Asymptotic tensor rank is characterized by polynomials

Harold Nieuwboer

Joint work with Matthias Christandl, Koen Hoeberechts, Péter Vrana, Jeroen Zuiddam

WACT 2025

Apr. 2nd, 2025 at Ruhr-Universität Bochum

STOC'25 and arXiv:2411.15789

Tensor rank

A k-tensor over your favorite field \mathbb{F} is an element

$$T \in \mathbb{F}^{d_1} \otimes \cdots \otimes \mathbb{F}^{d_k}$$
.

Tensor rank

A k-tensor over your favorite field $\mathbb F$ is an element

$$T \in \mathbb{F}^{d_1} \otimes \cdots \otimes \mathbb{F}^{d_k}$$
.

The **tensor rank** R(T) of T is the smallest r such that

$$T = \sum_{i=1}^r u_{1,i} \otimes \cdots \otimes u_{k,i}$$

for some vectors $u_{j,i} \in \mathbb{F}^{d_j}$.

Matrices are 2-tensors.

Matrices are 2-tensors. Here, $\mathrm{R}(M)$ is the usual rank of a matrix.

Matrices are 2-tensors. Here, $\mathrm{R}(M)$ is the usual rank of a matrix. Interesting tensors:

• Unit k-tensor: $< r >_k = \sum_{i=1}^r e_i \otimes \cdots \otimes e_i$.

Matrices are 2-tensors. Here, $\mathrm{R}(M)$ is the usual rank of a matrix. Interesting tensors:

• Unit k-tensor: $< r >_k = \sum_{i=1}^r e_i \otimes \cdots \otimes e_i$. Rank: $\mathbf{R}(< r >) = r$

Matrices are 2-tensors. Here, $\mathrm{R}(M)$ is the usual rank of a matrix. Interesting tensors:

- Unit k-tensor: $< r >_k = \sum_{i=1}^r e_i \otimes \cdots \otimes e_i$. Rank: $\mathbf{R}(< r >) = r$
- W-state:

$$\begin{split} W &= e_1 \otimes e_1 \otimes e_2 + e_1 \otimes e_2 \otimes e_1 + e_2 \otimes e_1 \otimes e_1 \\ &= |001\rangle + |010\rangle + |100\rangle \in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \end{split}$$

Matrices are 2-tensors. Here, $\mathrm{R}(M)$ is the usual rank of a matrix. Interesting tensors:

- Unit k-tensor: $< r >_k = \sum_{i=1}^r e_i \otimes \cdots \otimes e_i$. Rank: $\mathbf{R}(< r >) = r$
- W-state:

$$W = e_1 \otimes e_1 \otimes e_2 + e_1 \otimes e_2 \otimes e_1 + e_2 \otimes e_1 \otimes e_1$$
$$= |001\rangle + |010\rangle + |100\rangle \in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$$

Rank: R(W) = 3

Matrices are 2-tensors. Here, $\mathrm{R}(M)$ is the usual rank of a matrix. Interesting tensors:

- Unit k-tensor: $< r >_k = \sum_{i=1}^r e_i \otimes \cdots \otimes e_i$. Rank: $\mathbf{R}(< r >) = r$
- W-state:

$$W = e_1 \otimes e_1 \otimes e_2 + e_1 \otimes e_2 \otimes e_1 + e_2 \otimes e_1 \otimes e_1$$
$$= |001\rangle + |010\rangle + |100\rangle \in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$$

Rank: R(W) = 3

• Matrix multiplication tensor: $\mathrm{MM}_{a,b,c}\in\mathbb{C}^{a\times b}\otimes\mathbb{C}^{b\times c}\otimes\mathbb{C}^{a\times c}$ given by

$$MM_{a,b,c} = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} E_{i,j} \otimes E_{j,k} \otimes E_{i,k}$$

Matrices are 2-tensors. Here, $\mathrm{R}(M)$ is the usual rank of a matrix. Interesting tensors:

- Unit k-tensor: $< r >_k = \sum_{i=1}^r e_i \otimes \cdots \otimes e_i$. Rank: $\mathbf{R}(< r >) = r$
- W-state:

$$W = e_1 \otimes e_1 \otimes e_2 + e_1 \otimes e_2 \otimes e_1 + e_2 \otimes e_1 \otimes e_1$$
$$= |001\rangle + |010\rangle + |100\rangle \in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$$

Rank: R(W) = 3

• Matrix multiplication tensor: $\mathrm{MM}_{a,b,c}\in\mathbb{C}^{a\times b}\otimes\mathbb{C}^{b\times c}\otimes\mathbb{C}^{a\times c}$ given by

$$MM_{a,b,c} = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} E_{i,j} \otimes E_{j,k} \otimes E_{i,k}$$

Rank of $MM_n = MM_{n,n,n}$:?

Say T_i in $U_i \otimes V_i \otimes W_i$ for i=1,2 are two 3-tensors.

Say T_i in $U_i \otimes V_i \otimes W_i$ for i=1,2 are two 3-tensors.

Define Kronecker product:

$$T_1 \boxtimes T_2 = T_1 \otimes T_2 \in U_1 \otimes V_1 \otimes W_1 \otimes U_2 \otimes V_2 \otimes W_2$$
$$\cong (U_1 \otimes U_2) \otimes (V_1 \otimes V_2) \otimes (W_1 \otimes W_2)$$

Similarly $T^{\boxtimes n} = T \boxtimes \cdots \boxtimes T$.

Say T_i in $U_i \otimes V_i \otimes W_i$ for i=1,2 are two 3-tensors.

Define Kronecker product:

$$T_1 \boxtimes T_2 = T_1 \otimes T_2 \in U_1 \otimes V_1 \otimes W_1 \otimes U_2 \otimes V_2 \otimes W_2$$
$$\cong (U_1 \otimes U_2) \otimes (V_1 \otimes V_2) \otimes (W_1 \otimes W_2)$$

Similarly $T^{\boxtimes n} = T \boxtimes \cdots \boxtimes T$.

Asymptotic tensor rank of a tensor T:

$$\underset{\sim}{\mathbb{R}}(T) = \lim_{n \to \infty} \mathbb{R}(T^{\boxtimes n})^{\frac{1}{n}}$$

Well-defined: $R(T_1 \boxtimes T_2) \leq R(T_1)R(T_2)$, and Fekete's lemma.

Matrix multiplication exponent: smallest ω s.t. $R(MM_n) = O(n^{\omega})$:

Matrix multiplication exponent: smallest ω s.t. $R(MM_n) = O(n^{\omega})$:

$$\begin{split} &\omega = \lim_{n \to \infty} \log_n(\mathbf{R}(\mathbf{MM}_n)) \\ &= \lim_{m \to \infty} \log_{2^m}(\mathbf{R}(\mathbf{MM}_{2^m})) \\ &= \lim_{m \to \infty} \frac{\log_2 \mathbf{R}(\mathbf{MM}_{2^m})}{\log_2(2^m)} \\ &= \lim_{m \to \infty} \frac{\log_2 \mathbf{R}(\mathbf{MM}_{2^m})}{m} \\ &= \lim_{m \to \infty} \log_2 \mathbf{R}(\mathbf{MM}_2^{\boxtimes m})^{1/m}) = \log_2(\mathbf{R}(\mathbf{MM}_2)) \end{split}$$

Matrix multiplication exponent: smallest ω s.t. $R(MM_n) = O(n^{\omega})$:

$$\begin{split} & \omega = \lim_{n \to \infty} \log_n(\mathbf{R}(\mathbf{M}\mathbf{M}_n)) \\ & = \lim_{m \to \infty} \log_{2^m}(\mathbf{R}(\mathbf{M}\mathbf{M}_{2^m})) \\ & = \lim_{m \to \infty} \frac{\log_2 \mathbf{R}(\mathbf{M}\mathbf{M}_{2^m})}{\log_2(2^m)} \\ & = \lim_{m \to \infty} \frac{\log_2 \mathbf{R}(\mathbf{M}\mathbf{M}_2^{\otimes m})}{m} \\ & = \lim_{m \to \infty} \log_2 \mathbf{R}(\mathbf{M}\mathbf{M}_2^{\otimes m})^{1/m}) = \log_2(\mathbf{R}(\mathbf{M}\mathbf{M}_2)) \end{split}$$

Strassen [1]: $R(MM_2) \le 7$, so $\omega \le \log_2(7)$.

Matrix multiplication exponent: smallest ω s.t. $R(MM_n) = O(n^{\omega})$:

$$\begin{split} & \omega = \lim_{n \to \infty} \log_n(\mathbf{R}(\mathbf{M}\mathbf{M}_n)) \\ & = \lim_{m \to \infty} \log_{2^m}(\mathbf{R}(\mathbf{M}\mathbf{M}_{2^m})) \\ & = \lim_{m \to \infty} \frac{\log_2 \mathbf{R}(\mathbf{M}\mathbf{M}_{2^m})}{\log_2(2^m)} \\ & = \lim_{m \to \infty} \frac{\log_2 \mathbf{R}(\mathbf{M}\mathbf{M}_2^{\otimes m})}{m} \\ & = \lim_{m \to \infty} \log_2 \mathbf{R}(\mathbf{M}\mathbf{M}_2^{\otimes m})^{1/m}) = \log_2(\mathbf{R}(\mathbf{M}\mathbf{M}_2)) \end{split}$$

Strassen [1]: $R(MM_2) \le 7$, so $\omega \le \log_2(7)$.

Best bound: $2 \le \omega \le 2.371339$ [2]

R is characterized by polynomials

Theorem: Let $r \in \mathbb{R}, d_1, ..., d_k \in \mathbb{N}, V = \mathbb{F}^{d_1} \otimes \cdots \otimes \mathbb{F}^{d_k}$. Then

R is characterized by polynomials

Theorem: Let $r\in\mathbb{R},\,d_1,...,d_k\in\mathbb{N},\,V=\mathbb{F}^{d_1}\otimes\cdots\otimes\mathbb{F}^{d_k}.$ Then

$$V_{\leq r} = \{T \in V : \mathop{\mathbf{R}}_{\frown}(T) \leq r\}$$

is Zariski-closed

R is characterized by polynomials

Theorem: Let $r \in \mathbb{R}$, $d_1, ..., d_k \in \mathbb{N}$, $V = \mathbb{F}^{d_1} \otimes \cdots \otimes \mathbb{F}^{d_k}$. Then

$$V_{\leq r} = \{ T \in V : \underset{\sim}{\mathbf{R}}(T) \leq r \}$$

is Zariski-closed, i.e., there exist polynomials $f_1, ..., f_\ell$ such that $V_{\leq r}$ is the joint zero set of $f_1, ..., f_\ell$:

$$V_{\leq r} = \{ T \in V : f_i(T) = 0 \, \forall i = 1, ..., \ell \}$$

For $A \subseteq V$ define its Zariski-closure by

$$\overline{A} = \{ T \in V : \forall f \in \mathbb{F}[V], f|_A \equiv 0 \Rightarrow f(T) = 0 \}.$$

For $A \subseteq V$ define its Zariski-closure by

$$\overline{A} = \{ T \in V : \forall f \in \mathbb{F}[V], f|_A \equiv 0 \Rightarrow f(T) = 0 \}.$$

Definition: For $A \subseteq V$ let $R[A] = \sup_{T \in A} R(T)$.

For $A \subseteq V$ define its Zariski-closure by

$$\overline{A} = \{ T \in V : \forall f \in \mathbb{F}[V], f|_A \equiv 0 \Rightarrow f(T) = 0 \}.$$

Definition: For $A \subseteq V$ let $\underset{\sim}{\mathbb{R}}[A] = \sup_{T \in A} \underset{\sim}{\mathbb{R}}(T)$.

Theorem: If
$$A \subseteq V$$
 then $\mathbb{R}[\overline{A}] = \mathbb{R}[A]$.

Follows easily from main result. Other direction:

For $A \subseteq V$ define its Zariski-closure by

$$\overline{A} = \{ T \in V : \forall f \in \mathbb{F}[V], f|_A \equiv 0 \Rightarrow f(T) = 0 \}.$$

Definition: For $A \subseteq V$ let $\underset{\sim}{\mathbb{R}}[A] = \sup_{T \in A} \underset{\sim}{\mathbb{R}}(T)$.

Theorem: If $A \subseteq V$ then $\mathbb{R}[\overline{A}] = \mathbb{R}[A]$.

Follows easily from main result. Other direction: Need to show that $V_{\le r}$ is Zariski-closed. Now

$$\underset{\sim}{\mathbb{R}}[\overline{V_{\leq r}}] = \underset{\sim}{\mathbb{R}}[V_{\leq r}] \leq r$$

so every $T\in \overline{V_{\leq r}}$ has $\operatorname{\underline{R}}(T)\leq r$, hence $T\in V_{\leq r}$, so $\overline{V_{\leq r}}\subseteq V_{\leq r}$.

Corollary: Let \mathbb{F} be a "computable field".

For every $r \in \mathbb{R}$, there exists an algorithm which determines for given $d_1, ..., d_k$ and $T \in \mathbb{F}^{d_1} \otimes \cdots \otimes \mathbb{F}^{d_k}$, whether $R(T) \leq r$.

Corollary: Let \mathbb{F} be a "computable field".

For every $r \in \mathbb{R}$, there exists an algorithm which determines for given $d_1, ..., d_k$ and $T \in \mathbb{F}^{d_1} \otimes \cdots \otimes \mathbb{F}^{d_k}$, whether $R(T) \leq r$.

Warning: this does not mean R(T) is computable!

Corollary: Let \mathbb{F} be a "computable field".

For every $r \in \mathbb{R}$, there exists an algorithm which determines for given $d_1, ..., d_k$ and $T \in \mathbb{F}^{d_1} \otimes \cdots \otimes \mathbb{F}^{d_k}$, whether $\mathbb{R}(T) \leq r$.

Warning: this does not mean R(T) is computable!

Proof: First check if any flattening rank of T is > r; if yes, then R(T) > r and we are done.

Corollary: Let \mathbb{F} be a "computable field".

For every $r \in \mathbb{R}$, **there exists** an algorithm which determines for given $d_1, ..., d_k$ and $T \in \mathbb{F}^{d_1} \otimes \cdots \otimes \mathbb{F}^{d_k}$, whether $R(T) \leq r$.

Warning: this does not mean R(T) is computable!

Proof: First check if any flattening rank of T is > r; if yes, then R(T) > r and we are done.

Otherwise, re-embed T in $W = \mathbb{F}^{\lfloor r \rfloor} \otimes \cdots \otimes \mathbb{F}^{\lfloor r \rfloor}$.

Corollary: Let \mathbb{F} be a "computable field".

For every $r \in \mathbb{R}$, there exists an algorithm which determines for given $d_1, ..., d_k$ and $T \in \mathbb{F}^{d_1} \otimes \cdots \otimes \mathbb{F}^{d_k}$, whether $\mathbb{R}(T) \leq r$.

Warning: this does not mean R(T) is computable!

Proof: First check if any flattening rank of T is > r; if yes, then R(T) > r and we are done.

Otherwise, re-embed T in $W = \mathbb{F}^{\lfloor r \rfloor} \otimes \cdots \otimes \mathbb{F}^{\lfloor r \rfloor}$.

Evaluate the polynomials $f_1,...,f_\ell$ defining subvariety $W_{\leq r}$ on T.

Corollary: Let \mathbb{F} be a "computable field".

For every $r \in \mathbb{R}$, **there exists** an algorithm which determines for given $d_1, ..., d_k$ and $T \in \mathbb{F}^{d_1} \otimes \cdots \otimes \mathbb{F}^{d_k}$, whether $R(T) \leq r$.

Warning: this does not mean R(T) is computable!

Proof: First check if any flattening rank of T is > r; if yes, then R(T) > r and we are done.

Otherwise, re-embed T in $W = \mathbb{F}^{\lfloor r \rfloor} \otimes \cdots \otimes \mathbb{F}^{\lfloor r \rfloor}$.

Evaluate the polynomials $f_1,...,f_\ell$ defining subvariety $W_{\leq r}$ on T. If all f_i vanish on T, then $\mathbf{R}(T) \leq r$; otherwise $\mathbf{R}(T) > r$.

Corollary: Let \mathbb{F} be a "computable field".

For every $r \in \mathbb{R}$, **there exists** an algorithm which determines for given $d_1, ..., d_k$ and $T \in \mathbb{F}^{d_1} \otimes \cdots \otimes \mathbb{F}^{d_k}$, whether $R(T) \leq r$.

Warning: this does not mean R(T) is computable!

Proof: First check if any flattening rank of T is > r; if yes, then R(T) > r and we are done.

Otherwise, re-embed T in $W = \mathbb{F}^{\lfloor r \rfloor} \otimes \cdots \otimes \mathbb{F}^{\lfloor r \rfloor}$.

Evaluate the polynomials $f_1,...,f_\ell$ defining subvariety $W_{\leq r}$ on T. If all f_i vanish on T, then $\mathbf{R}(T) \leq r$; otherwise $\mathbf{R}(T) > r$.

Corollary: The set $\mathcal{R} = \{ \mathbb{R}(T) : T \in \mathbb{F}^{d_1} \otimes ... \otimes \mathbb{F}^{d_k} \}$ is well-ordered: any sequence $r_1 \geq r_2 \geq ...$ in \mathcal{R} eventually stabilizes.

Corollary: The set $\mathcal{R} = \{ \mathbb{R}(T) : T \in \mathbb{F}^{d_1} \otimes ... \otimes \mathbb{F}^{d_k} \}$ is well-ordered: any sequence $r_1 \geq r_2 \geq ...$ in \mathcal{R} eventually stabilizes.

Proof: For fixed $d_1,...,d_k$, $\mathcal{R}_d=\{\mathbf{R}(T):T\in\mathbb{F}^{d_1}\otimes...\otimes\mathbb{F}^{d_k}\}$

is well-ordered: if $r_1 \geq r_2 \geq \dots$ is a non-increasing sequence in \mathcal{R}_d , then

$$V_{\leq r_1} \supseteq V_{\leq r_2} \supseteq \dots$$

is a non-increasing sequence of subvarieties.

Corollary: The set $\mathcal{R} = \{ \mathbb{R}(T) : T \in \mathbb{F}^{d_1} \otimes ... \otimes \mathbb{F}^{d_k} \}$ is well-ordered: any sequence $r_1 \geq r_2 \geq ...$ in \mathcal{R} eventually stabilizes.

Proof: For fixed $d_1, ..., d_k$,

$$\mathcal{R}_d = \left\{ \underset{\sim}{\mathbf{R}}(T) : T \in \mathbb{F}^{d_1} \otimes \ldots \otimes \mathbb{F}^{d_k} \right\}$$

is well-ordered: if $r_1 \geq r_2 \geq \dots$ is a non-increasing sequence in \mathcal{R}_d , then

$$V_{\leq r_1} \supseteq V_{\leq r_2} \supseteq \dots$$

is a non-increasing sequence of subvarieties. Noetherianity:

$$\exists N \forall n \ge N : V_{\le r_n} = V_{\le r_{n+1}}.$$

Corollary: The set $\mathcal{R} = \{ \mathbb{R}(T) : T \in \mathbb{F}^{d_1} \otimes ... \otimes \mathbb{F}^{d_k} \}$ is well-ordered: any sequence $r_1 \geq r_2 \geq ...$ in \mathcal{R} eventually stabilizes.

Proof: For fixed $d_1,...,d_k$, $\mathcal{R}_d=\{\mathbf{R}(T):T\in\mathbb{F}^{d_1}\otimes...\otimes\mathbb{F}^{d_k}\}$

is well-ordered: if $r_1 \geq r_2 \geq \dots$ is a non-increasing sequence in \mathcal{R}_d , then

$$V_{\leq r_1} \supseteq V_{\leq r_2} \supseteq \dots$$

is a non-increasing sequence of subvarieties. Noetherianity:

 $\exists N \forall n \geq N: V_{\leq r_n} = V_{\leq r_{n+1}}. \text{ So } \mathcal{R}_d \text{ is well-ordered for fixed } d.$

Corollary: The set $\mathcal{R} = \{ \mathbb{R}(T) : T \in \mathbb{F}^{d_1} \otimes ... \otimes \mathbb{F}^{d_k} \}$ is well-ordered: any sequence $r_1 \geq r_2 \geq ...$ in \mathcal{R} eventually stabilizes.

Proof: For fixed $d_1,...,d_k$, $\mathcal{R}_d=\{\mathbf{R}(T):T\in\mathbb{F}^{d_1}\otimes...\otimes\mathbb{F}^{d_k}\}$

is well-ordered: if $r_1 \geq r_2 \geq \dots$ is a non-increasing sequence in \mathcal{R}_d , then

$$V_{\leq r_1} \supseteq V_{\leq r_2} \supseteq \dots$$

is a non-increasing sequence of subvarieties. Noetherianity:

 $\exists N \forall n \geq N : V_{\leq r_n} = V_{\leq r_{n+1}}.$ So \mathcal{R}_d is well-ordered for fixed d.

 $\mathcal{R} = \cup_d \mathcal{R}_d$, and new asymptotic tensor ranks grow with d.

(Generalised) Strassen's conjecture: $\underbrace{\mathbb{R}(T)}$ is equal to its largest flattening rank.

(Generalised) Strassen's conjecture: $\underbrace{\mathbb{R}(T)}$ is equal to its largest flattening rank.

This implies: $\mathcal{R} = \{0, 1, 2, 3, ...\}.$

(Generalised) Strassen's conjecture: $\underbrace{\mathbb{R}(T)}$ is equal to its largest flattening rank.

This implies: $\mathcal{R} = \{0, 1, 2, 3, ...\}.$

The polynomials defining $V_{\leq r}$ for r < d would be minors of flattenings.

(Generalised) Strassen's conjecture: $\underbrace{\mathbb{R}(T)}$ is equal to its largest flattening rank.

This implies: $\mathcal{R} = \{0, 1, 2, 3, ...\}.$

The polynomials defining $V_{\leq r}$ for r < d would be minors of flattenings.

"Weak" form of the conjecture: $V_{< r}$ are always **irreducible**.

(Generalised) Strassen's conjecture: $\underbrace{\mathbb{R}(T)}$ is equal to its largest flattening rank.

This implies: $\mathcal{R} = \{0, 1, 2, 3, ...\}.$

The polynomials defining $V_{\leq r}$ for r < d would be minors of flattenings.

"Weak" form of the conjecture: $V_{\leq r}$ are always **irreducible**. Dimension argument gives a bound on the number of different ranks that can appear in $\mathbb{F}^{d_1} \otimes \cdots \otimes \mathbb{F}^{d_k}$.

Fix
$$V = \mathbb{F}^{d_1} \otimes ... \otimes \mathbb{F}^{d_k}$$
. For $A \subseteq V$, write $A^{(n)} = \{T^{\otimes n} : T \in A\}$.

Fix $V = \mathbb{F}^{d_1} \otimes ... \otimes \mathbb{F}^{d_k}$. For $A \subseteq V$, write $A^{(n)} = \{T^{\otimes n} : T \in A\}$.

Lemma: $\overline{A}^{(n)} \subseteq \operatorname{span} A^{(n)}$.

Fix $V = \mathbb{F}^{d_1} \otimes ... \otimes \mathbb{F}^{d_k}$. For $A \subseteq V$, write $A^{(n)} = \{T^{\otimes n} : T \in A\}$.

Lemma: $\overline{A}^{(n)} \subseteq \operatorname{span} A^{(n)}$.

Proof: span $A^{(n)}$ is the intersection

$$\operatorname{span} A^{(n)} = \bigcap \ker l$$

over linear forms $l: \operatorname{Sym}^n(V) \to \mathbb{F}$ which vanish on $A^{(n)}$.

If l is a linear form on $\operatorname{Sym}^n(V)$ vanishing on $A^{(n)}$, then $f(T) = l(T^{\otimes n})$ is a polynomial vanishing on A.

Fix $V = \mathbb{F}^{d_1} \otimes ... \otimes \mathbb{F}^{d_k}$. For $A \subseteq V$, write $A^{(n)} = \{T^{\otimes n} : T \in A\}$.

Lemma: $\overline{A}^{(n)} \subseteq \operatorname{span} A^{(n)}$.

Proof: span $A^{(n)}$ is the intersection

$$\operatorname{span} A^{(n)} = \bigcap \ker l$$

over linear forms $l: \operatorname{Sym}^n(V) \to \mathbb{F}$ which vanish on $A^{(n)}$.

If l is a linear form on $\operatorname{Sym}^n(V)$ vanishing on $A^{(n)}$, then $f(T) = l(T^{\otimes n})$ is a polynomial vanishing on A. Then f vanishes on \overline{A} , by defn. of the Zariski closure.

Fix $V = \mathbb{F}^{d_1} \otimes ... \otimes \mathbb{F}^{d_k}$. For $A \subseteq V$, write $A^{(n)} = \{T^{\otimes n} : T \in A\}$.

Lemma: $\overline{A}^{(n)} \subseteq \operatorname{span} A^{(n)}$.

Proof: span $A^{(n)}$ is the intersection

$$\operatorname{span} A^{(n)} = \bigcap \ker l$$

over linear forms $l: \operatorname{Sym}^n(V) \to \mathbb{F}$ which vanish on $A^{(n)}$.

If l is a linear form on $\operatorname{Sym}^n(V)$ vanishing on $A^{(n)}$, then $f(T) = l(T^{\otimes n})$ is a polynomial vanishing on A. Then f vanishes on \overline{A} , by defn. of the Zariski closure. Therefore $l(T^{\otimes n}) = 0$ for all $T \in \overline{A}$.

Fix $V = \mathbb{F}^{d_1} \otimes ... \otimes \mathbb{F}^{d_k}$. For $A \subseteq V$, write $A^{(n)} = \{T^{\otimes n} : T \in A\}$.

Lemma: $\overline{A}^{(n)} \subseteq \operatorname{span} A^{(n)}$.

Proof: span $A^{(n)}$ is the intersection

$$\operatorname{span} A^{(n)} = \bigcap \ker l$$

over linear forms $l: \operatorname{Sym}^n(V) \to \mathbb{F}$ which vanish on $A^{(n)}$.

If l is a linear form on $\mathrm{Sym}^n(V)$ vanishing on $A^{(n)}$, then $f(T)=l(T^{\otimes n})$ is a polynomial vanishing on A. Then f vanishes on \overline{A} , by defn. of the Zariski closure. Therefore $l(T^{\otimes n})=0$ for all $T\in \overline{A}$. Hence $\overline{A}\subseteq \ker l$.

Let $T\in \overline{A}$. For $n\in\mathbb{N}$, there are linearly independent $S_1,...,S_{p(n)}\in A^{(n)}$ and $\alpha_1,...,\alpha_{p(n)}\in\mathbb{F}$ s.t. $T^{\otimes n}=\sum_j \alpha_j S_j^{\otimes n}$.

Let $T\in \overline{A}$. For $n\in\mathbb{N}$, there are linearly independent $S_1,...,S_{p(n)}\in A^{(n)}$ and $\alpha_1,...,\alpha_{p(n)}\in\mathbb{F}$ s.t. $T^{\otimes n}=\sum_j \alpha_j S_j^{\otimes n}$.

Here $p(n) \leq \dim \operatorname{Sym}^n(V)$ is polynomial in n.

Let $T \in \overline{A}$. For $n \in \mathbb{N}$, there are linearly independent $S_1,...,S_{p(n)} \in A^{(n)}$ and $\alpha_1,...,\alpha_{p(n)} \in \mathbb{F}$ s.t. $T^{\otimes n} = \sum_j \alpha_j S_j^{\otimes n}$.

Here $p(n) \leq \dim \operatorname{Sym}^n(V)$ is polynomial in n.

For $m \in \mathbb{N}$

$$T^{\otimes nm} = \sum_{i_1,\dots,i_m \in [p(n)]} \bigotimes_{j=1}^m \alpha_{i_j} S_{i_j}^{\otimes n}.$$

Let $T\in \overline{A}$. For $n\in\mathbb{N}$, there are linearly independent $S_1,...,S_{p(n)}\in A^{(n)}$ and $\alpha_1,...,\alpha_{p(n)}\in\mathbb{F}$ s.t. $T^{\otimes n}=\sum_j \alpha_j S_j^{\otimes n}$.

Here $p(n) \leq \dim \operatorname{Sym}^n(V)$ is polynomial in n.

For $m \in \mathbb{N}$

$$T^{\otimes nm} = \sum_{i_1,\dots,i_m \in [p(n)]} \bigotimes_{j=1}^m \alpha_{i_j} S_{i_j}^{\otimes n}.$$

Tensor rank is subadditive:

$$\mathbf{R}(T^{\otimes nm}) \leq p(n)^m \max_{i_1, \dots, i_m \in [p(n)]} \mathbf{R}\left(\bigotimes_{j=1}^m S_{i_j}^{\otimes n}\right).$$

There exist m_i summing to m such that

$$\operatorname{R}\left(\bigotimes_{j=1}^{m} S_{i_j}^{\otimes n}\right) = \operatorname{R}\left(\bigotimes_{i=1}^{p(n)} S_i^{\otimes nm_i}\right)$$

There exist m_i summing to m such that

$$\mathbf{R}\left(\bigotimes_{j=1}^{m} S_{i_j}^{\otimes n}\right) = \mathbf{R}\left(\bigotimes_{i=1}^{p(n)} S_i^{\otimes nm_i}\right) \leq \prod_{i=1}^{p(n)} \mathbf{R}\left(S_i^{\otimes nm_i}\right)$$

where the upper bound uses submultiplicativity.

There exist m_i summing to m such that

$$\mathbf{R}\left(\bigotimes_{j=1}^{m}S_{i_{j}}^{\otimes n}\right)=\mathbf{R}\left(\bigotimes_{i=1}^{p(n)}S_{i}^{\otimes nm_{i}}\right)\leq\prod_{i=1}^{p(n)}\mathbf{R}\left(S_{i}^{\otimes nm_{i}}\right)$$

where the upper bound uses submultiplicativity.

We consider only finitely many S_i , so for every $\varepsilon>0$ there is $M(\varepsilon,n)$ such that $\ell\geq M(\varepsilon,n)$ implies $\mathbf{R}\left(S_i^{\otimes \ell}\right)^{\frac{1}{\ell}}\leq \mathbf{R}(S_i)+\varepsilon$ for all $i\in[p(n)]$. Then

There exist m_i summing to m such that

$$\mathbf{R}\left(\bigotimes_{j=1}^{m}S_{i_{j}}^{\otimes n}\right)=\mathbf{R}\left(\bigotimes_{i=1}^{p(n)}S_{i}^{\otimes nm_{i}}\right)\leq\prod_{i=1}^{p(n)}\mathbf{R}\left(S_{i}^{\otimes nm_{i}}\right)$$

where the upper bound uses submultiplicativity.

We consider only finitely many S_i , so for every $\varepsilon > 0$ there is $M(\varepsilon,n)$ such that $\ell \geq M(\varepsilon,n)$ implies $\mathbf{R}\left(S_i^{\otimes \ell}\right)^{\frac{1}{\ell}} \leq \mathbf{R}(S_i) + \varepsilon$ for all $i \in [p(n)]$. Then

$$\prod_{i=1}^{p(n)} \mathbf{R} \left(S_i^{\otimes nm_i} \right) \leq \prod_{\substack{i \in [p(n)] \\ m_i n \geq M(\varepsilon, n)}} \left(\underset{\sim}{\mathbf{R}} (S_i) + \varepsilon \right)^{m_i n} \prod_{\substack{i \in [p(n)] \\ m_i n < M(\varepsilon, n)}} B^{m_i n}.$$

where B is some upper bound on asymptotic rank in V.

$$\prod_{i=1}^{p(n)} \mathbf{R} \left(S_i^{\otimes nm_i} \right) \leq \prod_{\substack{i \in [p(n)] \\ m_i n \geq M(\varepsilon, n)}} \left(\underbrace{\mathbf{R}}(S_i) + \varepsilon \right)^{m_i n} \prod_{\substack{i \in [p(n)] \\ m_i n < M(\varepsilon, n)}} B^{m_i n}$$

where B is some upper bound on asymptotic rank in V.

$$\prod_{i=1}^{p(n)} \mathbf{R} \left(S_i^{\otimes nm_i} \right) \leq \prod_{\substack{i \in [p(n)] \\ m_i n \geq M(\varepsilon, n)}} \left(\underbrace{\mathbf{R}}(S_i) + \varepsilon \right)^{m_i n} \prod_{\substack{i \in [p(n)] \\ m_i n < M(\varepsilon, n)}} B^{m_i n}$$

where B is some upper bound on asymptotic rank in V.

Combine, use $R(S_i) \leq R[A]$ and take mn'th roots:

$$\mathbf{R}(T^{\otimes mn})^{\frac{1}{mn}} \leq p(n)^{\frac{1}{n}} (\mathbf{R}[A] + \varepsilon) B^{p(n) \frac{M(\varepsilon, n)}{mn}}.$$

$$\prod_{i=1}^{p(n)} \mathbf{R} \left(S_i^{\otimes nm_i} \right) \leq \prod_{\substack{i \in [p(n)] \\ m_i n \geq M(\varepsilon, n)}} \left(\underbrace{\mathbf{R}}(S_i) + \varepsilon \right)^{m_i n} \prod_{\substack{i \in [p(n)] \\ m_i n < M(\varepsilon, n)}} B^{m_i n}.$$

where B is some upper bound on asymptotic rank in V.

Combine, use $R(S_i) \leq R[A]$ and take mn'th roots:

$$R(T^{\otimes mn})^{\frac{1}{mn}} \leq p(n)^{\frac{1}{n}} (R[A] + \varepsilon) B^{p(n) \frac{M(\varepsilon, n)}{mn}}.$$

$$m \to \infty$$
 gives $\underset{\sim}{\mathbb{R}}(T) \le p(n)^{\frac{1}{n}} (\underset{\sim}{\mathbb{R}}[A] + \varepsilon).$

$$\prod_{i=1}^{p(n)} \mathbf{R} \left(S_i^{\otimes nm_i} \right) \leq \prod_{\substack{i \in [p(n)] \\ m_i n \geq M(\varepsilon, n)}} \left(\underset{\sim}{\mathbf{R}} (S_i) + \varepsilon \right)^{m_i n} \prod_{\substack{i \in [p(n)] \\ m_i n < M(\varepsilon, n)}} B^{m_i n}.$$

where B is some upper bound on asymptotic rank in V.

Combine, use $R(S_i) \leq R[A]$ and take mn'th roots:

$$R(T^{\otimes mn})^{\frac{1}{mn}} \leq p(n)^{\frac{1}{n}} (R[A] + \varepsilon) B^{p(n) \frac{M(\varepsilon, n)}{mn}}.$$

 $m \to \infty$ gives $\widetilde{\mathrm{R}}(T) \le p(n)^{\frac{1}{n}} (\widetilde{\mathrm{R}}[A] + \varepsilon)$. Then $\varepsilon \to 0$ and $n \to \infty$ yields $\mathrm{R}(T) \le \widetilde{\mathrm{R}}[A]$.

Extension to other parameters

- 1. Zariski-closedness + computability extends to regularizations of **admissible** functionals on a vector space:
 - subadditivity
 - submultiplicativity
 - permutation-invariance
 - invariance under non-zero scalar multiplication
 - boundedness

2

3.

Extension to other parameters

- 1. Zariski-closedness + computability extends to regularizations of **admissible** functionals on a vector space:
 - subadditivity
 - submultiplicativity
 - permutation-invariance
 - invariance under non-zero scalar multiplication
 - boundedness
- 2. Includes points in Strassen's asymptotic spectrum, such as the quantum functionals.

3.

Extension to other parameters

- 1. Zariski-closedness + computability extends to regularizations of **admissible** functionals on a vector space:
 - subadditivity
 - submultiplicativity
 - permutation-invariance
 - invariance under non-zero scalar multiplication
 - boundedness
- 2. Includes points in Strassen's asymptotic spectrum, such as the quantum functionals.
- 3. For spectral points, well-orderedness also holds across different formats using a new **growth** argument for higher-order tensors. Implies new lower bounds on the asymptotic subrank of k-tensors for k > 3.

Theorem: Over \mathbb{C} , \mathcal{R} is closed: any limit of a sequence of asymptotic ranks, is itself an asymptotic rank.

Theorem: Over \mathbb{C} , \mathcal{R} is closed: any limit of a sequence of asymptotic ranks, is itself an asymptotic rank.

Proof: Only need to check bounded increasing sequences $r_1 < r_2 < ... \le r$.

Theorem: Over \mathbb{C} , \mathcal{R} is closed: any limit of a sequence of asymptotic ranks, is itself an asymptotic rank.

Proof: Only need to check bounded increasing sequences $r_1 < r_2 < ... \le r$.

If r is not itself an asymptotic rank,

$$V_{\leq r} = V_{< r} = \cup_{i \geq 1} V_{\leq r_i}$$

writes an algebraic variety over $\mathbb C$ as a "proper" countably infinite union of proper subvarieties $V_{\leq r_i}$.

Theorem: Over \mathbb{C} , \mathcal{R} is closed: any limit of a sequence of asymptotic ranks, is itself an asymptotic rank.

Proof: Only need to check bounded increasing sequences $r_1 < r_2 < ... \le r$.

If r is not itself an asymptotic rank,

$$V_{\leq r} = V_{< r} = \cup_{i \geq 1} V_{\leq r_i}$$

writes an algebraic variety over $\mathbb C$ as a "proper" countably infinite union of proper subvarieties $V_{\leq r_i}$.

This is impossible by the Baire property for algebraic varieties.

• Discreteness of set of asymptotic ranks?

• Discreteness of set of asymptotic ranks? Known for finite \mathbb{F} [3,4]: \mathcal{R}_d is trivially discrete as there are only finitely many tensors, and one just needs the growth argument.

- Discreteness of set of asymptotic ranks? Known for finite \mathbb{F} [3,4]: \mathcal{R}_d is trivially discrete as there are only finitely many tensors, and one just needs the growth argument.
- Irreducibility of the varieties of tensors with bounded asymptotic rank?

- Discreteness of set of asymptotic ranks? Known for finite \mathbb{F} [3,4]: \mathcal{R}_d is trivially discrete as there are only finitely many tensors, and one just needs the growth argument.
- Irreducibility of the varieties of tensors with bounded asymptotic rank? Implies version of Strassen's asymptotic rank conjecture!
- Computing the polynomials, or uniformity in r?

- Discreteness of set of asymptotic ranks? Known for finite \mathbb{F} [3,4]: \mathcal{R}_d is trivially discrete as there are only finitely many tensors, and one just needs the growth argument.
- Irreducibility of the varieties of tensors with bounded asymptotic rank? Implies version of Strassen's asymptotic rank conjecture!
- Computing the polynomials, or uniformity in r?
- Using the Zariski-closedness to compare asymptotic ranks in a new non-trivial way, e.g. of MM_n ?

- Discreteness of set of asymptotic ranks? Known for finite \mathbb{F} [3,4]: \mathcal{R}_d is trivially discrete as there are only finitely many tensors, and one just needs the growth argument.
- Irreducibility of the varieties of tensors with bounded asymptotic rank? Implies version of Strassen's asymptotic rank conjecture!
- Computing the polynomials, or uniformity in r?
- Using the Zariski-closedness to compare asymptotic ranks in a new non-trivial way, e.g. of MM_n ?

Thank you!

Appendix

Bibliography

- [1] V. Strassen, Gaussian elimination is not optimal, Numer. Math. **13**, 354 (1969)
- [2] J. Alman, R. Duan, V. V. Williams, Y. Xu, Z. Xu, and R. Zhou, More Asymmetry Yields Faster Matrix Multiplication, (2024)
- [3] A. Blatter, J. Draisma, and F. Rupniewski, A Tensor Restriction Theorem over Finite Fields, (2022)
- [4] J. Briët, M. Christandl, I. Leigh, A. Shpilka, and J. Zuiddam, Discreteness of Asymptotic Tensor Ranks, in 15th Innovations in Theoretical Computer Science Conference (ITCS 2024), Vol. 287 (2024), pp. 1–14