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A k-tensor over your favorite field I is an element
TeFh @ @F.
The tensor rank R(7T') of T is the smallest r such that

T = iuu & - & U
—1

1

tor some vectors u, ; € Fi.
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Tensor rank: examples

Matrices are 2-tensors. Here, R(M) is the usual rank of a matrix.
Interesting tensors:

e Unit k-tensor: <r >, = 2;1 e, ® - ® e,;. Rank: R(<r>)=r
o W -state:

W=61®61®62+61®62®61—|—62®61®61
= |001) + ]010) + |100) € C? @ C? ® C2
Rank: R(W) =3

+ Matrix multiplication tensor: MM, , , € C*** @ C**¢ @ C**°
given by

MM, .= j>j E, QL Lk,
=1 7

Rank of MM, = MM, ,, "
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Asymptotic tensor rank

Say T, inU, @ V, ® W, for v = 1, 2 are two 3-tensors.
Define Kronecker product:
T]. &TZ :Tl ®T2 = U1®V1®W1®U2®V2®W2

U100,)® (V1 @V,) ®@ (W, @ W,)
Similarly T*" = T XK - XK T.

1%

Asymptotic tensor rank of a tensor 7":

R(T) = lim R(T®")

-~ n— oo

Well-defined: R(T} X T5) < R(7T})R(T}), and Fekete’s lemma.

1
n
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Asymptotic tensor rank: example

Matrix multiplication exponent: smallest w s.t. R(MM,_ ) = O(n*):
w = lim log,(R(MM,,))

n—o0
= lim logym (R(MM,.m))
m—00
b log, R(MM,.»)
mM— 00 10g2(2m)
. log, R(MM5™)
M — 00 m
— 11_1)11 log, R(MM?m)l/m) = log, (R(MM,))

Strassen [1]: R(MM,) < 7, so w < log, (7).
Best bound: 2 < w < 2.371339 [2]
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R is characterized by polynomials
Theorem: Letr € R, dy,...,d, €N,V =F% ® .- @ F¢. Then

Vo, ={T € V:R(T) <r}

is Zariski-closed, i.e., there exist polynomials f;, ..., f, such that
V., is the joint zero set of f1, ..., fy:

V., ={TeV:f(T)=0Vi=1,..0}
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Zariski-closedness

For A C V define its Zariski-closure by
A={T eV :VfeF[V], fla=0= f(T)=0}.

Definition: For A C V let R[A] = supyc4 R(T).

Theorem:If A C V then R[A] = R[A].

~~

Follows easily from main result. Other direction: Need to show that
V... is Zariski-closed. Now

B[ngr] — R[V<r] ST

~~

soevery ' € V_ . has R(T) <r,henceT € V_,,soV_, CV_

,r-.o



Computability



Computability

Corollary: Let IF be a “computable field”.
For every r € R, there exists an algorithm which determines for
givendy,...,d; and T € F1 ® --- ® F%, whether R(T') < -



Computability

Corollary: Let IF be a “computable field”.
For every r € R, there exists an algorithm which determines for
givendy,...,d; and T € F1 ® --- ® F%, whether R(T') < -

Warning: this does not mean R(7") is computable!



Computability

Corollary: Let IF be a “computable field”.
For every r € R, there exists an algorithm which determines for
givendy,...,d; and T € F1 ® --- ® F%, whether R(T') < -

Warning: this does not mean R(7") is computable!

Proof: First check if any flattening rank of 7' is > r; if yes,
then R(T") > r and we are done.



Computability

Corollary: Let IF be a “computable field”.
For every r € R, there exists an algorithm which determines for
givendy,...,d; and T € F1 ® --- ® F%, whether R(T') < -

Warning: this does not mean R(7") is computable!

Proof: First check if any flattening rank of 7' is > r; if yes,
then R(T") > r and we are done.

Otherwise, re-embed Tin W = Fl"l @ ... @ Fl7].



Computability

Corollary: Let IF be a “computable field”.
For every r € R, there exists an algorithm which determines for
givendy,...,d; and T € F1 ® --- ® F%, whether R(T') < -

Warning: this does not mean R(7") is computable!

Proof: First check if any flattening rank of 7' is > r; if yes,
then R(T") > r and we are done.

Otherwise, re-embed Tin W = Fl"l @ ... @ Fl7].

Evaluate the polynomials fi, ..., f, definining subvariety W,
onT.



Computability

Corollary: Let IF be a “computable field”.
For every r € R, there exists an algorithm which determines for
givendy,...,d; and T € F1 ® --- ® F%, whether R(T') < -

Warning: this does not mean R(7") is computable!

Proof: First check if any flattening rank of 7' is > r; if yes,
then R(T") > r and we are done.

Otherwise, re-embed Tin W = Fl"l @ ... @ Fl7].

Evaluate the polynomials fi, ..., f, definining subvariety W,
on T'.If all f; vanish on T', then R(T") < r; otherwise
R(T) > r. |

~



Computability

Corollary: Let IF be a “computable field”.
For every r € R, there exists an algorithm which determines for
givendy,...,d; and T € F1 ® --- ® F%, whether R(T') < -

Warning: this does not mean R(7") is computable!

Proof: First check if any flattening rank of 7' is > r; if yes,
then R(T") > r and we are done.

Otherwise, re-embed Tin W = Fl"l @ ... @ Fl7].

Evaluate the polynomials fi, ..., f, definining subvariety W,
on T'.If all f; vanish on T', then R(T") < r; otherwise
R(T) > r. |

~



Well-orderedness

Corollary: Theset R = {R(T): T € F @ ... @ F% } is well-
ordered: any sequence r; > r, > ... in K eventually stabilizes.



Well-orderedness

Corollary: Theset R = {R(T): T € F @ ... @ F% } is well-
ordered: any sequence r; > r, > ... in K eventually stabilizes.

Proof: For fixed d, ..., d,
R;={R(T): TEFh ®..QF4*}
is well-ordered: if r; > r, > ... is a non-increasing sequence
in R ;, then
Ve, 2V

= Ser

2 ...

is a non-increasing sequence of subvarieties.



Well-orderedness

Corollary: Theset R = {R(T): T € F @ ... @ F% } is well-
ordered: any sequence r; > r, > ... in K eventually stabilizes.

Proof: For fixed d, ..., d,
R;={R(T): TEFh ®..QF4*}
is well-ordered: if r; > r, > ... is a non-increasing sequence
in R ;, then
Ve, 2V

= Ser

2 ...

is a non-increasing sequence of subvarieties. Noetherianity:

INVR >NV, =V, .



Well-orderedness

Corollary: Theset R = {R(T): T € F @ ... @ F% } is well-
ordered: any sequence r; > r, > ... in K eventually stabilizes.

Proof: For fixed d, ..., d,
R;={R(T): TEFh ®..QF4*}
is well-ordered: if r; > r, > ... is a non-increasing sequence
in R ;, then
Ve, 2V

= Ser

2 ...

is a non-increasing sequence of subvarieties. Noetherianity:
dNVn > NV, =V, .SoR,iswell-ordered for
fixed d.



Well-orderedness

Corollary: Theset R = {R(T): T € F @ ... @ F% } is well-
ordered: any sequence r; > r, > ... in K eventually stabilizes.

Proof: For fixed d, ..., d,
R;={R(T): TEFh ®..QF4*}
is well-ordered: if r; > r, > ... is a non-increasing sequence
in R ;, then
Ve, 2V

= Ser

2 ...

is a non-increasing sequence of subvarieties. Noetherianity:
dNVn > NV, =V, .SoR,iswell-ordered for
fixed d.

R = U, R, and new asymptotic tensor ranks grow with d. B
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Well-orderedness and Strassen’s conjecture

(Generalised) Strassen’s conjecture: R(7') is equal to its largest
flattening rank.

This implies: X = {0,1, 2,3, ...}.

The polynomials defining V_,. for 7 < d would be minors of
flattenings.

“"Weak” form of the conjecture: V_,. are always irreducible.
Dimension argument gives a bound on the number of different
ranks that can appear in F41 ® --- ® F.
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Proof: span A™) is the intersection
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over linear forms [ : Sym™ (V) — F which vanish on A™).

If | is a linear form on Sym™ (V) vanishing on A(™ then
f(T) = I(T®™) is a polynomial vanishing on A. Then f
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[(T®") = 0forall T € A. Hence A C kerl. |
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Proof of the main result

Let T € A.For n € N, there are linearly independent

S1sees Spm) € A™ and o, ..., Qp(ny € F 8.t TO" = Zj ;S5
Here p(n) < dim Sym"™ (V) is polynomial in n.

Form € N
T®nm — Z ® azjs,im

Tensor rank is subadditive:

R(T®™™) <p(n)™  max . R (® S?”) .
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p(n)
[ITrR(s7™™) < I @®©S)+o™" [ B™"
i=1 i€[p(n)] i€[p(n)]

m,n>M(e,n) m;,n<M(e,n)

where B is some upper bound on asymptotic rank in V.

Combine, use R(S;) < R[A] and take mn’th roots:

M(e,n)

R(T®™)™5 < p(n)= (R[A] + ) BP™

1

m — oo gives R(T') < p(n)»(R|A] +¢€). Thene — 0and n — oo
yields R(T') < R|[A]. |

~~
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Extension to other parameters

1.

Zariski-closedness + computability extends to regularizations of
admissible functionals on a vector space:

- subadditivity

o submultiplicativity

« permutation-invariance

o invariance under non-zero scalar multiplication

« boundedness

. Includes points in Strassen’s asymptotic spectrum, such as the

quantum functionals.

. For spectral points, well-orderedness also holds across different

formats using a new growth argument for higher-order tensors.
Implies new lower bounds on the asymptotic subrank of k-
tensors for £ > 3.
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Closedness of X over C

Theorem: Over C, X is closed: any limit of a sequence of
asymptotic ranks, is itself an asymptotic rank.

Proof: Only need to check bounded increasing sequences
r<ry<..<T.
If 7 is not itself an asymptotic rank,

Vo, =V =Uix Vgri
writes an algebraic variety over C as a “proper” countably
infinite union of proper subvarieties V_,. .

This is impossible by the Baire property for algebraic
varieties.
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What’s next?

« Discreteness of set of asymptotic ranks? Known for finite ¥ [3,4]:
R ; is trivially discrete as there are only finitely many tensors,
and one just needs the growth argument.

o Irreducibility of the varieties of tensors with bounded asymptotic
rank? Implies version of Strassen’s asymptotic rank conjecture!

« Computing the polynomials, or uniformity in 7?

« Using the Zariski-closedness to compare asymptotic ranks in a
new non-trivial way, e.g. of MM, ?

Thank you!
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