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Tensor rank

A 𝑘-tensor over your favorite field 𝔽 is an element

𝑇 ∈ 𝔽𝑑1 ⊗⋯⊗ 𝔽𝑑𝑘 .

The tensor rank R(𝑇 ) of 𝑇  is the smallest 𝑟 such that

𝑇 =∑
𝑟

𝑖=1
𝑢1,𝑖 ⊗⋯⊗ 𝑢𝑘,𝑖

for some vectors 𝑢𝑗,𝑖 ∈ 𝔽𝑑𝑗 .

2 / 21



Tensor rank

Tensor rank: examples

Matrices are 2-tensors. 

3 / 21



Tensor rank

Tensor rank: examples

Matrices are 2-tensors. Here, R(𝑀) is the usual rank of a matrix.

3 / 21



Tensor rank

Tensor rank: examples

Matrices are 2-tensors. Here, R(𝑀) is the usual rank of a matrix.
Interesting tensors:
• Unit 𝑘-tensor: <𝑟>𝑘 = ∑𝑟

𝑖=1 𝑒𝑖 ⊗⋯⊗ 𝑒𝑖. 

3 / 21



Tensor rank

Tensor rank: examples

Matrices are 2-tensors. Here, R(𝑀) is the usual rank of a matrix.
Interesting tensors:
• Unit 𝑘-tensor: <𝑟>𝑘 = ∑𝑟

𝑖=1 𝑒𝑖 ⊗⋯⊗ 𝑒𝑖. Rank: R(<𝑟>) = 𝑟

3 / 21



Tensor rank

Tensor rank: examples

Matrices are 2-tensors. Here, R(𝑀) is the usual rank of a matrix.
Interesting tensors:
• Unit 𝑘-tensor: <𝑟>𝑘 = ∑𝑟

𝑖=1 𝑒𝑖 ⊗⋯⊗ 𝑒𝑖. Rank: R(<𝑟>) = 𝑟
• 𝑊 -state:

𝑊 = 𝑒1 ⊗ 𝑒1 ⊗ 𝑒2 + 𝑒1 ⊗ 𝑒2 ⊗ 𝑒1 + 𝑒2 ⊗ 𝑒1 ⊗ 𝑒1
= |001⟩ + |010⟩ + |100⟩ ∈ ℂ2 ⊗ℂ2 ⊗ℂ2

3 / 21



Tensor rank

Tensor rank: examples

Matrices are 2-tensors. Here, R(𝑀) is the usual rank of a matrix.
Interesting tensors:
• Unit 𝑘-tensor: <𝑟>𝑘 = ∑𝑟

𝑖=1 𝑒𝑖 ⊗⋯⊗ 𝑒𝑖. Rank: R(<𝑟>) = 𝑟
• 𝑊 -state:

𝑊 = 𝑒1 ⊗ 𝑒1 ⊗ 𝑒2 + 𝑒1 ⊗ 𝑒2 ⊗ 𝑒1 + 𝑒2 ⊗ 𝑒1 ⊗ 𝑒1
= |001⟩ + |010⟩ + |100⟩ ∈ ℂ2 ⊗ℂ2 ⊗ℂ2

Rank: R(𝑊) = 3

3 / 21



Tensor rank

Tensor rank: examples

Matrices are 2-tensors. Here, R(𝑀) is the usual rank of a matrix.
Interesting tensors:
• Unit 𝑘-tensor: <𝑟>𝑘 = ∑𝑟

𝑖=1 𝑒𝑖 ⊗⋯⊗ 𝑒𝑖. Rank: R(<𝑟>) = 𝑟
• 𝑊 -state:

𝑊 = 𝑒1 ⊗ 𝑒1 ⊗ 𝑒2 + 𝑒1 ⊗ 𝑒2 ⊗ 𝑒1 + 𝑒2 ⊗ 𝑒1 ⊗ 𝑒1
= |001⟩ + |010⟩ + |100⟩ ∈ ℂ2 ⊗ℂ2 ⊗ℂ2

Rank: R(𝑊) = 3
• Matrix multiplication tensor: MM𝑎,𝑏,𝑐 ∈ ℂ𝑎×𝑏 ⊗ℂ𝑏×𝑐 ⊗ℂ𝑎×𝑐

given by

MM𝑎,𝑏,𝑐 =∑
𝑎

𝑖=1
∑
𝑏

𝑗=1
∑
𝑐

𝑘=1
𝐸𝑖,𝑗 ⊗𝐸𝑗,𝑘 ⊗𝐸𝑖,𝑘

3 / 21



Tensor rank

Tensor rank: examples

Matrices are 2-tensors. Here, R(𝑀) is the usual rank of a matrix.
Interesting tensors:
• Unit 𝑘-tensor: <𝑟>𝑘 = ∑𝑟

𝑖=1 𝑒𝑖 ⊗⋯⊗ 𝑒𝑖. Rank: R(<𝑟>) = 𝑟
• 𝑊 -state:

𝑊 = 𝑒1 ⊗ 𝑒1 ⊗ 𝑒2 + 𝑒1 ⊗ 𝑒2 ⊗ 𝑒1 + 𝑒2 ⊗ 𝑒1 ⊗ 𝑒1
= |001⟩ + |010⟩ + |100⟩ ∈ ℂ2 ⊗ℂ2 ⊗ℂ2

Rank: R(𝑊) = 3
• Matrix multiplication tensor: MM𝑎,𝑏,𝑐 ∈ ℂ𝑎×𝑏 ⊗ℂ𝑏×𝑐 ⊗ℂ𝑎×𝑐

given by

MM𝑎,𝑏,𝑐 =∑
𝑎

𝑖=1
∑
𝑏

𝑗=1
∑
𝑐

𝑘=1
𝐸𝑖,𝑗 ⊗𝐸𝑗,𝑘 ⊗𝐸𝑖,𝑘

Rank of MM𝑛 = MM𝑛,𝑛,𝑛: ?
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≅ (𝑈1 ⊗ 𝑈2) ⊗ (𝑉1 ⊗ 𝑉2) ⊗ (𝑊1 ⊗𝑊2)
Similarly 𝑇⊠𝑛 = 𝑇 ⊠⋯⊠ 𝑇 .

Asymptotic tensor rank of a tensor 𝑇 :

R
～
(𝑇 ) = lim

𝑛→∞
R(𝑇⊠𝑛)

1
𝑛

Well-defined: R(𝑇1 ⊠ 𝑇2) ≤ R(𝑇1)R(𝑇2), and Fekete’s lemma.
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2 )

𝑚

= lim
𝑚→∞

log2 R(MM⊠𝑚
2 )1/𝑚) = log2(R～(MM2))

Strassen [1]: R(MM2) ≤ 7, so 𝜔 ≤ log2(7).

Best bound: 2 ≤ 𝜔 ≤ 2.371339 [2]
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𝑉≤𝑟 = {𝑇 ∈ 𝑉 : R
～
(𝑇 ) ≤ 𝑟}

is Zariski-closed, i.e., there exist polynomials 𝑓1,…, 𝑓ℓ such that
𝑉≤𝑟 is the joint zero set of 𝑓1,…, 𝑓ℓ:

𝑉≤𝑟 = {𝑇 ∈ 𝑉 : 𝑓𝑖(𝑇 ) = 0∀𝑖 = 1,…, ℓ}
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～
(𝑇 ).

Theorem : If 𝐴 ⊆ 𝑉  then R
～
[𝐴] = R

～
[𝐴].

Follows easily from main result. Other direction: Need to show that
𝑉≤𝑟 is Zariski-closed. Now

R
～
[𝑉≤𝑟] = R

～
[𝑉≤𝑟] ≤ 𝑟

so every 𝑇 ∈ 𝑉≤𝑟 has R
～
(𝑇 ) ≤ 𝑟, hence 𝑇 ∈ 𝑉≤𝑟, so 𝑉≤𝑟 ⊆ 𝑉≤𝑟.
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“Weak” form of the conjecture: 𝑉≤𝑟 are always irreducible.
Dimension argument gives a bound on the number of different
ranks that can appear in 𝔽𝑑1 ⊗⋯⊗ 𝔽𝑑𝑘 .
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1. Zariski-closedness + computability extends to regularizations of
admissible functionals on a vector space:
• subadditivity
• submultiplicativity
• permutation-invariance
• invariance under non-zero scalar multiplication
• boundedness

2. Includes points in Strassen’s asymptotic spectrum, such as the
quantum functionals.

3. For spectral points, well-orderedness also holds across different
formats using a new growth argument for higher-order tensors.
Implies new lower bounds on the asymptotic subrank of 𝑘-
tensors for 𝑘 > 3.
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writes an algebraic variety over ℂ as a “proper” countably
infinite union of proper subvarieties 𝑉≤𝑟𝑖 .

This is impossible by the Baire property for algebraic
varieties. ∎
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new non-trivial way, e.g. of MM𝑛?
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