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Partitions and tabaleaux
Integer partitions and Young diagrams:
A=(2,2,1)

)\:()\1,)\2,.4.), M2 220, A+ X+--=n

Standard Young Tableaux of shape X:

1,2,3,4,5 <
R
. 314 [375] 274 (215 [215]
3
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Partitions and tabaleaux
Integer partitions and Young diagrams:
)\:()\1,)\2,.4.), M2 220, A+ X+--=n

Standard Young Tableaux of shape X:

1,2,3,4,5
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Semi-Standard Young Tableaux of shape A:
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Partitions and tabaleaux
Integer partitions and Young diagrams:
)\:()\1,)\2,.4.), AM>X > 20, M1 +X+-=n.

Standard Young Tableaux of shape X:

1,2,3,4,5
ﬁa

Semi-Standard Young Tableaux of shape A:

E :
N 212] [213] [2[3]
3 3 B
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Representations of S,
Symmetric group S, — permutations under composition:

m:[1,2,...,n = [1,2,...,n0], wo = 7(o)
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Representations of S,

Symmetric group S, — permutations under composition:

m:[1,2,...,n = [1,2,...,n0], wo = 7(o)
Representations: homomorphism S, — GLy(C)
0 0 1
Example: if V = C3, 7 € S3, set 7(e;) := er; fori=1.3,s0eg. 231 = (1 0 O
0 1 O
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Representations of S,

Symmetric group S, — permutations under composition:

m:[1,2,...,n = [1,2,...,n0], wo = 7(o)
Representations: homomorphism S, — GLy(C)
0 0 1
Example: if V = C3, 7 € S3, set 7(e;) := er; fori=1.3,s0eg. 231 = (1 0 O
0 1 O

The irreducible representations of S,: the Specht modules Sy

V=Cle1+e+e)PDCler —er, 0 — €3)

S(3) S(2,1)

Basis indexed by SYTs of shape )\, so dimSy = f* := #{T : SYT, shape A\}.
1]2 1

[112] [1[3] [1]3
2]
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Representations of S,

Symmetric group S, — permutations under composition:

m:[1,2,...,n = [1,2,...,n0], wo = 7(o)
Representations: homomorphism S, — GLy(C)
0 0 1
Example: if V = C3, 7 € S3, set 7(e;) := er; fori=1.3,s0eg. 231 = (1 0 O
0 1 O

The irreducible representations of S,: the Specht modules Sy

V=Cle1+e+e)PDCler —er, 0 — €3)

S(3) S(2,1)

Basis indexed by SYTs of shape A, sodimSy = f* := #{T: SYT, shape \}.
2] [112] 13

I

Characters: x*(a) = x* () := Trace p*(x), for 7 of cycle type c.

xY(m = 231) = xO)(r) + x* ()
=0 =1 =-1
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Representations of the General Linear group GLy(C)

Irreducible (polynomial) representations of GLy(C):
Weyl modules V), indexed by highest weights A, £(\) < N.
Basis indexed by Semi-Standard Young tableaux of shape A :

[2] [1]2]
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Representations of the General Linear group GLy(C)

Irreducible (polynomial) representations of GLy(C):
Weyl modules V), indexed by highest weights A, £(\) < N.
Basis indexed by Semi-Standard Young tableaux of shape A :

[1]2]
Characters: Schur functions

s\, o) =y xbeelT)
TESSYT())

2.2 2.2 2.2 2 2 2
S(2>2)(X1.X2, X3) = X{X5 + X{X3 + X5X3 + X{x0X3 + X1X5 X3 + X1 X2X3
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Representations of the General Linear group GLy(C)

Irreducible (polynomial) representations of GLy(C):
Weyl modules V), indexed by highest weights A, £(\) < N.
Basis indexed by Semi-Standard Young tableaux of shape A :

Characters: Schur functions

s\, o) =y xbeelT)
TESSYT())

5(2)2)()(1.)(2, x3) = x12><22 + x12x32 + ><22x§ + x12><2><3 + X1X22X3 + X1X2X32
Theorem (Schur-Weyl duality)
Under the joint action of the groups S, and GL(V), the tensor space decomposes as:

VaVe--gV=> S*®V,.
Abn
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Structure constants (multiplicities) |

Tensor product of irreducible GL representations:

Littlewood-Richardson coefficients: Ciu

Vie,1) @ Vo) = Via2) @ Via1,1) © Vi3 3) @ Vgél) @ V(31,11 @ V2,2.2) ® V(2,21,1)
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Structure constants (multiplicities) |
Tensor product of irreducible GL representations:
P
Vi ® VM =0,V A

Littlewood-Richardson coefficients: Ciu

Vie,1) @ Vo) = Via2) @ Via1,1) © Vi3 3) @ Vgél) @ V(31,11 @ V2,2.2) ® V(2,21,1)

Theorem (Littlewood-Richardson, stated 1934, proven 1970's)
The coefficient C;\/u is equal to the number of LR tableaux of shape v/u and type A.

i[T] T (LR tableaux of shape (6,4,3)/(3,1) and
i type (4,3,2). C((gjf)'(?“) —2)
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Structure constants (multiplicities) Il
Kronecker coefficients: g(\, i1, ) — multiplicity of S, in Sy ® S,

Sy ® S;L = @VI—nSSag(A’“’U)

S2,1) @ S2,1) = S3) ©S2,1) D S11,1)
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Structure constants (multiplicities) Il

Kronecker coefficients: g(\, i1, ) — multiplicity of S, in Sy ® S,
A ® Sy = BurnSLEM )
S21) @Sy =Se) ©Sen ©Say

Plethysm coefficients: GL, 2% GLn 2% GLy: pu o pu : GLy, — GLy:

pulpn) = VI
A

ax(d[n]) — multiplicity of V5 in Sym?(Sym" V) under GL action.

p)lre)] = Viay ® V2,2
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Major problems in Algebraic Combinatorics

[Murnaghan, 1938]: cﬁ‘l, =g ((N—=|A,A),(N—|p|,u), (N —|v|,v)) for
Al = |u| + |v| and N-large.
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Major problems in Algebraic Combinatorics
[Murnaghanr 1938] C/i\l/ = g((N - |)‘|7)‘)v (N - W|7H)7 (N - |V‘7V)) for
Al = |p| + |v| and N-large.
Problem (Murnaghan 1938.. Lascoux, Garsia-Remmel 1980s... Stanley
2000)

Find a positive combinatorial interpretation for g(\, p,v), i.e. a family of
combinatorial objects Oy ,,.,, s.t. g(A, p, V) = #Ox 0

Alternatively: Is COMPUTEKRON in #P?
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Major problems in Algebraic Combinatorics

[Murnaghan, 1938]: cﬁ‘l, =g ((N—=|A,A),(N—|p|,u), (N —|v|,v)) for
Al = |u| + |v| and N-large.

Problem (Murnaghan 1938.. Lascoux, Garsia-Remmel 1980s... Stanley
2000)

Find a positive combinatorial interpretation for g(\, p,v), i.e. a family of
combinatorial objects Oy ,,.,, s.t. g(A, p, V) = #Ox 0

Alternatively: Is COMPUTEKRON in #P?

Combinatorial formulas for g(\, p, v):

® Two two-row partitions [Remmel-Whitehead, 1994;
Blasiak—Mulmuley—Sohoni,2015] ;

® One two-row and other restrctions [Ballantine-Orellana, 2006]
® One hook v = (n — k, 1%) [Blasiak 2012, Blasiak-Liu 2014

® Other special cases [Bessenrodt-Bowman, Colmenarejo-Rosas, Garsia, Goupil,
Ikenmeyer-Mulmuley-Walter, Pak-Panova, Tewari, Vallejo, Chenchen Zhao].
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Major problems in Algebraic Combinatorics

[Murnaghan, 1938]: cﬁ‘l, =g ((N—=|A,A),(N—|p|,u), (N —|v|,v)) for
Al = |u| + |v| and N-large.

Problem (Murnaghan 1938.. Lascoux, Garsia-Remmel 1980s... Stanley
2000)

Find a positive combinatorial interpretation for g(\, p,v), i.e. a family of
combinatorial objects Oy ,,.,, s.t. g(A, p, V) = #Ox 0

Alternatively: Is COMPUTEKRON in #P?

Combinatorial formulas for g(\, p, v):

® Two two-row partitions [Remmel-Whitehead, 1994;
Blasiak—Mulmuley—Sohoni,2015] ;

® One two-row and other restrctions [Ballantine-Orellana, 2006]
® One hook v = (n — k, 1%) [Blasiak 2012, Blasiak-Liu 2014

® Other special cases [Bessenrodt-Bowman, Colmenarejo-Rosas, Garsia, Goupil,
Ikenmeyer-Mulmuley-Walter, Pak-Panova, Tewari, Vallejo, Chenchen Zhao].

Problem (Stanley 2000)
Find a positive combinatorial interpretation for ay(d[n]).

Alternatively, is COMPUTEPLETH in #P.
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Major problems in Algebraic Combinatorics

[Murnaghan, 1938]: cﬁ‘l, =g ((N—=|A,A),(N—|p|,u), (N —|v|,v)) for

Al = |u| + |v| and N-large.

Problem (Murnaghan 1938.. Lascoux, Garsia-Remmel 1980s... Stanley
2000)

Find a positive combinatorial interpretation for g(\, p,v), i.e. a family of
combinatorial objects Oy ,, ., s.t. g(A, p,v) = #Ox 0

Alternatively: Is COMPUTEKRON in #P?

Combinatorial formulas for g(\, p, v):

® Two two-row partitions [Remmel-Whitehead, 1994;
Blasiak—Mulmuley—Sohoni,2015] ;

® One two-row and other restrctions [Ballantine-Orellana, 2006]
® One hook v = (n — k, 1) [Blasiak 2012, Blasiak-Liu 2014

® Other special cases [Bessenrodt-Bowman, Colmenarejo-Rosas, Garsia, Goupil,
Ikenmeyer-Mulmuley-Walter, Pak-Panova, Tewari, Vallejo, Chenchen Zhao].

Problem (Stanley 2000)

Find a positive combinatorial interpretation for ay(d[n]).

Alternatively, is COMPUTEPLETH in #P.

Applications beyond Combinatorics: Geometric Complexity Theory (VP vs VNP),
Quantum Information Theory (quantum marginal problem) etc

Greta Panova
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Geometric Complexity Theory in a Nutshell

VP vs VNP: determinant vs permanent

n m
det, := Z sgn(a')]:[x,-’c,(‘-) per,, := Z Hx,-,g(,-)
i=1

oES, i= o€Sy i=1
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Geometric Complexity Theory in a Nutshell
VP vs VNP: determinant vs permanent
n m
det, := Z sgn(o‘)Hx,-’c,(;) per,, := Z Hx;yg(,-)
o€S, i=1 0ESy i=1

Conjecture [Valiant’78, VP # VNP]:
The (normalized) permanent xj; "per,, # det,[Ax"] for n = poly(m).
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Geometric Complexity Theory in a Nutshell

VP vs VNP: determinant vs permanent

det, := Z sgn(o)Hx,-’c,(;) per,, := Z Hx;yg(,-)

€Sy i=1 GESy i=1

Conjecture [Valiant’78, VP # VNP]:
The (normalized) permanent xj; "per,, # det,[Ax"] for n = poly(m).

x{ Mper,, = dety[Ax"] = GL2xJ; "per,,, C GLdet,
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Geometric Complexity Theory in a Nutshell
VP vs VNP: determinant vs permanent
n m
det, := Z sgn(o)Hx,-’c,(,-) per,, := Z Hx;yg(,-)
c€ES, i=1 0ESm i=1

Conjecture [Valiant’78, VP # VNP]:
The (normalized) permanent xj; "per,, # det,[Ax"] for n = poly(m).
x{ Mper,, = dety[Ax"] = GL2xJ; "per,,, C GLdet,

GCT (Mulmuley and Sohoni):
Show that C[GL »dety]q — C[GL 2perh ]y is impossible for n = poly(m).
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Geometric Complexity Theory in a Nutshell
VP vs VNP: determinant vs permanent
n m
det, := Z sgn(a)Hx,-’c,(,-) per,, := Z Hx;yg(,-)
c€ES, i=1 0ESm i=1

Conjecture [Valiant’78, VP # VNP]:
The (normalized) permanent xj; "per,, # det,[Ax"] for n = poly(m).
x{ Mper,, = dety[Ax"] = GL2xJ; "per,,, C GLdet,

GCT (Mulmuley and Sohoni):
Show that C[GL »dety]q — C[GL 2perh ]y is impossible for n = poly(m).

P V" ~ ClCLpdeta]y — ClGLpperpla = @D v Hom,
AbEnd Abnd

Greta Panova
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Geometric Complexity Theory in a Nutshell
VP vs VNP: determinant vs permanent
n m
det, := Z sgn(a)Hx,-’c,(,-) per,, := Z Hx;yg(,-)
c€ES, i=1 0ESm i=1

Conjecture [Valiant’78, VP # VNP]:
The (normalized) permanent xj; "per,, # det,[Ax"] for n = poly(m).
x{ Mper,, = dety[Ax"] = GL2xJ; "per,,, C GLdet,

GCT (Mulmuley and Sohoni):
Show that C[GL »dety]q — C[GL 2perh ]y is impossible for n = poly(m).

P V" ~ ClCLpdeta]y — ClGLpperpla = @D v Hom,
AbEnd Abnd

Obstructions \: if 63 g.n < Yx.d.n.m for n > poly(m), then " = VP # VNP.
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Geometric Complexity Theory in a Nutshell
VP vs VNP: determinant vs permanent
n m
det, := Z sgn(a)Hx,-’c,(,-) per,, := Z Hx;yg(,-)
c€ES, i=1 0ESm i=1

Conjecture [Valiant’78, VP # VNP]:
The (normalized) permanent xj; "per,, # det,[Ax"] for n = poly(m).
x{ Mper,, = dety[Ax"] = GL2xJ; "per,,, C GLdet,

GCT (Mulmuley and Sohoni):
Show that C[GL »dety]q — C[GL 2perh ]y is impossible for n = poly(m).

P V" ~ ClCLpdeta]y — ClGLpperpla = @D v Hom,
AbEnd Abnd

Obstructions \: if 63 g.n < Yx.d.n.m for n > poly(m), then " = VP # VNP.
If also dx,4,, = 0, then X is an occurrence obstruction.

Conjecture (Mulmuley and Sohoni)

There exist occurrence obstructions that show n > poly(m).

Greta Panova
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Geometric Complexity Theory in a Nutshell
VP vs VNP: determinant vs permanent
n m
det, := Z sgn(a)Hx,-’c,(,-) per,, := Z Hx;yg(,-)
c€ES, i=1 0ESm i=1

Conjecture [Valiant’78, VP # VNP]:
The (normalized) permanent xj; "per,, # det,[Ax"] for n = poly(m).
x{ Mper,, = dety[Ax"] = GL2xJ; "per,,, C GLdet,

GCT (Mulmuley and Sohoni):
Show that C[GL »dety]q — C[GL 2perh ]y is impossible for n = poly(m).

P V" ~ ClCLpdeta]y — ClGLpperpla = @D v Hom,
AbEnd Abnd

Obstructions \: if 63 g.n < Yx.d.n.m for n > poly(m), then " = VP # VNP.
If also dx,4,, = 0, then X is an occurrence obstruction.
Conjecture (Mulmuley and Sohoni)

There exist occurrence obstructions that show n > poly(m).

Theorem (Biirgisser-lkenmeyer-P)
There are no such occurrence obstructions for n > m?®

Greta Panova

hard



Algebraic Combinatorics basics Open Problems Motivation: GCT Complexity of multiplicities Characters are hard
000 000 oe 0000 000000

Kronecker coefficients and GCT

C[GL pdetn]y =~ @ ViBaA’d’", C[GL,2pern]y ~ @ VEBA/A dsmm
Afnd Abnd
Obstructions X: if 65 4,0 < Va,d,n,m for n > poly(m) = VP # VNP.

Sxnd,n < g\, n, n?) Ir,d,nm < ax(d[n])

Conjecture (GCT, Mulmuley and Sohoni)

There exist A, s.t. g(\,n?,n?) =0 (so mult\C[GL,2det,] = 0) and v g.n.m > 0 for
some n > poly(m).

Greta Panova
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Kronecker coefficients and GCT

C[GL pdetn]y =~ @ ViB(SA’d’", C[GL,2pern]y ~ @ VEBA/’\ dsmm
Afnd Abnd
Obstructions X: if 65 4,0 < Va,d,n,m for n > poly(m) = VP # VNP.

Oxd,n < &8(A, n9, n%) Ya,d,n,m < ax(d[n])

Conjecture (GCT, Mulmuley and Sohoni)

There exist X, s.t. g(A\,n?,n%) = 0 (so mult\C[GL,2det,] = 0) and Yx,d,n,m > 0 for
some n > poly(m).

Theorem (lkenmeyer-P )

Let n>3m* M nd. If g(\,n?,n?) = 0, then multy(C[GL z2per?,]) = 0.

Theorem (lkenmeyer-P)

If(N) < m?, \1 > nd —md, d >3m?, and n > 3m?*, then g(\,n x d,nx d) >0
except for 6 special cases.

Greta Panova
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Kronecker coefficients and GCT

C[GL pdetn]y =~ @ ViB(SA’d’", C[GL,2pern]y ~ @ VEBA/’\ dsmm
Afnd Abnd
Obstructions X: if 65 4,0 < Va,d,n,m for n > poly(m) = VP # VNP.

Oxd,n < &8(A, n9, n%) Ya,d,n,m < ax(d[n])

Conjecture (GCT, Mulmuley and Sohoni)

There exist X, s.t. g(A\,n?,n%) = 0 (so mult\C[GL,2det,] = 0) and Yx,d,n,m > 0 for
some n > poly(m).

Theorem (lkenmeyer-P )

Let n>3m* M nd. If g(\,n?,n?) = 0, then multy(C[GL z2per?,]) = 0.

Theorem (lkenmeyer-P)

If(N) < m?, \1 > nd —md, d >3m?, and n > 3m?*, then g(\,n x d,nx d) >0
except for 6 special cases.

Theorem (lkenmeyer-P)

For every partition p, let n > |p|, d > 2, X\ :== (nd — |p|, p). Then
g()‘z nd7 nd) > ak(d[n])'

Greta Panova
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Complexity of Computing Multiplicities |
Littlewood-Richardson coefficients: ¢, = multy V. ® Vi, = #LR — tableaux

v
(6,4,3) s a
(4,3,2)(3,1) — <

c 1[1

BE
[™[=

1{2 2
21313 HEE

Greta Panova
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Complexity of Computing Multiplicities |

Littlewood-Richardson coefficients: ¢, = multy V. ® Vi, = #LR — tableaux

iz
(6:4.3) — 0. i1 111
(4,3,2)3,1) 1[2]2] 2[2]2]
[2[3]3 HIEIE]
LR-Pos: ComputelLR:
Input: A\, u,v Input: A, pu,v
Output: Is cﬁy > 07 Output: Value of cﬁu.

Greta Panova
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Complexity of Computing Multiplicities |

Littlewood-Richardson coefficients: ¢, = multy V. ® Vi, = #LR — tableaux

iz
(6:4.3) — 0. i1 111
(4,3,2)3,1) 1[2]2] 2[2]2]
[2[3]3 HIEIE]
LR-Pos: ComputelLR:
Input: A\, u,v Input: A, pu,v
Output: Is cﬁy > 07 Output: Value of cﬁu.

Theorem (cor. to Knutson-Tao'01)
LR-Pos is in P (even when the input is in binary).

Greta Panova 10
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Complexity of Computing Multiplicities |

Littlewood-Richardson coefficients: ¢, = multy Vi ® Vi, = #LR — tableaux

iz
C((fv34-23;(3 y=2 i1 i1
:3.2)6, 22 2[2]2
BB b
LR-Pos: ComputelLR:
Input: A\, u,v Input: A, pu,v
Output: Is cﬁw > 07 Output: Value of cﬁu.

Theorem (cor. to Knutson-Tao'01)

LR-Pos is in P (even when the input is in binary).

Theorem (Narayanan'05)

ComputelR is #P-complete when the input is in binary (i.e. input size is
O(£(A) log(A1)) ).

Greta Panova 10
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Complexity of Computing Multiplicities |

Littlewood-Richardson coefficients: ¢, = multy Vi ® Vi, = #LR — tableaux

iz
C((§.34‘23))(3 y =2 i1 i1
:3.2)6, 22 2[2]2
BB BB
LR-Pos: ComputelLR:
Input: A\, u,v Input: A, pu,v
Output: Is cﬁw > 07 Output: Value of cﬁu.

Theorem (cor. to Knutson-Tao'01)

LR-Pos is in P (even when the input is in binary).

Theorem (Narayanan'05)

ComputelR is #P-complete when the input is in binary (i.e. input size is

O(£(A) log(A1)) ).

Conjecture (Pak-Panova)

ComputelR is strongly #P-complete, i.e. when input is in unary (input size is O(n)).

(Related to counting 2d contingency tables, and graphs with given degree sequence)

Greta Panova
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Complexity of Computing Multiplicities Il

KronPos: ComputeKron:
Input: A, u,v Input: A, pu,v
Output: Is g(\, p,v) > 07 Output: Value of g(\, p, V).

Conjecture (Mulmuley~2005)
KronPos € P.
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Complexity of Computing Multiplicities Il

KronPos: ComputeKron:
Input: A, u,v Input: A, pu,v
Output: Is g(\, p,v) > 07 Output: Value of g(\, p, V).

Conjecture (Mulmuley~2005)
KronPos € P.

Theorem (lkenmeyer-Mulmuley-Walter 2016)
KronPos is NP-hard.

Greta Panova
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Complexity of Computing Multiplicities Il

KronPos: ComputeKron:
Input: A, u,v Input: A, pu,v
Output: Is g(\, p,v) > 07 Output: Value of g(\, p, V).

Conjecture (Mulmuley~2005)
KronPos € P.

Theorem (lkenmeyer-Mulmuley-Walter 2016)
KronPos is NP-hard.

Conjecture (Mulmuley~2010)

KronPos € NP and ComputeKron € #P.
(Note that ComputeKron € GapPyq := {f € #P — #P,f > 0})
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Complexity of Computing Multiplicities Il

KronPos: ComputeKron:
Input: A, u,v Input: A, pu,v
Output: Is g(\, p,v) > 07 Output: Value of g(\, p, V).

Conjecture (Mulmuley~2005)
KronPos € P.

Theorem (lkenmeyer-Mulmuley-Walter 2016)
KronPos is NP-hard.

Conjecture (Mulmuley~2010)

KronPos € NP and ComputeKron € #P.
(Note that ComputeKron € GapPyq := {f € #P — #P,f > 0})

Conjecture (Pak~2018)

ComputeKron is not in #P (if the polynomial hierarchy does not collapse), and so
there would be no reasonable combinatorial interpretation.
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Complexity of Computing Multiplicities Il

KronPos: ComputeKron:
Input: A, u,v Input: A, pu,v
Output: Is g(\, p,v) > 07 Output: Value of g(\, p, V).

Conjecture (Mulmuley~2005)
KronPos € P.

Theorem (lkenmeyer-Mulmuley-Walter 2016)
KronPos is NP-hard.

Conjecture (Mulmuley~2010)
KronPos € NP and ComputeKron € #P.

(Note that ComputeKron € GapPyq := {f € #P — #P,f > 0})
Conjecture (Pak~2018)

ComputeKron is not in #P (if the polynomial hierarchy does not collapse), and so
there would be no reasonable combinatorial interpretation.

PlethPos: ComputePleth:
Input: A, d,n Input: A, d,n
Output: Is ay(d[n]) > 0? Output: Value of a)(d[n]).

Fischer-lkenmeyer: PlethPos is NP-hard, ComputePleth is #P-hard.

Greta Panova
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Quantum algorithms for Kronecker coefficients
Theorem (Bravyi-Chowdhury-Gosset-Havlicek-Zhu'23)
KronPos in in QMA. The problem of computing f>f*f¥g(\, u,v) is in #BQP.

Theorem (lkenmeyer-Subramanian’23)
ComputeKron is in #BQP.
Also stated by [Christandl-Harrow-Walter'15].

Greta Panova
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Quantum algorithms for Kronecker coefficients

Theorem (Bravyi-Chowdhury-Gosset-Havlicek-Zhu'23)
KronPos in in QMA. The problem of computing f>f*f¥g(\, u,v) is in #BQP.

Theorem (lkenmeyer-Subramanian’23)

ComputeKron is in #BQP.
Also stated by [Christandl-Harrow-Walter'15].

Theorem (Larocca-Havlicek'24)
There exists a quantum algorithm computing g(\, u,v) in time O (fl;kfl/)

Cor: if f¥ = poly(n), then there is a quantum poly-time algorithm for g(\, p, v)

Greta Panova
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Quantum algorithms for Kronecker coefficients

Theorem (Bravyi-Chowdhury-Gosset-Havlicek-Zhu'23)
KronPos in in QMA. The problem of computing f>f*f¥g(\, u,v) is in #BQP.

Theorem (lkenmeyer-Subramanian’23)

ComputeKron is in #BQP.
Also stated by [Christandl-Harrow-Walter'15].

Theorem (Larocca-Havlicek'24)
There exists a quantum algorithm computing g(\, u,v) in time O (fl;kfl/)

Cor: if f¥ = poly(n), then there is a quantum poly-time algorithm for g(\, p, v)

Question/conjecture[Larocca-Havlicek]: There is no classical poly-time algorithm for
g(A, p,v) when £V is poly(n)?
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Quantum algorithms for Kronecker coefficients

Theorem (Bravyi-Chowdhury-Gosset-Havlicek-Zhu'23)

KronPos in in QMA. The problem of computing f>f*f¥g(\, u,v) is in #BQP.
Theorem (lkenmeyer-Subramanian’23)

ComputeKron is in #BQP.

Also stated by [Christandl-Harrow-Walter'15].

Theorem (Larocca-Havlicek'24)

There exists a quantum algorithm computing g(\, u,v) in time O (fl;il/)

Cor: if f¥ = poly(n), then there is a quantum poly-time algorithm for g(\, p, v)
Question/conjecture[Larocca-Havlicek]: There is no classical poly-time algorithm for
g(A, p,v) when £V is poly(n)?

Theorem (P'25)

Let X\, u,v F n and k be a constant, such that f¥ < nk. Then g(\, p,v) can be
computed in time O(n**+1).

Cor: no quantum superpolynomial speedup in this case.

Greta Panova
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Quantum algorithms for Kronecker coefficients

Theorem (Bravyi-Chowdhury-Gosset-Havlicek-Zhu'23)

KronPos in in QMA. The problem of computing f>f*f¥g(\, u,v) is in #BQP.
Theorem (lkenmeyer-Subramanian’23)

ComputeKron is in #BQP.

Also stated by [Christandl-Harrow-Walter'15].

Theorem (Larocca-Havlicek'24)

There exists a quantum algorithm computing g(\, u,v) in time O (fl;il/)

Cor: if f¥ = poly(n), then there is a quantum poly-time algorithm for g(\, p, v)
Question/conjecture[Larocca-Havlicek]: There is no classical poly-time algorithm for
g(A, p,v) when £V is poly(n)?

Theorem (P'25)

Let X\, u,v F n and k be a constant, such that f¥ < nk. Then g(X\, 1, v) can be
computed in time O(n**+1).

Cor: no quantum superpolynomial speedup in this case.

Proof sketch: Asymptotics: If ¥ < n¥, then n — 1 < 4k2.

g\ ) = Z sgn(o) Z C;\lmazcgl,,,az-

UES@(V) a"Fu,-+<7,-—i
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Quantum algorithms for plethysm coefficients

Theorem (lkenmeyer-Subramanian’23)
ComputePleth ax(d[n]) is in #BQP.
Note: what about general plethysms ay (u[v])?

Greta Panova
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Quantum algorithms for plethysm coefficients

Theorem (lkenmeyer-Subramanian’23)
ComputePleth ax(d[n]) is in #BQP.

Note: what about general plethysms aj (u[v])?
Theorem (Larocca-Havlicek'24)

A
There exists a quantum algorithm computing a*(u[v]) in time O (W)

Cor: if f* = poly(n), then there is a quantum poly-time algorithm for ay(d[m])
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Quantum algorithms for plethysm coefficients

Theorem (lkenmeyer-Subramanian’23)
ComputePleth ax(d[n]) is in #BQP.

Note: what about general plethysms aj (u[v])?
Theorem (Larocca-Havlicek'24)

A
There exists a quantum algorithm computing a*(u[v]) in time O (W)

Cor: if f* = poly(n), then there is a quantum poly-time algorithm for ay(d[m])
Theorem (P'25)
Let d, m be integers, n = dm and X\ - n, such that A\; > £(\). Then the plethysm
coefficient a:}’m can be computed in time

1. O(n9*) where £ = £()\).

2. O(n4K3(K+1)) where f* < nk and K = 4k? for arbitrary d, m.
In particular, we have a polynomial time algorithm for computing a(’}}m if either d and

£(X) are fixed, or d grows but the dimension f X grows at most polynomially.

[Kahle-Michalek'15]: Poly-time algorithm when d, ¢-fixed.
Cor: no quantum superpolynomial speedup in these cases.
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Quantum algorithms for plethysm coefficients

Theorem (lkenmeyer-Subramanian’23)
ComputePleth ax(d[n]) is in #BQP.

Note: what about general plethysms aj (u[v])?
Theorem (Larocca-Havlicek'24)

A
There exists a quantum algorithm computing a*(u[v]) in time O (W)

Cor: if f* = poly(n), then there is a quantum poly-time algorithm for ay(d[m])
Theorem (P'25)
Let d, m be integers, n = dm and X\ - n, such that A\; > £(\). Then the plethysm
coefficient a:}’m can be computed in time

1. O(n9*) where £ = £()\).

2. O(n4K3(K+1)) where f* < nk and K = 4k? for arbitrary d, m.
In particular, we have a polynomial time algorithm for computing a(’}}m if either d and

£(X) are fixed, or d grows but the dimension f X grows at most polynomially.

[Kahle-Michalek'15]: Poly-time algorithm when d, ¢-fixed.
Cor: no quantum superpolynomial speedup in these cases.
Proof sketch: counting points in polytopes Q:

4K341

Qm= > sen(0) Y > Y. 10U, e A +8(K) —a(5))]

Greta Panova oESki1 =1 (c1,...,cr—1)€[L,2K] 1 JE[K+1]r—2
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Open Problems Motivation: GCT Complexity of multiplicities Characters are hard
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Characters of S,

characters: charS), = X/\ S, —C

x> [a] = trace of the matrix in Sy corresponding to a permutation of cycle type

a=(a,a,...)

Greta Panova
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Characters of S,

characters: charSy =x*:S5, > C

x>‘[a] = trace of the matrix in S) corresponding to a permutation of cycle type
a=(a,a,...)

Murnaghan—Nakayama rule:

A ht(T
X o] = > (-1)"D
T : MN tableaux, shape X, content o

— a M-N tableau T of shape A\ = (7,6,5),
content o = (4,4,5,5),

ht(T)=(2-1)+(2-1)+(3-1)+(3-1)=6.

Greta Panova 14
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Characters of S,

characters: charSy =x*:S5, > C

x>‘[a] = trace of the matrix in S) corresponding to a permutation of cycle type
a=(a,a,...)

Murnaghan—Nakayama rule:

A ht(T
X o] = > (-1)"D
T : MN tableaux, shape X, content o

— a M-N tableau T of shape A\ = (7,6,5),
content o = (4,4,5,5),
ht(T)=2-1)+(2-1)+3-1)+(3—-1)=6.

Key players:

g0 ) = — 32 XA Wl W]
T wes,

Greta Panova 14



Algebraic Combinatorics basics

Open Problems

Motivation: GCT Complexity of multiplicities Characters are hard

000 000 [e]e] 0000 0@0000
Characters of S,
id (1,2) (1,2)(3,4) (1,2,3) (1,2,3,4)

x® 1 1 1 1 1

YTTLD [ 1 1 1 1 -1

G 3 1 -1 0 -1

Y@LD | 3 1 1 0 1
xZ2 2 0 2 -1

Greta Panova
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Characters of S,
(1,2)  (1,2)33,4) (1,2,3) (1,2,3,4)

x® 1 1 1 1
IEBBRY 1 1 1 -1
X1 1 -1 0 -1
x@LD) -1 -1 0 1
X2 0 2 -1
> xMid)? = n!
Abn
= & = = =

Greta Panova
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Complexity of multiplicities
000 [e]e]

0000
Characters of S,
(1,2) (1,2)(3,4) (1,2,3) (1,2,3,4)
x@ 1 1 1 1
NEBBEY) 1 1 1 -1
X1 1 -1 0 -1
X1 -1 -1 0 1
X2 0 2 -1
> xMid)? = n!
Abn
(, %ZIE]) LK 4103
3]
[} = =
Greta Panova

Characters are hard
0@0000



Algebraic Combinatorics basics Open Problems Motivation: GCT Complexity of multiplicities Characters are hard
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Characters of S,
(1,2)  (1,2)33,4)  (1,2,3) (1,2,3,4)

@ 1 1 1 1
x@1.L1) -1 1 1 -1
PERY 1 -1 0 -1
x@LD) -1 -1 0 1
X2 0 2 -1
> xMid)? = n!

Abn

(%ZIE) LK 4123
ZXA(W)z = H ¢!

Abn

where ¢; = number of cycles of length i in w € S,.

m] = - =
Greta Panova
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Characters of S,
(1,2)  (1,2)33,4)  (1,2,3) (1,2,3,4)

x® 1 1 1 1
x@1.L1) -1 1 1 -1
PERY 1 -1 0 -1
x@LD) -1 -1 0 1
X2 0 2 -1
> xMid)? = n!

Abn

(%ZIE) LK 4123
Z XN w)? = H i ¢l

Abn

where ¢; = number of cycles of length i in w € S,.

CoMPUTECHARSQ:
Input: A\, o F n, unary.
Output: the integer x*(a)2.

m] = = =
Greta Panova
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[e]e]e} 000 (e]e] 0000 0@0000

Characters of S,
(1,2)  (1,2)33,4)  (1,2,3) (1,2,3,4)

x® 1 1 1 1
IEBBRY 1 1 1 -1
PERY 1 -1 0 -1
x@L1) -1 -1 0 1
xZ2 0 2 -1
> xMid)? = n!
Abn

(%ZIE) LK 4123
Z XN w)? = H i ¢l

Abn

where ¢; = number of cycles of length i in w € S,.

ComPUTECHARSQ: Theorem (lkenmeyer-Pak-P'22)
Input: A, & = n, unary, CoMPUTECHARS P unless PH = ¥5
Output: the integer x*(a)2. QF #P unless 2

No nice combinatorial interpretation for x*(a)?

Greta Panova
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Set partitions
Ordered set partitions of items a = (a1, ...,am) into bins of sizes b = (b, ..., by):
P(a,b) := #{(B1, By, ..., By) : BlUBLI...UB, = [m], > aj = bj forall j=1,... k}

i€B;

P((171,1,1,1,2, ,3)7(4,4,4)):|{(1+1+ ,1+3,1+1+2)7...}|:245

Greta Panova
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Set partitions

Ordered set partitions of items a = (a1, ...,am) into bins of sizes b = (b, ..., by):

P(a,b) := #{(B1, By, ..., By) : BlUBLI...UB, = [m], > aj = bj forall j=1,... k}
i€B;

P((1,1,1,1,1,2,2,3),(4,4,8)) = [{(1+1+2,14+3,1+1+2),...}| =245

Jacobi-Trudi/Frobenius character formula:

o] = Z sgn(o)P(a, A + o — id)
oES)

Greta Panova
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000000
Set partitions

Ordered set partitions of items a = (a1, ...,am) into bins of sizes b = (b, ..., by):

P(a,b) := #{(B1, By, ..., By) : BlUBLI...UB, = [m], > aj = bj forall j=1,... k}
i€B;

P((1,1,1,1,1,2,2,3),(4,4,8)) = [{(1+1+2,14+3,1+1+2),...}| =245

Jacobi-Trudi/Frobenius character formula:

o] = Z sgn(o)P(a, A + o — id)
oES)

Proposition (IPP)
Let ¢ and d be two sequences of nonnegative integers, such that |c| = |d| + 6. Then
there are partitions A and a of size O({|c|) determined in linear time, such that

xMe) = P(c,d) — P(c,d'),

where d := (2,4,d1,dy, . ..) and d’ := (1,5,d1,da,...).

Greta Panova
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3- and 4d Matchings
Proposition (IPP)
For V two independent 3d matching problem instances E and E’, 3 ¢ and d, such that
1 _ _
#3DM(E) — #3DM(E’) = 5 (P(c,d) — P(c7 d’)) = X)‘(a).

where § is a fixed multiplicity factor, number of orderings.

Greta Panova
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3- and 4d Matchings
Proposition (IPP)
For ¥V two independent 3d matching problem instances E and E’, 3 ¢ and d, such that

1 — — 1
#3DM(E) — #3DM(E') = (P(c,d) — P(c, d’)) = 5x*(@).
where § is a fixed multiplicity factor, number of orderings.

Vertices [4] x [4] and hyperedges J =
(1,1,2,2),(2,2,1,1),(2,2,2,1),(3,3,3,3),(4, 4,
(2,1,1,2),(2,1,2,3),(3,2,3,1),(4,3,1,3),(1,4
— encoded via vectors [vi, ..., vig]

— items of size vi + vor +--- + Vl()l’9

4,4),
4,4

)

)

Vertix encodings:

(02, 1,04, 1,0°7,3] | i € [4].) € [4]}
{[0/=1,1,0%, 4,00, 3|multy () | j € [4],j € [4]}
Hyperedge (1,1, 2,2)
—[0%,1,4—-1,4—1,4—2,4—-2,0]

Bins size by = [1%,4%,12], bins: b = (b}°):

[0,0,0,0,1,3,3,2,2,0] +[1,0,0,0,0,1,0,0,0,3] +[0,1,0,0,0,0,1,0,0, 3]
+[0,0,1,0,0,0,0,2,0,3] +[0,0,0,1,0,0,0,0,2,3] = [1,1,1,1,1,4,4,4,4,12]

Greta Panova
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Characters are as hard as the polynomial hierarchy
Theorem (lkenmeyer-Pak-P'22)

Let x2: (A7) — (x )‘(71'))2, where A n and 7 € S,. If Xx? € #P, then the
polynomial hierarchy collapses to the second level: PH = Zp NP 1.

\/
/\

'5|IJ =E, =P= HJJI = '&'IJ‘

©Wikipedia

A hypothesis widely believed to be false, similar to P # NP

Greta Panova
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Characters are as hard as the polynomial hierarchy

Theorem (lkenmeyer-Pak-P'22)

Let x2: (A7) — (x )‘(7'('))2, where A n and 7 € S,. If Xx? € #P, then the
polynomial hierarchy collapses to the second level: PH = Zp NP 1.

#3IDM(E) — #3DM(E') = £ (e)

= [x = 0] is C=P :=[ GapP = 0]-complete.
——

/ \ o

©Wikipedia

A hypothesis widely believed to be false, similar to P # NP
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Characters are as hard as the polynomial hierarchy

Theorem (lkenmeyer-Pak-P'22)
Let x?: (\,7) > (X)‘(ﬂ'))z, where A+ n and w € S,. If x? € #P, then the
polynomial hierarchy collapses to the second level: PH = Zg =NP 1.

#3IDM(E) — #3DM(E') = £ (e)

= [x = 0] is C=P :=[ GapP = 0]-complete.
——

/ \ e

s g If x> € #P = [x?® > 0] € NP, so [x # 0] € NP

\ and hence [x = 0] € coNP.

©Wikipedia

A hypothesis widely believed to be false, similar to P # NP
Greta Panova
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Characters are as hard as the polynomial hierarchy

Theorem (lkenmeyer-Pak-P'22)
Let x?: (\,7) > (X)‘(ﬂ'))z, where A+ n and w € S,. If x? € #P, then the
polynomial hierarchy collapses to the second level: PH = Zg =NP 1.

b _ iy #3DM(E) — #3DM(E’) = %xA(a)

= [x = 0] is C=P :=[ GapP = 0]-complete.
——

/N i

o 1 If x2 € #P = [x®> > 0] € NP, so [x # 0] € NP
\ and hence [x = 0] € coNP.
PR =AY = C_P C coNP
/ \ —> since PH C NP®=P (Tarui'91) then PH C
NP = ¥} I} = coNP NPNP 50 PH = 55 O

©Wikipedia

A hypothesis widely believed to be false, similar to P # NP
Greta Panova
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Characters are as hard as the polynomial hierarchy

Theorem (lkenmeyer-Pak-P'22)
Let x?: (\,7) > (X)‘(ﬂ'))z, where A+ n and w € S,. If x? € #P, then the

polynomial hierarchy collapses to the second level: PH = Zg =NP 1.
e _ e / 15
: ; #3DM(E) — #3DM(E) = 5x\(a)

= [x = 0] is C=P :=[ GapP = 0]-complete.
——

/N i

paiy 1 If x> € #P = [x?® > 0] € NP, so [x # 0] € NP
\ and hence [x = 0] € coNP.
PR = AR — C_P C coNP

—> since PH C NP®=P (Tarui'91) then PH C
I} = coNP NPNP 50 PH = 55 O

2
\ / No nice combinatorial interpretation for x*(c)?
P - * AP

©Wikipedia

A hypothesis widely believed to be false, similar to P # NP
Greta Panova
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The End

Computing Kronecker, plethysm coefficients and especially S, characters...

mosT
DIFFICULT

“

Vielen Dank fiir lhre Aufmerksamkeit!
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