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Algebraic Combinatorics basics Open Problems Motivation: GCT Complexity of multiplicities Characters are hard

Partitions and tabaleaux

Integer partitions and Young diagrams:

λ = (λ1, λ2, . . .), λ1 ≥ λ2 ≥ · · · ≥ 0, λ1 + λ2 + · · · = n.

λ = (2, 2, 1)

Standard Young Tableaux of shape λ:

1, 2, 3, 4, 5
↘

<

∧
: 1 2

3 4
5

1 2
3 5
4

1 3
2 4
5

1 3
2 5
4

1 4
2 5
3

Semi-Standard Young Tableaux of shape λ:

1, 1, . . . , 2, . . . 3, . . .
↘

≤

∧
:

1 1
2 2
3

1 1
2 3
3

1 2
2 3
3

· · ·
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Representations of Sn

Symmetric group Sn – permutations under composition:

π : [1, 2, . . . , n]
∼−→ [1, 2, . . . , n], πσ = π(σ)

Representations: homomorphism Sn → GLN(C)

Example: if V = C3, π ∈ S3, set π(ei ) := eπi for i = 1..3, so e.g. 231→

0 0 1
1 0 0
0 1 0


The irreducible representations of Sn: the Specht modules Sλ

V = C⟨e1 + e2 + e3⟩︸ ︷︷ ︸
S(3)

⊕C⟨e1 − e2, e2 − e3⟩︸ ︷︷ ︸
S(2,1)

Basis indexed by SYTs of shape λ, so dimSλ = f λ := #{T : SYT, shape λ}.
1 2
3 4
5

1 2
3 5
4

1 3
2 4
5

1 3
2 5
4

1 4
2 5
3

Characters: χλ(α) = χλ(π) := Trace ρλ(π), for π of cycle type α.

χV (π = 231)︸ ︷︷ ︸
=0

= χ(3)(π)︸ ︷︷ ︸
=1

+χ(2,1)(π)︸ ︷︷ ︸
=−1
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Representations of the General Linear group GLN(C)

Irreducible (polynomial) representations of GLN(C):
Weyl modules Vλ, indexed by highest weights λ, ℓ(λ) ≤ N.
Basis indexed by Semi-Standard Young tableaux of shape λ :

1 1
2 2

1 1
3 3

2 2
3 3

1 1
2 3

1 2
2 3

1 2
3 3

Characters: Schur functions

sλ(x1, . . . , xN) =
∑

T∈SSYT (λ)

x type(T )

s(2,2)(x1, x2, x3) = x21 x
2
2 + x21 x

2
3 + x22 x

2
3 + x21 x2x3 + x1x

2
2 x3 + x1x2x

2
3

Theorem (Schur-Weyl duality)
Under the joint action of the groups Sn and GL(V ), the tensor space decomposes as:

V ⊗ V ⊗ · · · ⊗ V =
∑
λ⊢n

Sλ ⊗ Vλ.
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Structure constants (multiplicities) I

Tensor product of irreducible GL representations:

Vλ ⊗ Vµ = ⊕νV
⊕cνλµ
ν

Littlewood-Richardson coefficients: cνλµ

V(2,1) ⊗ V(2,1) = V(4,2) ⊕ V(4,1,1) ⊕ V(3,3) ⊕ V⊕2
(3,2,1)

⊕ V(3,1,1,1) ⊕ V(2,2,2) ⊕ V(2,2,1,1)

Theorem (Littlewood-Richardson, stated 1934, proven 1970’s)
The coefficient cνλµ is equal to the number of LR tableaux of shape ν/µ and type λ.

1 1 1
1 2 2

2 3 3

1 1 1
2 2 2

1 3 3

(LR tableaux of shape (6, 4, 3)/(3, 1) and

type (4, 3, 2). c
(6,4,3)
(3,1)(4,3,2)

= 2)
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Structure constants (multiplicities) II

Kronecker coefficients: g(λ, µ, ν) – multiplicity of Sν in Sλ ⊗ Sµ

Sλ ⊗ Sµ = ⊕ν⊢nS⊕g(λ,µ,ν)
ν

S(2,1) ⊗ S(2,1) = S(3) ⊕ S(2,1) ⊕ S(1,1,1)

Plethysm coefficients: GLn
ρν−−→ GLm

ρµ−−→ GLN : ρµ ◦ ρν : GLn → GLN :

ρµ(ρν) =
⊕
λ

V
⊕aλ(µ[ν])
λ

aλ(d [n]) – multiplicity of Vλ in Symd (SymnV ) under GL action.

ρ(2)[ρ(2)] ≃ V(4) ⊕ V(2,2)

Greta Panova 6
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Major problems in Algebraic Combinatorics

[Murnaghan, 1938]: cλµν = g ((N − |λ|, λ), (N − |µ|, µ), (N − |ν|, ν)) for
|λ| = |µ|+ |ν| and N-large.

Problem (Murnaghan 1938.. Lascoux, Garsia-Remmel 1980s... Stanley
2000)
Find a positive combinatorial interpretation for g(λ, µ, ν), i.e. a family of
combinatorial objects Oλ,µ,ν , s.t. g(λ, µ, ν) = #Oλ,µ,ν .

Alternatively: Is ComputeKron in #P?

Greta Panova 7
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combinatorial objects Oλ,µ,ν , s.t. g(λ, µ, ν) = #Oλ,µ,ν .

Alternatively: Is ComputeKron in #P?

Combinatorial formulas for g(λ, µ, ν):

• Two two-row partitions [Remmel–Whitehead, 1994;
Blasiak–Mulmuley–Sohoni,2015] ;

• One two-row and other restrctions [Ballantine-Orellana, 2006]

• One hook ν = (n − k, 1k ) [Blasiak 2012, Blasiak-Liu 2014]

• Other special cases [Bessenrodt-Bowman, Colmenarejo-Rosas, Garsia, Goupil,
Ikenmeyer-Mulmuley-Walter, Pak-Panova, Tewari, Vallejo, Chenchen Zhao].
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Problem (Stanley 2000)
Find a positive combinatorial interpretation for aλ(d [n]).

Alternatively, is ComputePleth in #P.

Applications beyond Combinatorics: Geometric Complexity Theory (VP vs VNP),
Quantum Information Theory (quantum marginal problem) etc

Greta Panova 7
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Geometric Complexity Theory in a Nutshell

VP vs VNP: determinant vs permanent

detn :=
∑
σ∈Sn

sgn(σ)
n∏

i=1

xi,σ(i) perm :=
∑
σ∈Sm

m∏
i=1

xi,σ(i)

Conjecture [Valiant’78, VP ̸= VNP]:
The (normalized) permanent xn−m

11 perm ̸= detn[AxT ] for n = poly(m).

xn−m
11 perm = detn[Ax

T ] =⇒ GLn2x
n−m
11 perm ⊂ GLn2detn

GCT (Mulmuley and Sohoni):
Show that C[GLn2detn]d ↠ C[GLn2per

n
m]d is impossible for n = poly(m).⊕

λ⊢nd

V
⊕δλ,d,n

λ ≃ C[GLn2detn]d
?
↠ C[GLn2per

n
m]d ≃

⊕
λ⊢nd

V
⊕γλ,d,n,m

λ ,

Obstructions λ: if δλ,d,n < γλ,d,n,m for n > poly(m), then
no
↠ =⇒ VP ̸= VNP.

If also δλ,d,n = 0, then λ is an occurrence obstruction.

Conjecture (Mulmuley and Sohoni)
There exist occurrence obstructions that show n > poly(m).

Theorem (Bürgisser-Ikenmeyer-P)
There are no such occurrence obstructions for n > m25.

Greta Panova 8
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Algebraic Combinatorics basics Open Problems Motivation: GCT Complexity of multiplicities Characters are hard

Kronecker coefficients and GCT

C[GLn2detn]d ≃
⊕
λ⊢nd

V
⊕δλ,d,n

λ , C[GLn2per
n
m]d ≃

⊕
λ⊢nd

V
⊕γλ,d,n,m

λ ,

Obstructions λ: if δλ,d,n < γλ,d,n,m for n > poly(m) =⇒ VP ̸= VNP.

δλ,d,n ≤ g(λ, nd , nd ) γλ,d,n,m ≤ aλ(d [n])

Conjecture (GCT, Mulmuley and Sohoni)
There exist λ, s.t. g(λ, nd , nd ) = 0 (so multλC[GLn2detn] = 0) and γλ,d,n,m > 0 for
some n > poly(m).

Theorem (Ikenmeyer-P )
Let n > 3m4, λ ⊢ nd. If g(λ, nd , nd ) = 0, then multλ(C[GLn2per

n
m]) = 0.

Theorem (Ikenmeyer-P)
If ℓ(λ) ≤ m2, λ1 ≥ nd −md, d > 3m3, and n > 3m4, then g(λ, n × d , n × d) > 0,
except for 6 special cases.

Theorem (Ikenmeyer-P)
For every partition ρ, let n ≥ |ρ|, d ≥ 2, λ := (nd − |ρ|, ρ). Then
g(λ, nd , nd ) ≥ aλ(d [n]).
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Algebraic Combinatorics basics Open Problems Motivation: GCT Complexity of multiplicities Characters are hard

Complexity of Computing Multiplicities I

Littlewood-Richardson coefficients: cλµν = multλVµ ⊗ Vν = #LR − tableaux

c
(6,4,3)

(4,3,2)(3,1)
= 2: 1 1 1

1 2 2
2 3 3

1 1 1
2 2 2

1 3 3

LR-Pos:
Input: λ, µ, ν
Output: Is cλµν > 0?

ComputeLR:
Input: λ, µ, ν
Output: Value of cλµν .

Theorem (cor. to Knutson-Tao’01)
LR-Pos is in P (even when the input is in binary).

Theorem (Narayanan’05)
ComputeLR is #P-complete when the input is in binary (i.e. input size is
O(ℓ(λ) log(λ1)) ).

Conjecture (Pak-Panova)
ComputeLR is strongly #P-complete, i.e. when input is in unary (input size is O(n)).

(Related to counting 2d contingency tables, and graphs with given degree sequence)
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Algebraic Combinatorics basics Open Problems Motivation: GCT Complexity of multiplicities Characters are hard

Complexity of Computing Multiplicities II
KronPos:
Input: λ, µ, ν
Output: Is g(λ, µ, ν) > 0?

ComputeKron:
Input: λ, µ, ν
Output: Value of g(λ, µ, ν).

Conjecture (Mulmuley∼2005)
KronPos ∈ P.

Theorem (Ikenmeyer-Mulmuley-Walter 2016)
KronPos is NP-hard.

Conjecture (Mulmuley∼2010)
KronPos ∈ NP and ComputeKron ∈ #P.
(Note that ComputeKron ∈ GapP≥0 := {f ∈ #P−#P, f ≥ 0})

Conjecture (Pak∼2018)
ComputeKron is not in #P (if the polynomial hierarchy does not collapse), and so
there would be no reasonable combinatorial interpretation.

PlethPos:
Input: λ, d , n
Output: Is aλ(d [n]) > 0?

ComputePleth:
Input: λ, d , n
Output: Value of aλ(d [n]).

Fischer-Ikenmeyer: PlethPos is NP-hard, ComputePleth is #P-hard.

Greta Panova 11
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Algebraic Combinatorics basics Open Problems Motivation: GCT Complexity of multiplicities Characters are hard

Quantum algorithms for Kronecker coefficients

Theorem (Bravyi-Chowdhury-Gosset-Havlicek-Zhu’23)
KronPos in in QMA. The problem of computing f λf µf νg(λ, µ, ν) is in #BQP.

Theorem (Ikenmeyer-Subramanian’23)
ComputeKron is in #BQP.

Also stated by [Christandl-Harrow-Walter’15].

Theorem (Larocca-Havlicek’24)
There exists a quantum algorithm computing g(λ, µ, ν) in time O

(
f µf ν

f λ

)
.

Cor: if f ν = poly(n), then there is a quantum poly-time algorithm for g(λ, µ, ν)

Question/conjecture[Larocca-Havlicek]: There is no classical poly-time algorithm for
g(λ, µ, ν) when f ν is poly(n)?

Theorem (P’25)
Let λ, µ, ν ⊢ n and k be a constant, such that f ν ≤ nk . Then g(λ, µ, ν) can be

computed in time O(n4k
2+1).

Cor: no quantum superpolynomial speedup in this case.
Proof sketch: Asymptotics: If f ν ≤ nk , then n − ν1 ≤ 4k2.

g(λ, µ, ν) =
∑

σ∈Sℓ(ν)

sgn(σ)
∑

αi⊢νi+σi−i

cλ
α1···αℓc

µ

α1···αℓ .
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Proof sketch: Asymptotics: If f ν ≤ nk , then n − ν1 ≤ 4k2.
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Quantum algorithms for plethysm coefficients

Theorem (Ikenmeyer-Subramanian’23)
ComputePleth aλ(d [n]) is in #BQP.

Note: what about general plethysms aλ(µ[ν])?

Theorem (Larocca-Havlicek’24)
There exists a quantum algorithm computing aλ(µ[ν]) in time O

(
f λ

f µ(f ν )|µ|

)
.

Cor: if f λ = poly(n), then there is a quantum poly-time algorithm for aλ(d [m])

Theorem (P’25)
Let d, m be integers, n = dm and λ ⊢ n, such that λ1 ≥ ℓ(λ). Then the plethysm
coefficient aλd,m can be computed in time

1. O(ndℓ) where ℓ = ℓ(λ).

2. O(n4K
3(K+1)) where f λ ≤ nk and K = 4k2 for arbitrary d ,m.

In particular, we have a polynomial time algorithm for computing aλd,m if either d and

ℓ(λ) are fixed, or d grows but the dimension f λ grows at most polynomially.

[Kahle-Michalek’15]: Poly-time algorithm when d , ℓ-fixed.
Cor: no quantum superpolynomial speedup in these cases.
Proof sketch: counting points in polytopes Q:

aλd,m =
∑

σ∈SK+1

sgn(σ)
4K3+1∑
r=1

∑
(c1,...,cr−1)∈[1,2K ]r−1

∑
j̄∈[K+1]r−2

|Q(j̄ , c, λ̂+ δ(K)− σ(δ))|

Greta Panova 13
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Characters of Sn

characters: charSλ = χλ : Sn → C

χλ[α] = trace of the matrix in Sλ corresponding to a permutation of cycle type
α = (α1, α2, . . .)
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Characters of Sn

characters: charSλ = χλ : Sn → C

χλ[α] = trace of the matrix in Sλ corresponding to a permutation of cycle type
α = (α1, α2, . . .)

Murnaghan–Nakayama rule:

χλ[α] =
∑

T : MN tableaux, shape λ, content α

(−1)ht(T )

1 1 1 3 3 4 4
1 2 2 3 4 4
2 2 3 3 4

— a M-N tableau T of shape λ = (7, 6, 5),
content α = (4, 4, 5, 5),
ht(T ) = (2− 1) + (2− 1) + (3− 1) + (3− 1) = 6.
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(−1)ht(T )

1 1 1 3 3 4 4
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— a M-N tableau T of shape λ = (7, 6, 5),
content α = (4, 4, 5, 5),
ht(T ) = (2− 1) + (2− 1) + (3− 1) + (3− 1) = 6.

Key players:

g(λ, µ, ν) =
1

n!

∑
w∈Sn

χλ[w ]χµ[w ]χν [w ].

Greta Panova 14



Algebraic Combinatorics basics Open Problems Motivation: GCT Complexity of multiplicities Characters are hard

Characters of Sn
id (1, 2) (1, 2)(3, 4) (1, 2, 3) (1, 2, 3, 4)

χ(4) 1 1 1 1 1

χ(1,1,1,1) 1 -1 1 1 -1

χ(3,1) 3 1 -1 0 -1

χ(2,1,1) 3 -1 -1 0 1

χ(2,2) 2 0 2 -1 0
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id (1, 2) (1, 2)(3, 4) (1, 2, 3) (1, 2, 3, 4)
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χ(3,1) 3 1 -1 0 -1

χ(2,1,1) 3 -1 -1 0 1

χ(2,2) 2 0 2 -1 0∑
λ⊢n

χλ(id)2 = n!
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where ci = number of cycles of length i in w ∈ Sn.

ComputeCharSq:
Input: λ, α ⊢ n, unary.
Output: the integer χλ(α)2.
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, 1 2 3
4

)
RSK←−→ 4123

∑
λ⊢n

χλ(w)2 =
∏
i

ici ci !

where ci = number of cycles of length i in w ∈ Sn.

ComputeCharSq:
Input: λ, α ⊢ n, unary.
Output: the integer χλ(α)2.

Theorem (Ikenmeyer-Pak-P’22)
ComputeCharSq̸∈ #P unless PH = ΣP

2 .

No nice combinatorial interpretation for χλ(α)2
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Algebraic Combinatorics basics Open Problems Motivation: GCT Complexity of multiplicities Characters are hard

Set partitions

Ordered set partitions of items a = (a1, . . . , am) into bins of sizes b = (b1, . . . , bk ):

P(a, b) := #{(B1,B2, . . . ,Bk ) : B1⊔B2⊔. . .⊔Bk = [m],
∑
i∈Bj

ai = bj for all j = 1, . . . , k}

P((1, 1, 1, 1, 1, 2, 2, 3), (4, 4, 4)) = |
{
(1 + 1 + 2︸ ︷︷ ︸

4

, 1 + 3︸ ︷︷ ︸
4

, 1 + 1 + 2︸ ︷︷ ︸
4

), . . .
}
| = 245

Jacobi-Trudi/Frobenius character formula:

χλ[α] =
∑
σ∈Sk

sgn(σ)P(α, λ+ σ − id)

Proposition (IPP)
Let c and d be two sequences of nonnegative integers, such that |c| = |d|+ 6. Then
there are partitions λ and α of size O(ℓ|c|) determined in linear time, such that

χλ(α) = P
(
c, d

)
− P

(
c, d′

)
,

where d := (2, 4, d1, d2, . . .) and d′ := (1, 5, d1, d2, . . .).
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Algebraic Combinatorics basics Open Problems Motivation: GCT Complexity of multiplicities Characters are hard

3- and 4d Matchings

Proposition (IPP)
For ∀ two independent 3d matching problem instances E and E ′, ∃ c and d, such that

#3DM(E)−#3DM(E ′) =
1

δ

(
P
(
c, d

)
− P

(
c, d′

))
=

1

δ
χλ(α).

where δ is a fixed multiplicity factor, number of orderings.

⇓ ⇓

1

Vertices [4]× [4] and hyperedges J =
(1, 1, 2, 2),(2, 2, 1, 1),(2, 2, 2, 1),(3, 3, 3, 3),(4, 4, 4, 4),
(2, 1, 1, 2),(2, 1, 2, 3),(3, 2, 3, 1),(4, 3, 1, 3),(1, 4, 4, 4)

→ encoded via vectors [v1, . . . , v10]
→ items of size v1 + v2r + · · ·+ v10r9

Vertix encodings:
{[0j−1, 1, 04, i , 04−j , 3] | i ∈ [4], j ∈ [4]}
{[0j−1, 1, 04, i , 04−j , 3]multJ (i,j) | i ∈ [4], j ∈ [4]}
Hyperedge (1, 1, 2, 2)
→ [04, 1, 4− 1, 4− 1, 4− 2, 4− 2, 0]
Bins size b1 = [15, 44, 12], bins: b = (b101 ):

[0, 0, 0, 0, 1, 3, 3, 2, 2, 0] + [1, 0, 0, 0, 0, 1, 0, 0, 0, 3] + [0, 1, 0, 0, 0, 0, 1, 0, 0, 3]

+[0, 0, 1, 0, 0, 0, 0, 2, 0, 3] + [0, 0, 0, 1, 0, 0, 0, 0, 2, 3] = [1, 1, 1, 1, 1, 4, 4, 4, 4, 12]
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Algebraic Combinatorics basics Open Problems Motivation: GCT Complexity of multiplicities Characters are hard

Characters are as hard as the polynomial hierarchy

Theorem (Ikenmeyer-Pak-P’22)
Let χ2 : (λ, π) 7→

(
χλ(π)

)2
, where λ ⊢ n and π ∈ Sn. If χ2 ∈ #P, then the

polynomial hierarchy collapses to the second level: PH = Σp
2 = NP 1.

©Wikipedia

#3DM(E)−#3DM(E ′) =
1

δ
χλ(α)

=⇒ [χ = 0] is C=P := [ GapP︸ ︷︷ ︸
#P−#P

= 0]-complete.

If χ2 ∈ #P =⇒ [χ2 > 0] ∈ NP, so [χ ̸= 0] ∈ NP

and hence [χ = 0] ∈ coNP.

=⇒ C=P ⊂ coNP

=⇒ since PH ⊂ NPC=P (Tarui’91) then PH ⊂
NPcoNP, so PH = Σp

2

No nice combinatorial interpretation for χλ(α)2

1A hypothesis widely believed to be false, similar to P ̸= NP
Greta Panova 18
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The End

Computing Kronecker, plethysm coefficients and especially Sn characters...

Vielen Dank für Ihre Aufmerksamkeit!

Greta Panova 19
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