2, \ldots), \ \lambda_1 \ge \lambda_2 \ge \cdots \ge 0, \ \lambda_1 + \lambda_2 + \cdots = n.$$
 $\lambda = (2, 2, 1)$

Standard Young Tableaux of shape λ :

Semi-Standard Young Tableaux of shape λ :

Integer partitions and Young diagrams:

$$\lambda = (\lambda_1, \lambda_2, \ldots), \ \lambda_1 \ge \lambda_2 \ge \cdots \ge 0, \ \lambda_1 + \lambda_2 + \cdots = n.$$
 $\lambda = (2, 2, 1)$

Standard Young Tableaux of shape λ :

Semi-Standard Young Tableaux of shape λ :

Symmetric group S_n – permutations under composition:

$$\pi: [1, 2, \ldots, n] \xrightarrow{\sim} [1, 2, \ldots, n], \qquad \pi \sigma = \pi(\sigma)$$

Symmetric group S_n – permutations under composition:

$$\pi: [1, 2, \ldots, n] \xrightarrow{\sim} [1, 2, \ldots, n], \qquad \pi \sigma = \pi(\sigma)$$

Representations: homomorphism $S_n o GL_N(\mathbb{C})$

Example: if
$$V = \mathbb{C}^3$$
, $\pi \in S_3$, set $\pi(e_i) := e_{\pi_i}$ for $i = 1..3$, so e.g. $231 \rightarrow \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

Symmetric group S_n – permutations under composition:

$$\pi: [1, 2, \ldots, n] \xrightarrow{\sim} [1, 2, \ldots, n], \qquad \pi \sigma = \pi(\sigma)$$

Representations: homomorphism $S_n \to GL_N(\mathbb{C})$

Example: if
$$V=\mathbb{C}^3$$
, $\pi\in S_3$, set $\pi(e_i):=e_{\pi_i}$ for $i=1..3$, so e.g. $231\to \begin{bmatrix} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{bmatrix}$

The irreducible representations of S_n : the Specht modules S_λ

$$V = \underbrace{\mathbb{C}\langle e_1 + e_2 + e_3 \rangle}_{\mathbb{S}_{(3)}} \oplus \underbrace{\mathbb{C}\langle e_1 - e_2, e_2 - e_3 \rangle}_{\mathbb{S}_{(2,1)}}$$

Basis indexed by SYTs of shape λ , so dim $\mathbb{S}_{\lambda} = f^{\lambda} := \#\{T : SYT, \text{ shape } \lambda\}.$

1 2	1 2	1 3	1 3	1 4
3 4	3 5	2 4	2 5	2 5
5	4	5	4	3

Symmetric group S_n – permutations under composition:

$$\pi: [1, 2, \ldots, n] \xrightarrow{\sim} [1, 2, \ldots, n], \qquad \pi \sigma = \pi(\sigma)$$

Representations: homomorphism $S_n \to GL_N(\mathbb{C})$

Example: if
$$V=\mathbb{C}^3$$
, $\pi\in S_3$, set $\pi(e_i):=e_{\pi_i}$ for $i=1..3$, so e.g. $231\to \begin{bmatrix} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{bmatrix}$

The irreducible representations of S_n : the Specht modules S_λ

$$V = \underbrace{\mathbb{C}\langle e_1 + e_2 + e_3 \rangle}_{\mathbb{S}_{(3)}} \oplus \underbrace{\mathbb{C}\langle e_1 - e_2, e_2 - e_3 \rangle}_{\mathbb{S}_{(2,1)}}$$

Basis indexed by SYTs of shape λ , so dim $\mathbb{S}_{\lambda} = f^{\lambda} := \#\{T : SYT, \text{ shape } \lambda\}.$

1	2	1	2	1	3	1	3	1	4	
3	4	3	5	2	4	2	5	2	5	
5		4		5		4		3		

Characters: $\chi^{\lambda}(\alpha) = \chi^{\lambda}(\pi) := \text{Trace } \rho^{\lambda}(\pi)$, for π of cycle type α .

$$\underbrace{\chi^{V}(\pi = 231)}_{=0} = \underbrace{\chi^{(3)}(\pi)}_{=1} + \underbrace{\chi^{(2,1)}(\pi)}_{=-1}$$

Representations of the General Linear group $GL_N(\mathbb{C})$

Irreducible (polynomial) representations of $GL_N(\mathbb{C})$: Weyl modules V_{λ} , indexed by highest weights λ , $\ell(\lambda) \leq N$. Basis indexed by Semi-Standard Young tableaux of shape λ :

 1 1
 1 1
 2 2
 1 1
 1 2
 1 2

 2 2
 3 3
 3 3
 2 3
 2 3
 3 3

Representations of the General Linear group $GL_N(\mathbb{C})$

Irreducible (polynomial) representations of $GL_N(\mathbb C)$: Weyl modules V_λ , indexed by highest weights λ , $\ell(\lambda) \leq N$. Basis indexed by **Semi-Standard Young tableaux** of shape λ :

1 1	1 1	2 2	1 1	1 2	1 2
2 2	3 3	3 3	2 3	2 3	3 3

Characters: Schur functions

$$s_{\lambda}(x_1,\ldots,x_N) = \sum_{T \in SSYT(\lambda)} x^{type(T)}$$

$$s_{(2,2)}(x_1, x_2, x_3) = x_1^2 x_2^2 + x_1^2 x_3^2 + x_2^2 x_3^2 + x_1^2 x_2 x_3 + x_1 x_2^2 x_3 + x_1 x_2 x_3^2$$

Representations of the General Linear group $GL_N(\mathbb{C})$

Irreducible (polynomial) representations of $GL_N(\mathbb C)$: Weyl modules V_λ , indexed by highest weights λ , $\ell(\lambda) \leq N$. Basis indexed by Semi-Standard Young tableaux of shape λ :

1	1	1	1	2	2	1	1	1	2	1	2
2	2	3	3	3	3	2	3	2	3	3	3

Characters: Schur functions

$$s_{\lambda}(x_1,\ldots,x_N) = \sum_{T \in SSYT(\lambda)} x^{type(T)}$$

$$s_{(2,2)}(x_1, x_2, x_3) = x_1^2 x_2^2 + x_1^2 x_3^2 + x_2^2 x_3^2 + x_1^2 x_2 x_3 + x_1 x_2^2 x_3 + x_1 x_2 x_3^2$$

Theorem (Schur-Weyl duality)

Under the joint action of the groups S_n and GL(V), the tensor space decomposes as:

$$V \otimes V \otimes \cdots \otimes V = \sum_{\lambda \vdash n} \mathbb{S}^{\lambda} \otimes V_{\lambda}.$$

Structure constants (multiplicities) I

Tensor product of irreducible *GL* representations:

$$V_{\lambda}\otimes V_{\mu}=\oplus_{
u}V_{
u}^{\oplus c_{\lambda\mu}^{
u}}$$

Littlewood-Richardson coefficients: $c_{\lambda\mu}^{\nu}$

$$V_{(2,1)} \otimes V_{(2,1)} = V_{(4,2)} \oplus V_{(4,1,1)} \oplus V_{(3,3)} \oplus V_{(3,2,1)}^{\oplus 2} \oplus V_{(3,1,1,1)} \oplus V_{(2,2,2)} \oplus V_{(2,2,1,1)}$$

Structure constants (multiplicities) I

Tensor product of irreducible *GL* representations:

$$V_{\lambda}\otimes V_{\mu}=\oplus_{
u}V_{
u}^{\oplus c_{\lambda\mu}^{
u}}$$

Littlewood-Richardson coefficients: $c_{\lambda\mu}^{\nu}$

$$V_{(2,1)} \otimes V_{(2,1)} = V_{(4,2)} \oplus V_{(4,1,1)} \oplus V_{(3,3)} \oplus V_{(3,2,1)}^{\oplus 2} \oplus V_{(3,1,1,1)} \oplus V_{(2,2,2)} \oplus V_{(2,2,1,1)}$$

Theorem (Littlewood-Richardson, stated 1934, proven 1970's)

The coefficient $c_{\lambda\mu}^{\nu}$ is equal to the number of LR tableaux of shape ν/μ and type λ .

(LR tableaux of shape
$$(6,4,3)/(3,1)$$
 and type $(4,3,2).$ $c_{(3,1)(4,3,2)}^{(6,4,3)}=2)$

Structure constants (multiplicities) II

Kronecker coefficients: $g(\lambda, \mu, \nu)$ – multiplicity of \mathbb{S}_{ν} in $\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}$

$$\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu} = \bigoplus_{\nu \vdash n} \mathbb{S}_{\nu}^{\bigoplus g(\lambda, \mu, \nu)}$$

$$\mathbb{S}_{(2,1)} \otimes \mathbb{S}_{(2,1)} = \mathbb{S}_{(3)} \oplus \mathbb{S}_{(2,1)} \oplus \mathbb{S}_{(1,1,1)}$$

Structure constants (multiplicities) II

Kronecker coefficients: $g(\lambda, \mu, \nu)$ – multiplicity of \mathbb{S}_{ν} in $\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu}$

$$\mathbb{S}_{\lambda} \otimes \mathbb{S}_{\mu} = \oplus_{\nu \vdash n} \mathbb{S}_{\nu}^{\oplus g(\lambda, \mu, \nu)}$$

$$\mathbb{S}_{(2,1)}\otimes\mathbb{S}_{(2,1)}=\mathbb{S}_{(3)}\oplus\mathbb{S}_{(2,1)}\oplus\mathbb{S}_{(1,1,1)}$$

Plethysm coefficients: $GL_n \xrightarrow{\rho_{\nu}} GL_m \xrightarrow{\rho_{\mu}} GL_N$: $\rho_{\mu} \circ \rho_{\nu} : GL_n \to GL_N$:

$$\rho_{\mu}(\rho_{\nu}) = \bigoplus_{\lambda} V_{\lambda}^{\oplus \mathsf{a}_{\lambda}(\mu[\nu])}$$

 $a_{\lambda}(d[n])$ – multiplicity of V_{λ} in $Sym^{d}(Sym^{n}V)$ under GL action.

$$\rho_{(2)}[\rho_{(2)}] \simeq V_{(4)} \oplus V_{(2,2)}$$

[Murnaghan, 1938]: $c_{\mu\nu}^{\lambda}=g\left((N-|\lambda|,\lambda),(N-|\mu|,\mu),(N-|\nu|,\nu)\right)$ for $|\lambda|=|\mu|+|\nu|$ and N-large.

[Murnaghan, 1938]:
$$c_{\mu\nu}^{\lambda}=g\left((N-|\lambda|,\lambda),(N-|\mu|,\mu),(N-|\nu|,\nu)\right)$$
 for $|\lambda|=|\mu|+|\nu|$ and N -large.

Problem (Murnaghan 1938.. Lascoux, Garsia-Remmel 1980s... Stanley 2000)

Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda, \mu, \nu}$, s.t. $g(\lambda, \mu, \nu) = \#\mathcal{O}_{\lambda, \mu, \nu}$.

Alternatively: Is Compute Kron in #P?

[Murnaghan, 1938]: $c_{\mu\nu}^{\lambda}=g\left((N-|\lambda|,\lambda),(N-|\mu|,\mu),(N-|\nu|,\nu)\right)$ for $|\lambda|=|\mu|+|\nu|$ and N-large.

Problem (Murnaghan 1938.. Lascoux, Garsia-Remmel 1980s... Stanley 2000)

Find a positive combinatorial interpretation for $g(\lambda,\mu,\nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda,\mu,\nu}$, s.t. $g(\lambda,\mu,\nu)=\#\mathcal{O}_{\lambda,\mu,\nu}$.

Alternatively: Is Compute Kron in #P?

Combinatorial formulas for $g(\lambda, \mu, \nu)$:

- Two two-row partitions [Remmel-Whitehead, 1994; Blasiak-Mulmuley-Sohoni,2015];
- One two-row and other restrctions [Ballantine-Orellana, 2006]
- One hook $\nu = (n k, 1^k)$ [Blasiak 2012, Blasiak-Liu 2014]
- Other special cases [Bessenrodt-Bowman, Colmenarejo-Rosas, Garsia, Goupil, Ikenmeyer-Mulmuley-Walter, Pak-Panova, Tewari, Vallejo, Chenchen Zhao].

[Murnaghan, 1938]: $c_{\mu\nu}^{\lambda}=g\left((N-|\lambda|,\lambda),(N-|\mu|,\mu),(N-|\nu|,\nu)\right)$ for $|\lambda|=|\mu|+|\nu|$ and N-large.

Problem (Murnaghan 1938.. Lascoux, Garsia-Remmel 1980s... Stanley 2000)

Find a positive combinatorial interpretation for $g(\lambda,\mu,\nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda,\mu,\nu}$, s.t. $g(\lambda,\mu,\nu)=\#\mathcal{O}_{\lambda,\mu,\nu}$.

Alternatively: Is COMPUTEKRON in #P?

Combinatorial formulas for $g(\lambda, \mu, \nu)$:

- Two two-row partitions [Remmel–Whitehead, 1994; Blasiak–Mulmuley–Sohoni,2015];
- One two-row and other restrctions [Ballantine-Orellana, 2006]
- One hook $\nu = (n k, 1^k)$ [Blasiak 2012, Blasiak-Liu 2014]
- Other special cases [Bessenrodt-Bowman, Colmenarejo-Rosas, Garsia, Goupil, Ikenmeyer-Mulmuley-Walter, Pak-Panova, Tewari, Vallejo, Chenchen Zhao].

Problem (Stanley 2000)

Find a positive combinatorial interpretation for $a_{\lambda}(d[n])$.

Alternatively, is COMPUTEPLETH in #P.

[Murnaghan, 1938]: $c_{\mu\nu}^{\lambda}=g\left((N-|\lambda|,\lambda),(N-|\mu|,\mu),(N-|\nu|,\nu)\right)$ for $|\lambda|=|\mu|+|\nu|$ and N-large.

Problem (Murnaghan 1938.. Lascoux, Garsia-Remmel 1980s... Stanley 2000)

Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $\mathcal{O}_{\lambda, \mu, \nu}$, s.t. $g(\lambda, \mu, \nu) = \#\mathcal{O}_{\lambda, \mu, \nu}$.

Alternatively: Is COMPUTEKRON in #P?

Combinatorial formulas for $g(\lambda, \mu, \nu)$:

- Two two-row partitions [Remmel-Whitehead, 1994; Blasiak-Mulmuley-Sohoni,2015];
- One two-row and other restrctions [Ballantine-Orellana, 2006]
- One hook $\nu=(n-k,1^k)$ [Blasiak 2012, Blasiak-Liu 2014]
- Other special cases [Bessenrodt-Bowman, Colmenarejo-Rosas, Garsia, Goupil, Ikenmeyer-Mulmuley-Walter, Pak-Panova, Tewari, Vallejo, Chenchen Zhao].

Problem (Stanley 2000)

Find a positive combinatorial interpretation for $a_{\lambda}(d[n])$.

Alternatively, is ComputePleth in #P.

VP vs VNP: determinant vs permanent

$$\mathsf{det}_n := \sum_{\sigma \in S_n} \mathsf{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma(i)} \qquad \mathsf{per}_m := \sum_{\sigma \in S_m} \prod_{i=1}^m x_{i,\sigma(i)}$$

VP vs VNP: determinant vs permanent

$$\mathsf{det}_n := \sum_{\sigma \in S_n} \mathsf{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma(i)} \qquad \mathsf{per}_m := \sum_{\sigma \in S_m} \prod_{i=1}^m x_{i,\sigma(i)}$$

Conjecture [Valiant'78, $VP \neq VNP$]:

The (normalized) permanent $x_{11}^{n-m} \operatorname{per}_m \neq \operatorname{det}_n[A\mathbf{x}^T]$ for $n = \operatorname{poly}(m)$.

VP vs VNP: determinant vs permanent

$$\mathsf{det}_n := \sum_{\sigma \in S_n} \mathsf{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma(i)} \qquad \mathsf{per}_m := \sum_{\sigma \in S_m} \prod_{i=1}^m x_{i,\sigma(i)}$$

Conjecture [Valiant'78, $VP \neq VNP$]:

The (normalized) permanent $x_{11}^{n-m} \operatorname{per}_m \neq \operatorname{det}_n[A\mathbf{x}^T]$ for $n = \operatorname{poly}(m)$.

$$x_{11}^{n-m}\mathrm{per}_m = \mathsf{det}_n[A\mathbf{x}^T] \Longrightarrow \overline{\mathit{GL}_{n^2}} x_{11}^{n-m}\mathrm{per}_m \subset \overline{\mathit{GL}_{n^2}} \mathsf{det}_n$$

VP vs VNP: determinant vs permanent

$$\mathsf{det}_n := \sum_{\sigma \in S_n} \mathsf{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma(i)} \qquad \mathsf{per}_m := \sum_{\sigma \in S_m} \prod_{i=1}^m x_{i,\sigma(i)}$$

Conjecture [Valiant'78, VP ≠ VNP]:

The (normalized) permanent $x_{11}^{n-m} \operatorname{per}_m \neq \operatorname{det}_n[Ax^T]$ for $n = \operatorname{poly}(m)$.

$$x_{11}^{n-m} \operatorname{per}_m = \operatorname{det}_n[A\mathbf{x}^T] \Longrightarrow \overline{GL_{n^2} x_{11}^{n-m} \operatorname{per}_m} \subset \overline{GL_{n^2} \operatorname{det}_n}$$

GCT (Mulmuley and Sohoni):

Show that $\mathbb{C}[\overline{GL_{n^2}\mathrm{det}_n}]_d \twoheadrightarrow \mathbb{C}[\overline{GL_{n^2}\mathrm{per}_m^n}]_d$ is impossible for n = poly(m).

VP vs VNP: determinant vs permanent

$$\mathsf{det}_n := \sum_{\sigma \in S_n} \mathsf{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma(i)} \qquad \mathsf{per}_m := \sum_{\sigma \in S_m} \prod_{i=1}^m x_{i,\sigma(i)}$$

Conjecture [Valiant'78, VP ≠ VNP]:

The (normalized) permanent $x_{11}^{n-m} \operatorname{per}_m \neq \operatorname{det}_n[Ax^T]$ for $n = \operatorname{poly}(m)$.

$$x_{11}^{n-m}\mathrm{per}_m = \mathsf{det}_n[A\mathbf{x}^T] \Longrightarrow \overline{GL_{n^2}x_{11}^{n-m}\mathrm{per}_m} \subset \overline{GL_{n^2}\mathsf{det}_n}$$

GCT (Mulmuley and Sohoni):

Show that $\mathbb{C}[\overline{GL_{n^2}\det_n}]_d \twoheadrightarrow \mathbb{C}[\overline{GL_{n^2}\mathrm{per}_m^n}]_d$ is impossible for n = poly(m).

$$\bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \delta_{\lambda,d,n}} \simeq \mathbb{C}[\overline{\mathit{GL}}_{n^2} \mathsf{det}_{n}]_{d} \quad \overset{?}{\twoheadrightarrow} \quad \mathbb{C}[\overline{\mathit{GL}}_{n^2} \mathrm{per}_{m}^{n}]_{d} \simeq \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \gamma_{\lambda,d,n,m}},$$

VP vs VNP: determinant vs permanent

$$\mathsf{det}_n := \sum_{\sigma \in S_n} \mathsf{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma(i)} \qquad \mathsf{per}_m := \sum_{\sigma \in S_m} \prod_{i=1}^m x_{i,\sigma(i)}$$

Conjecture [Valiant'78, VP ≠ VNP]:

The (normalized) permanent $x_{11}^{n-m} \operatorname{per}_m \neq \operatorname{det}_n[Ax^T]$ for $n = \operatorname{poly}(m)$.

$$x_{11}^{n-m}\mathrm{per}_m = \mathsf{det}_n[\mathsf{Ax}^\mathsf{T}] \Longrightarrow \overline{\mathsf{GL}_{n^2} x_{11}^{n-m}\mathrm{per}_m} \subset \overline{\mathsf{GL}_{n^2} \mathsf{det}_n}$$

GCT (Mulmuley and Sohoni):

Show that $\mathbb{C}[\overline{GL_{n^2}\det_n}]_d \to \mathbb{C}[\overline{GL_{n^2}\mathrm{per}_m^n}]_d$ is impossible for n = poly(m).

$$\bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \delta_{\lambda,d,n}} \simeq \mathbb{C}[\overline{\mathit{GL}_{n^2}} \mathsf{det}_n]_d \ \ \overset{?}{\twoheadrightarrow} \ \ \mathbb{C}[\overline{\mathit{GL}_{n^2}} \mathsf{per}_m^n]_d \simeq \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \gamma_{\lambda,d,n,m}},$$

Obstructions λ : if $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$ for n > poly(m), then $\stackrel{no}{\twoheadrightarrow} \Longrightarrow \mathsf{VP} \neq \mathsf{VNP}$.

VP vs VNP: determinant vs permanent

$$\mathsf{det}_n := \sum_{\sigma \in S_n} \mathsf{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma(i)} \qquad \mathsf{per}_m := \sum_{\sigma \in S_m} \prod_{i=1}^m x_{i,\sigma(i)}$$

Conjecture [Valiant'78, VP ≠ VNP]:

The (normalized) permanent $x_{11}^{n-m} \operatorname{per}_m \neq \operatorname{det}_n[Ax^T]$ for $n = \operatorname{poly}(m)$.

$$x_{11}^{n-m}\mathrm{per}_m = \mathsf{det}_n[\mathsf{Ax}^\mathsf{T}] \Longrightarrow \overline{\mathsf{GL}_{n^2} x_{11}^{n-m}\mathrm{per}_m} \subset \overline{\mathsf{GL}_{n^2} \mathsf{det}_n}$$

GCT (Mulmuley and Sohoni):

Show that $\mathbb{C}[\overline{GL_{n^2}\det_n}]_d \to \mathbb{C}[\overline{GL_{n^2}\mathrm{per}_m^n}]_d$ is impossible for n = poly(m).

$$\bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \delta_{\lambda,d,n}} \simeq \mathbb{C}[\overline{\mathit{GL}}_{n^2} \mathsf{det}_n]_d \ \ \overset{?}{\twoheadrightarrow} \ \ \mathbb{C}[\overline{\mathit{GL}}_{n^2} \mathrm{per}_m^n]_d \simeq \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \gamma_{\lambda,d,n,m}},$$

Obstructions λ : if $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$ for n > poly(m), then $\stackrel{no}{\twoheadrightarrow} \Longrightarrow \mathsf{VP} \neq \mathsf{VNP}$. If also $\delta_{\lambda,d,n} = 0$, then λ is an **occurrence obstruction**.

Conjecture (Mulmuley and Sohoni)

There exist occurrence obstructions that show n > poly(m).

VP vs VNP: determinant vs permanent

$$\mathsf{det}_n := \sum_{\sigma \in S_n} \mathsf{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma(i)} \qquad \mathsf{per}_m := \sum_{\sigma \in S_m} \prod_{i=1}^m x_{i,\sigma(i)}$$

Conjecture [Valiant'78, VP ≠ VNP]:

The (normalized) permanent $x_{11}^{n-m} \operatorname{per}_m \neq \operatorname{det}_n[Ax^T]$ for $n = \operatorname{poly}(m)$.

$$x_{11}^{n-m}\mathrm{per}_m = \mathsf{det}_n[\mathsf{Ax}^\mathsf{T}] \Longrightarrow \overline{\mathsf{GL}_{n^2} x_{11}^{n-m}\mathrm{per}_m} \subset \overline{\mathsf{GL}_{n^2} \mathsf{det}_n}$$

GCT (Mulmuley and Sohoni):

Show that $\mathbb{C}[\overline{GL_{n^2}\det_n}]_d \twoheadrightarrow \mathbb{C}[\overline{GL_{n^2}\mathrm{per}_m^n}]_d$ is impossible for n = poly(m).

$$\bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \delta_{\lambda,d,n}} \simeq \mathbb{C}[\overline{\mathit{GL}}_{n^2} \underline{\mathsf{det}}_n]_d \ \xrightarrow{?} \ \mathbb{C}[\overline{\mathit{GL}}_{n^2} \mathrm{per}_m^n]_d \simeq \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \gamma_{\lambda,d,n,m}},$$

Obstructions λ : if $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$ for n > poly(m), then $\stackrel{no}{\twoheadrightarrow} \Longrightarrow \mathsf{VP} \neq \mathsf{VNP}$. If also $\delta_{\lambda,d,n} = 0$, then λ is an **occurrence obstruction**.

Conjecture (Mulmuley and Sohoni)

There exist occurrence obstructions that show n > poly(m).

Theorem (Bürgisser-Ikenmeyer-P)

There are no such occurrence obstructions for $n > m^{25}$.

Kronecker coefficients and GCT

$$\mathbb{C}[\overline{\mathit{GL}_{n^2}\mathsf{det}_n}]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{\mathit{GL}_{n^2}\mathrm{per}_m^n}]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \gamma_{\lambda,d,n,m}},$$

Obstructions λ : if $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$ for $n > poly(m) \Longrightarrow VP \neq VNP$.

$$\delta_{\lambda,d,n} \leq g(\lambda, n^d, n^d)$$
 $\gamma_{\lambda,d,n,m} \leq a_{\lambda}(d[n])$

Conjecture (GCT, Mulmuley and Sohoni)

There exist λ , s.t. $g(\lambda, n^d, n^d) = 0$ (so $mult_{\lambda} \mathbb{C}[GL_{n^2} det_n] = 0$) and $\gamma_{\lambda, d, n, m} > 0$ for some n > poly(m).

Kronecker coefficients and GCT

$$\mathbb{C}[\overline{\mathit{GL}}_{n^2}\mathrm{det}_n]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{\mathit{GL}}_{n^2}\mathrm{per}_m^n]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \gamma_{\lambda,d,n,m}},$$

Obstructions λ : if $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$ for $n > poly(m) \Longrightarrow VP \neq VNP$.

$$\delta_{\lambda,d,n} \leq g(\lambda, n^d, n^d)$$
 $\gamma_{\lambda,d,n,m} \leq a_{\lambda}(d[n])$

Conjecture (GCT, Mulmuley and Sohoni)

There exist λ , s.t. $g(\lambda, n^d, n^d) = 0$ (so $mult_{\lambda}\mathbb{C}[GL_{n^2}det_n] = 0$) and $\gamma_{\lambda,d,n,m} > 0$ for some n > poly(m).

Theorem (Ikenmeyer-P)

Let
$$n>3m^4$$
, $\lambda \vdash nd$. If $g(\lambda, n^d, n^d)=0$, then $\operatorname{mult}_{\lambda}(\mathbb{C}[\overline{\operatorname{GL}_{n^2}\operatorname{per}_m^n}])=0$.

Theorem (Ikenmeyer-P)

If $\ell(\lambda) \le m^2$, $\lambda_1 \ge nd-md$, $d>3m^3$, and $n>3m^4$, then $g(\lambda,n\times d,n\times d)>0$, except for 6 special cases.

Kronecker coefficients and GCT

$$\mathbb{C}[\overline{\mathit{GL}}_{n^2}\mathrm{det}_n]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \delta_{\lambda,d,n}}, \qquad \mathbb{C}[\overline{\mathit{GL}}_{n^2}\mathrm{per}_m^n]_d \simeq \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \gamma_{\lambda,d,n,m}},$$

Obstructions λ : if $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$ for $n > poly(m) \Longrightarrow VP \neq VNP$.

$$\delta_{\lambda,d,n} \leq g(\lambda, n^d, n^d)$$
 $\gamma_{\lambda,d,n,m} \leq a_{\lambda}(d[n])$

Conjecture (GCT, Mulmuley and Sohoni)

There exist λ , s.t. $g(\lambda, n^d, n^d) = 0$ (so $mult_{\lambda}\mathbb{C}[GL_{n^2}det_n] = 0$) and $\gamma_{\lambda,d,n,m} > 0$ for some n > poly(m).

Theorem (Ikenmeyer-P)

Let
$$n>3m^4$$
, $\lambda \vdash nd$. If $g(\lambda, n^d, n^d)=0$, then $\operatorname{mult}_{\lambda}(\mathbb{C}[\overline{\operatorname{GL}_{n^2}\operatorname{per}_m^n}])=0$.

Theorem (Ikenmeyer-P)

If $\ell(\lambda) \le m^2$, $\lambda_1 \ge nd - md$, $d > 3m^3$, and $n > 3m^4$, then $g(\lambda, n \times d, n \times d) > 0$, except for 6 special cases.

Theorem (Ikenmeyer-P)

For every partition ρ , let $n \ge |\rho|$, $d \ge 2$, $\lambda := (nd - |\rho|, \rho)$. Then $g(\lambda, n^d, n^d) \ge a_{\lambda}(d[n])$.

Complexity of Computing Multiplicities I

Littlewood-Richardson coefficients: $c_{\mu\nu}^{\lambda}=\operatorname{mult}_{\lambda}V_{\mu}\otimes V_{\nu}=\#LR-\mathit{tableaux}$

$$c_{(4,3,2)(3,1)}^{(6,4,3)} = 2$$
:

Complexity of Computing Multiplicities I

Littlewood-Richardson coefficients: $c_{\mu\nu}^{\lambda} = \operatorname{mult}_{\lambda} V_{\mu} \otimes V_{\nu} = \#LR - tableaux$

$$c_{(4,3,2)(3,1)}^{(6,4,3)} = 2$$
:

LR-Pos:

Input: λ, μ, ν

Output: Is $c_{\mu\nu}^{\lambda}>0$?

ComputeLR:

Input: λ, μ, ν

Output: Value of $c_{\mu\nu}^{\lambda}$.

Complexity of Computing Multiplicities I

Littlewood-Richardson coefficients: $c_{\mu\nu}^{\lambda} = \operatorname{mult}_{\lambda} V_{\mu} \otimes V_{\nu} = \#LR - tableaux$

$$c_{(4,3,2)(3,1)}^{(6,4,3)} = 2$$

LR-Pos:

Input: λ, μ, ν Output: Is $c_{\mu\nu}^{\lambda} > 0$? ComputeLR:

Input: λ, μ, ν Output: Value of $c_{\mu\nu}^{\lambda}$.

Theorem (cor. to Knutson-Tao'01)

LR-Pos is in P (even when the input is in binary).

Littlewood-Richardson coefficients: $c_{\mu\nu}^{\lambda} = \operatorname{mult}_{\lambda} V_{\mu} \otimes V_{\nu} = \#LR - tableaux$

$$c_{(4,3,2)(3,1)}^{(6,4,3)} = 2$$
:

LR-Pos:

Input: λ, μ, ν Output: Is $c_{\mu\nu}^{\lambda} > 0$? ComputeLR: Input: λ, μ, ν

Output: Value of $c_{\mu\nu}^{\lambda}$.

Theorem (cor. to Knutson-Tao'01)

LR-Pos is in P (even when the input is in binary).

Theorem (Narayanan'05)

ComputeLR is #P-complete when the input is in binary (i.e. input size is $O(\ell(\lambda)\log(\lambda_1))$).

Littlewood-Richardson coefficients: $c_{\mu\nu}^{\lambda} = \operatorname{mult}_{\lambda} V_{\mu} \otimes V_{\nu} = \#LR - tableaux$

$$c_{(4,3,2)(3,1)}^{(6,4,3)} = 2$$
:

LR-Pos:

Input: λ, μ, ν Output: Is $c_{\mu\nu}^{\lambda} > 0$? ComputeLR:

Input: λ, μ, ν Output: Value of $c_{\mu\nu}^{\lambda}$.

Theorem (cor. to Knutson-Tao'01)

LR-Pos is in P (even when the input is in binary).

Theorem (Narayanan'05)

ComputeLR is #P-complete when the input is in binary (i.e. input size is $O(\ell(\lambda)\log(\lambda_1))$).

Conjecture (Pak-Panova)

ComputeLR is strongly #P-complete, i.e. when input is in unary (input size is O(n)). (Related to counting 2d contingency tables, and graphs with given degree sequence)

KronPos: ComputeKron: Input: λ, μ, ν Input: λ, μ, ν

Output: Is $g(\lambda, \mu, \nu) > 0$? Output: Value of $g(\lambda, \mu, \nu)$.

Conjecture (Mulmuley~2005)

 $KronPos \in P$.

KronPos: ComputeKron: Input: λ, μ, ν Input: λ, μ, ν

Output: Is $g(\lambda, \mu, \nu) > 0$? Output: Value of $g(\lambda, \mu, \nu)$.

Conjecture (Mulmuley~2005)

 $KronPos \in P$.

Theorem (Ikenmeyer-Mulmuley-Walter 2016)

KronPos is NP-hard.

KronPos: ComputeKron: Input: λ, μ, ν Input: λ, μ, ν

Output: Is $g(\lambda, \mu, \nu) > 0$? Output: Value of $g(\lambda, \mu, \nu)$.

Conjecture (Mulmuley~2005)

 $KronPos \in P$.

Theorem (Ikenmeyer-Mulmuley-Walter 2016)

KronPos is NP-hard.

Conjecture (Mulmuley~2010)

 $KronPos \in NP$ and $ComputeKron \in \#P$. (Note that $ComputeKron \in GapP_{>0} := \{f \in \#P - \#P, f \ge 0\}$)

KronPos: ComputeKron: Input: λ, μ, ν Input: λ, μ, ν

Output: Is $g(\lambda, \mu, \nu) > 0$? Output: Value of $g(\lambda, \mu, \nu)$.

Conjecture (Mulmuley~2005)

 $KronPos \in P$.

Theorem (Ikenmeyer-Mulmuley-Walter 2016)

KronPos is NP-hard.

Conjecture (Mulmuley~2010)

 $KronPos \in NP$ and $ComputeKron \in \#P$. (Note that $ComputeKron \in GapP_{>0} := \{f \in \#P - \#P, f \ge 0\}$)

Conjecture (Pak~2018)

ComputeKron is not in #P (if the polynomial hierarchy does not collapse), and so there would be no reasonable combinatorial interpretation.

KronPos: ComputeKron: Input: λ, μ, ν Input: λ, μ, ν

Output: Is $g(\lambda, \mu, \nu) > 0$? Output: Value of $g(\lambda, \mu, \nu)$.

Conjecture (Mulmuley~2005)

 $KronPos \in P$.

Theorem (Ikenmeyer-Mulmuley-Walter 2016)

KronPos is NP-hard.

Conjecture (Mulmuley~2010)

```
KronPos \in NP and ComputeKron \in \#P.

(Note that ComputeKron \in GapP_{>0} := \{f \in \#P - \#P, f \geq 0\})
```

Conjecture (Pak~2018)

ComputeKron is not in #P (if the polynomial hierarchy does not collapse), and so there would be no reasonable combinatorial interpretation.

PlethPos: ComputePleth: Input: λ , d, n Input: λ , d, n

Output: Is $a_{\lambda}(d[n]) > 0$? Output: Value of $a_{\lambda}(d[n])$.

Theorem (Bravyi-Chowdhury-Gosset-Havlicek-Zhu'23)

KronPos in in QMA. The problem of computing $f^{\lambda}f^{\mu}f^{\nu}g(\lambda,\mu,\nu)$ is in #BQP.

Theorem (Ikenmeyer-Subramanian'23)

ComputeKron is in #BQP.

Also stated by [Christandl-Harrow-Walter'15].

Theorem (Bravyi-Chowdhury-Gosset-Havlicek-Zhu'23)

KronPos in in QMA. The problem of computing $f^{\lambda}f^{\mu}f^{\nu}g(\lambda,\mu,\nu)$ is in #BQP.

Theorem (Ikenmeyer-Subramanian'23)

ComputeKron is in #BQP.

Also stated by [Christandl-Harrow-Walter'15].

Theorem (Larocca-Havlicek'24)

There exists a quantum algorithm computing $g(\lambda, \mu, \nu)$ in time $O\left(\frac{f^{\mu}f^{\nu}}{f^{\lambda}}\right)$.

Cor: if $f^{\nu} = poly(n)$, then there is a quantum poly-time algorithm for $g(\lambda, \mu, \nu)$

Theorem (Bravyi-Chowdhury-Gosset-Havlicek-Zhu'23)

KronPos in in QMA. The problem of computing $f^{\lambda}f^{\mu}f^{\nu}g(\lambda,\mu,\nu)$ is in #BQP.

Theorem (Ikenmeyer-Subramanian'23)

ComputeKron is in #BQP.

Also stated by [Christandl-Harrow-Walter'15].

Theorem (Larocca-Havlicek'24)

There exists a quantum algorithm computing $g(\lambda, \mu, \nu)$ in time $O\left(\frac{f^{\mu}f^{\nu}}{f^{\lambda}}\right)$.

Cor: if $f^{\nu} = poly(n)$, then there is a quantum poly-time algorithm for $g(\lambda, \mu, \nu)$

Question/conjecture[Larocca-Havlicek]: There is no classical poly-time algorithm for $g(\lambda, \mu, \nu)$ when f^{ν} is poly(n)?

Theorem (Bravyi-Chowdhury-Gosset-Havlicek-Zhu'23)

KronPos in in QMA. The problem of computing $f^{\lambda}f^{\mu}f^{\nu}g(\lambda,\mu,\nu)$ is in #BQP.

Theorem (Ikenmeyer-Subramanian'23)

ComputeKron is in #BQP.

Also stated by [Christandl-Harrow-Walter'15].

Theorem (Larocca-Havlicek'24)

There exists a quantum algorithm computing $g(\lambda, \mu, \nu)$ in time $O\left(\frac{f^{\mu}f^{\nu}}{f^{\lambda}}\right)$.

Cor: if $f^{\nu} = poly(n)$, then there is a quantum poly-time algorithm for $g(\lambda, \mu, \nu)$

Question/conjecture[Larocca-Havlicek]: There is no classical poly-time algorithm for $g(\lambda, \mu, \nu)$ when f^{ν} is poly(n)?

Theorem (P'25)

Let $\lambda, \mu, \nu \vdash n$ and k be a constant, such that $f^{\nu} \leq n^k$. Then $g(\lambda, \mu, \nu)$ can be computed in time $O(n^{4k^2+1})$.

Cor: no quantum superpolynomial speedup in this case.

Theorem (Bravyi-Chowdhury-Gosset-Havlicek-Zhu'23)

KronPos in in QMA. The problem of computing $f^{\lambda}f^{\mu}f^{\nu}g(\lambda,\mu,\nu)$ is in #BQP.

Theorem (Ikenmeyer-Subramanian'23)

ComputeKron is in #BQP.

Also stated by [Christandl-Harrow-Walter'15].

Theorem (Larocca-Havlicek'24)

There exists a quantum algorithm computing $g(\lambda, \mu, \nu)$ in time $O\left(\frac{f^{\mu}f^{\nu}}{f^{\lambda}}\right)$.

Cor: if $f^{
u} = poly(n)$, then there is a quantum poly-time algorithm for $g(\lambda, \mu, \nu)$

Question/conjecture[Larocca-Havlicek]: There is no classical poly-time algorithm for $g(\lambda, \mu, \nu)$ when f^{ν} is poly(n)?

Theorem (P'25)

Let $\lambda, \mu, \nu \vdash n$ and k be a constant, such that $f^{\nu} \leq n^{k}$. Then $g(\lambda, \mu, \nu)$ can be computed in time $O(n^{4k^{2}+1})$.

Cor: no quantum superpolynomial speedup in this case.

Proof sketch: Asymptotics: If $f^{\nu} \leq n^k$, then $n - \nu_1 \leq 4k^2$.

$$g(\lambda,\mu,\nu) = \sum_{\sigma \in S_{\ell(\nu)}} \operatorname{sgn}(\sigma) \sum_{\alpha^i \vdash \nu_i + \sigma_i - i} c_{\alpha^1 \cdots \alpha^\ell}^{\lambda} c_{\alpha^1 \cdots \alpha^\ell}^{\mu}.$$

Quantum algorithms for plethysm coefficients

Theorem (Ikenmeyer-Subramanian'23)

ComputePleth $a_{\lambda}(d[n])$ is in #BQP.

Note: what about general plethysms $a_{\lambda}(\mu[\nu])$?

Quantum algorithms for plethysm coefficients

Theorem (Ikenmeyer-Subramanian'23)

ComputePleth $a_{\lambda}(d[n])$ is in #BQP.

Note: what about general plethysms $a_{\lambda}(\mu[\nu])$?

Theorem (Larocca-Havlicek'24)

There exists a quantum algorithm computing $a^{\lambda}(\mu[\nu])$ in time $O\left(\frac{f^{\lambda}}{f^{\mu}(f^{\nu})^{|\mu|}}\right)$.

Cor: if $f^{\lambda} = poly(n)$, then there is a quantum poly-time algorithm for $a_{\lambda}(d[m])$

Quantum algorithms for plethysm coefficients

Theorem (Ikenmeyer-Subramanian'23)

ComputePleth $a_{\lambda}(d[n])$ is in #BQP.

Note: what about general plethysms $a_{\lambda}(\mu[\nu])$?

Theorem (Larocca-Havlicek'24)

There exists a quantum algorithm computing $a^{\lambda}(\mu[\nu])$ in time $O\left(\frac{f^{\lambda}}{f^{\mu}(f^{\nu})|\mu|}\right)$.

Cor: if $f^{\lambda} = poly(n)$, then there is a quantum poly-time algorithm for $a_{\lambda}(d[m])$

Theorem (P'25)

Let d, m be integers, n=dm and $\lambda \vdash n$, such that $\lambda_1 \ge \ell(\lambda)$. Then the plethysm coefficient $a_{d,m}^{\lambda}$ can be computed in time

- 1. $O(n^{d\ell})$ where $\ell = \ell(\lambda)$.
- 2. $O(n^{4K^3(K+1)})$ where $f^{\lambda} \leq n^k$ and $K = 4k^2$ for arbitrary d, m.

In particular, we have a polynomial time algorithm for computing $a_{d,m}^{\lambda}$ if either d and $\ell(\lambda)$ are fixed, or d grows but the dimension f^{λ} grows at most polynomially.

[Kahle-Michalek'15]: Poly-time algorithm when d, ℓ -fixed.

Cor: no quantum superpolynomial speedup in these cases.

Theorem (Ikenmeyer-Subramanian'23)

ComputePleth $a_{\lambda}(d[n])$ is in #BQP.

Note: what about general plethysms $a_{\lambda}(\mu[\nu])$?

Theorem (Larocca-Havlicek'24)

There exists a quantum algorithm computing $a^{\lambda}(\mu[\nu])$ in time $O\left(\frac{f^{\lambda}}{f\mu(f\nu\lambda)|\mu|}\right)$.

Cor: if $f^{\lambda} = poly(n)$, then there is a quantum poly-time algorithm for $a_{\lambda}(d[m])$

Theorem (P'25)

Let d, m be integers, n = dm and $\lambda \vdash n$, such that $\lambda_1 \ge \ell(\lambda)$. Then the plethysm coefficient $a_{d,m}^{\lambda}$ can be computed in time

- 1. $O(n^{d\ell})$ where $\ell = \ell(\lambda)$.
- 2. $O(n^{4K^3(K+1)})$ where $f^{\lambda} < n^k$ and $K = 4k^2$ for arbitrary d, m.

In particular, we have a polynomial time algorithm for computing $a_{d\ m}^{\lambda}$ if either d and $\ell(\lambda)$ are fixed, or d grows but the dimension f^{λ} grows at most polynomially.

[Kahle-Michalek'15]: Poly-time algorithm when d, ℓ -fixed.

Cor: no quantum superpolynomial speedup in these cases.

Proof sketch: counting points in polytopes *Q*:

$$a_{d,m}^{\lambda} = \sum_{\sigma \in \mathcal{S}_{K+1}} \operatorname{sgn}(\sigma) \sum_{r=1}^{4K-1} \sum_{(c_1, \dots, c_{r-1}) \in [1, 2K]^{r-1}} \sum_{\bar{j} \in [K+1]^{r-2}} |Q(\bar{j}, c, \hat{\lambda} + \delta(K) - \sigma(\delta))|$$

Greta Panova

characters:
$$\operatorname{char} \mathbb{S}_{\lambda} = \chi^{\lambda} : \mathcal{S}_{n} \to \mathbb{C}$$

 $\chi^{\lambda}[\alpha]=$ trace of the matrix in \mathbb{S}_{λ} corresponding to a permutation of cycle type $\alpha=(\alpha_1,\alpha_2,\dots)$

characters:
$$\operatorname{char} \mathbb{S}_{\lambda} = \chi^{\lambda} : \mathcal{S}_{n} \to \mathbb{C}$$

 $\chi^\lambda[\alpha]=$ trace of the matrix in \mathbb{S}_λ corresponding to a permutation of cycle type $\alpha=(\alpha_1,\alpha_2,\ldots)$

Murnaghan-Nakayama rule:

$$\chi^{\lambda}[\alpha] = \sum_{\textit{T} \text{ : MN tableaux, shape } \lambda, \text{ content } \alpha} (-1)^{\textit{ht(T)}}$$

— a M-N tableau
$$T$$
 of shape $\lambda=(7,6,5)$, content $\alpha=(4,4,5,5)$, $ht(T)=(2-1)+(2-1)+(3-1)+(3-1)=6$.

characters:
$$\operatorname{char} \mathbb{S}_{\lambda} = \chi^{\lambda} : \mathcal{S}_{n} \to \mathbb{C}$$

 $\chi^{\lambda}[\alpha]=$ trace of the matrix in \mathbb{S}_{λ} corresponding to a permutation of cycle type $\alpha=(\alpha_1,\alpha_2,\ldots)$

Murnaghan-Nakayama rule:

$$\chi^{\lambda}[\alpha] = \sum_{T \text{ : MN tableaux, shape } \lambda, \text{ content } \alpha} (-1)^{ht(T)}$$

— a M-N tableau
$$T$$
 of shape $\lambda=(7,6,5)$, content $\alpha=(4,4,5,5)$, $ht(T)=(2-1)+(2-1)+(3-1)+(3-1)=6$.

Key players:

$$g(\lambda, \mu, \nu) = \frac{1}{n!} \sum_{w \in S_n} \chi^{\lambda}[w] \chi^{\mu}[w] \chi^{\nu}[w].$$

	id	(1, 2)	(1,2)(3,4)	(1, 2, 3)	(1, 2, 3, 4)
$\chi^{(4)}$	1	1	1	1	1
$\chi^{(1,1,1,1)}$	1	-1	1	1	-1
$\chi^{(3,1)}$	3	1	-1	0	-1
$\chi^{(2,1,1)}$	3	-1	-1	0	1
$\chi^{(2,2)}$	2	0	2	-1	0

		id	(1, 2)	(1,2)(3,4)	(1, 2, 3)	(1, 2, 3, 4)
_	$\chi^{(4)}$	1	1	1	1	1
_	$\chi^{(1,1,1,1)}$	1	-1	1	1	-1
_	$\chi^{(3,1)}$	3	1	-1	0	-1
_	$\chi^{(2,1,1)}$	3	-1	-1	0	1
	$\chi^{(2,2)}$	2	0	2	-1	0

$$\sum_{\lambda \vdash n} \chi^{\lambda} (id)^2 = n!$$

	id	(1, 2)	(1,2)(3,4)	(1, 2, 3)	(1, 2, 3, 4)
$\chi^{(4)}$	1	1	1	1	1
$\chi^{(1,1,1,1)}$	1	-1	1	1	-1
$\chi^{(3,1)}$	3	1	-1	0	-1
$\chi^{(2,1,1)}$	3	-1	-1	0	1
$\chi^{(2,2)}$	2	0	2	-1	0

$$\sum_{\lambda \vdash n} \chi^{\lambda} (id)^2 = n!$$

15

	id	(1, 2)	(1,2)(3,4)	(1, 2, 3)	(1, 2, 3, 4)
$\chi^{(4)}$	1	1	1	1	1
$\chi^{(1,1,1,1)}$	1	-1	1	1	-1
$\chi^{(3,1)}$	3	1	-1	0	-1
$\chi^{(2,1,1)}$	3	-1	-1	0	1
$\chi^{(2,2)}$	2	0	2	-1	0

$$\sum_{\lambda \vdash n} \chi^{\lambda} (id)^{2} = n!$$

$$\left(\boxed{12[4], \boxed{1[2[3]}} \right) \stackrel{RSK}{\longleftrightarrow} 4123$$

$$\sum_{\lambda\vdash n}\chi^{\lambda}(w)^2=\prod_i i^{c_i}c_i!$$

where c_i = number of cycles of length i in $w \in S_n$.

	id	(1, 2)	(1,2)(3,4)	(1, 2, 3)	(1, 2, 3, 4)
$\chi^{(4)}$	1	1	1	1	1
$\chi^{(1,1,1,1)}$	1	-1	1	1	-1
$\chi^{(3,1)}$	3	1	-1	0	-1
$\chi^{(2,1,1)}$	3	-1	-1	0	1
$\chi^{(2,2)}$	2	0	2	-1	0

$$\sum_{\lambda \vdash n} \chi^{\lambda} (id)^{2} = n!$$

$$\left(\boxed{12|4}, \boxed{1|2|3} \right) \stackrel{RSK}{\longleftrightarrow} 4123$$

$$\sum_{\lambda \vdash n} \chi^{\lambda}(w)^2 = \prod_i i^{c_i} c_i!$$

where c_i = number of cycles of length i in $w \in S_n$.

COMPUTECHARSQ: Input: $\lambda, \alpha \vdash n$, unary. Output: the integer $\chi^{\lambda}(\alpha)^2$.

	id	(1, 2)	(1,2)(3,4)	(1, 2, 3)	(1, 2, 3, 4)
$\chi^{(4)}$	1	1	1	1	1
$\chi^{(1,1,1,1)}$	1	-1	1	1	-1
$\chi^{(3,1)}$	3	1	-1	0	-1
$\chi^{(2,1,1)}$	3	-1	-1	0	1
$\chi^{(2,2)}$	2	0	2	-1	0

$$\sum_{\lambda \vdash n} \chi^{\land}(id)^{\vdash} = n!$$

$$\left(\begin{array}{c} 1 & 2 & 4 \\ \hline 3 & 4 \end{array} \right) \xrightarrow{RSK} 4123$$

$$\sum_{\lambda \vdash n} \chi^{\lambda}(w)^2 = \prod_i i^{c_i} c_i!$$

where c_i = number of cycles of length i in $w \in S_n$.

COMPUTE CHARSQ: Input: $\lambda, \alpha \vdash n$, unary.

Output: the integer $\chi^{\lambda}(\alpha)^2$.

Theorem (Ikenmeyer-Pak-P'22)

Compute Chars $Q \notin \#P$ unless $PH = \Sigma_2^P$.

No nice combinatorial interpretation for $\chi^{\lambda}(\alpha)^2$

Set partitions

Ordered set partitions of items $\mathbf{a} = (a_1, \dots, a_m)$ into bins of sizes $\mathbf{b} = (b_1, \dots, b_k)$:

$$P(\mathbf{a},\mathbf{b}) := \#\{(B_1,B_2,\dots,B_k) : B_1 \sqcup B_2 \sqcup \dots \sqcup B_k = [m], \sum_{i \in B_j} a_i = b_j \text{ for all } j = 1,\dots,k\}$$

$$P((1,1,1,1,1,2,2,3),(4,4,4)) = |\{(\underbrace{1+1+2}_{4},\underbrace{1+3}_{4},\underbrace{1+1+2}_{4}),\dots\}| = 245$$

Set partitions

Ordered set partitions of items $\mathbf{a} = (a_1, \dots, a_m)$ into bins of sizes $\mathbf{b} = (b_1, \dots, b_k)$:

$$P(\mathbf{a},\mathbf{b}) := \# \{ (B_1,B_2,\dots,B_k) : B_1 \sqcup B_2 \sqcup \dots \sqcup B_k = [m], \sum_{i \in B_j} a_i = b_j \text{ for all } j = 1,\dots,k \}$$

$$P((1, \frac{1}{1}, 1, 1, \frac{1}{2}, \frac{2}{2}, 3), (4, 4, 4)) = |\{(\underbrace{\frac{1+1+2}{4}}, \underbrace{\frac{1+3}{4}}, \underbrace{\frac{1+1+2}{4}}), \dots\}| = 245$$

Jacobi-Trudi/Frobenius character formula:

$$\chi^{\lambda}[\alpha] = \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) P(\alpha, \lambda + \sigma - \operatorname{id})$$

Set partitions

Ordered set partitions of items $\mathbf{a} = (a_1, \dots, a_m)$ into bins of sizes $\mathbf{b} = (b_1, \dots, b_k)$:

$$P(\mathbf{a}, \mathbf{b}) := \#\{(B_1, B_2, \dots, B_k) : B_1 \sqcup B_2 \sqcup \dots \sqcup B_k = [m], \sum_{i \in B_j} a_i = b_j \text{ for all } j = 1, \dots, k\}$$

$$P((1,1,1,1,1,2,2,3),(4,4,4)) = |\{(\underbrace{1+1+2}_{4},\underbrace{1+3}_{4},\underbrace{1+1+2}_{4}),\dots\}| = 245$$

Jacobi-Trudi/Frobenius character formula:

$$\chi^{\lambda}[\alpha] = \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) P(\alpha, \lambda + \sigma - \operatorname{id})$$

Proposition (IPP)

Let **c** and **d** be two sequences of nonnegative integers, such that $|\mathbf{c}| = |\mathbf{d}| + 6$. Then there are partitions λ and α of size $O(\ell|\mathbf{c}|)$ determined in linear time, such that

$$\chi^{\lambda}(\alpha) = P(\mathbf{c}, \overline{\mathbf{d}}) - P(\mathbf{c}, \overline{\mathbf{d}'}),$$

where $\overline{\bf d} := (2, 4, d_1, d_2, ...)$ and $\overline{\bf d'} := (1, 5, d_1, d_2, ...)$.

3- and 4d Matchings

Proposition (IPP)

For \forall two independent 3d matching problem instances E and E', \exists c and d, such that

$$\#3DM(E) - \#3DM(E') = \frac{1}{\delta} \left(P(\mathbf{c}, \overline{\mathbf{d}}) - P(\mathbf{c}, \overline{\mathbf{d}'}) \right) = \frac{1}{\delta} \chi^{\lambda}(\alpha).$$

where δ is a fixed multiplicity factor, number of orderings.

3- and 4d Matchings

Proposition (IPP)

For \forall two independent 3d matching problem instances E and E', \exists c and d, such that

$$\#3DM(E) - \#3DM(E') = \frac{1}{\delta} \left(P(\mathbf{c}, \overline{\mathbf{d}}) - P(\mathbf{c}, \overline{\mathbf{d}'}) \right) = \frac{1}{\delta} \chi^{\lambda}(\alpha).$$

where δ is a fixed multiplicity factor, number of orderings.

Vertices [4] × [4] and hyperedges
$$J = (1,1,2,2),(2,2,1,1),(2,2,2,1),(3,3,3,3),(4,4,4,4),(2,1,1,2),(2,1,2,3),(3,2,3,1),(4,3,1,3),(1,4,4,4)$$
 \rightarrow encoded via vectors $[v_1,\ldots,v_{10}]$ \rightarrow items of size $v_1+v_2r+\cdots+v_{10}r^9$ Vertix encodings: $\{[0^{i-1},1,0^4,i,0^{4-j},3]\mid i\in[4],j\in[4]\}$ $\{[0^{i-1},1,0^4,i,0^{4-j},3]^{\mathrm{mult}_J(i,j)}\mid i\in[4],j\in[4]\}$ Hyperedge $(1,1,2,2)$ $\rightarrow [0^4,1,4-1,4-1,4-2,4-2,0]$ Bins size $b_1=[1^5,4^4,12]$, bins: $\mathbf{b}=(b_1^{10})$:

$$[0,0,0,0,1,3,3,2,2,0] + [1,0,0,0,0,1,0,0,0,3] + [0,1,0,0,0,0,1,0,0,3] + [0,0,1,0,0,0,0,2,0,3] + [0,0,0,0,0,0,2,0,3] + [0,0,0,0,0,0,2,3] = [1,1,1,1,1,1,4,4,4,4,4,12]$$

Greta Panova

Theorem (Ikenmeyer-Pak-P'22)

Let $\chi^2: (\lambda, \pi) \mapsto (\chi^{\lambda}(\pi))^2$, where $\lambda \vdash n$ and $\pi \in S_n$. If $\chi^2 \in \#P$, then the polynomial hierarchy collapses to the second level: $PH = \Sigma_2^p = NP^{-1}$.

(c)Wikipedia

¹A hypothesis widely believed to be false, similar to P \neq NP

Theorem (Ikenmeyer-Pak-P'22)

Let $\chi^2: (\lambda, \pi) \mapsto (\chi^{\lambda}(\pi))^2$, where $\lambda \vdash n$ and $\pi \in S_n$. If $\chi^2 \in \#P$, then the polynomial hierarchy collapses to the second level: $PH = \Sigma_2^p = NP^{-1}$.

(c)Wikipedia

¹A hypothesis widely believed to be false, similar to P \neq NP

Theorem (Ikenmeyer-Pak-P'22)

Let $\chi^2: (\lambda, \pi) \mapsto (\chi^{\lambda}(\pi))^2$, where $\lambda \vdash n$ and $\pi \in S_n$. If $\chi^2 \in \#P$, then the polynomial hierarchy collapses to the second level: $PH = \Sigma_p^p = NP^{-1}$.

$$\begin{split} \#3DM(E) - \#3DM(E') &= \frac{1}{\delta}\chi^{\lambda}(\alpha) \\ \Longrightarrow [\chi = 0] \text{ is } \mathsf{C}_=\mathsf{P} := [\underbrace{\mathsf{GapP}}_{\#\mathsf{P}-\#\mathsf{P}} = 0]\text{-complete}. \end{split}$$

If $\chi^2 \in \#P \Longrightarrow [\chi^2 > 0] \in NP$, so $[\chi \neq 0] \in NP$ and hence $[\chi = 0] \in coNP$.

Wikipedia

 $^{^{1}}$ A hypothesis widely believed to be false, similar to P \neq NP

Theorem (Ikenmeyer-Pak-P'22)

Let $\chi^2: (\lambda, \pi) \mapsto (\chi^{\lambda}(\pi))^2$, where $\lambda \vdash n$ and $\pi \in S_n$. If $\chi^2 \in \#P$, then the polynomial hierarchy collapses to the second level: $PH = \Sigma_p^p = NP^{-1}$.

Wikipedia

 $^{^{1}}$ A hypothesis widely believed to be false, similar to P eq NP

Theorem (Ikenmeyer-Pak-P'22)

Let $\chi^2: (\lambda, \pi) \mapsto (\chi^{\lambda}(\pi))^2$, where $\lambda \vdash n$ and $\pi \in S_n$. If $\chi^2 \in \#P$, then the polynomial hierarchy collapses to the second level: $PH = \Sigma_2^P = NP^{-1}$.

Wikipedia

 1 A hypothesis widely believed to be false, similar to P \neq NP

The End

Computing Kronecker, plethysm coefficients and especially S_n characters...

Vielen Dank für Ihre Aufmerksamkeit!

