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3D reconstruction

2d pictures

given images taken by
unknown cameras, want

to recover

3d modell
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Reconstruct 3D scenes and camera poses from 2D images

Rome in a Day: S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, S. Seitz, R. Szeliski
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3D reconstruction pipeline

Input:
2D images

Image
matching

Identify common
points and lines
on given images

Algebraic

reconstruction

Reconstruct 3D points and
lines & camera poses

m

Output:
3D scene & cameras

nonlinear inverse problem:
Compute fiber ��1(y) of algebraic joint camera map
� : (C ⇥ X )/G 99K Y
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Measurements are noisy, and often corrupted with outliers.
RANSAC (RANdom SAmple Consensus) provides robust estimation !

1) Randomly select a subset of the data

2) Fit a model to the selected subset

3) Determine the number of outliers

4) Repeat steps 1-3 to find a consensus (& outliers)

Example: fitting a line to points

few outliers!
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Observations are often noisy, and can even be corrupted with outliers.
RANSAC (RANdom SAmple Consensus) provides robust estimation !

1) Randomly select a subset of the data

2) Fit a model to the selected subset

3) Determine the number of outliers

4) Repeat steps 1-3 to find a consensus (& outliers)

2d pictures

�!

3d modell

for general algebraic inverse problems, step 2) means to solve a

system of polynomial equations!

need to do this very fast, say in < 1 ms! (due to step 4))
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Minimal problems

Computer vision engineers call an algebraic map a minimal problem if its
generic complex fiber is

1) non-empty (otherwise no solution for noisy data) and

2) finite (to have finitely many model candidates in each RANSAC
iteration)

For fast solvers, we want generically finite maps of low degree.
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What is a camera?

A pinhole camera is a surjective linear map P3 ! P2.

It is given by a 3⇥ 4 matrix

P =

2

4
↵x � u0
0 ↵y v0
0 0 1

3

5 ·
⇥
R | t

⇤
, R 2 SO(3).

intrinsic params extrinsic params

If the intrinsic parameters are unknown, P can be (almost) any linear map,
and is called an uncalibrated / projective camera.

If the intrinsic parameters are unknown, may assume

that they are
h
1 0 0
0 1 0
0 0 1

i
, and so P di↵ers from the

“standard camera” by a rotation and translation,
called calibrated camera.
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“standard camera” by a rotation and translation,
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example minimal problem for projective cameras

Question: Let 2 projective cameras take pictures of k points:

� :(PR3⇥4)2 ⇥ (P3)k �! (P2)k ⇥ (P2)k

cameras points image 1 image 2

How many points do you need to recover the cameras, i.e., such that � has
generically finite fibers?

Observation: We can mod out PGL4:

� :
⇣
(PR3⇥4)2 ⇥ (P3)k

⌘
/PGL4 �! (P2)k ⇥ (P2)k

dim: 11 · 2 + 3k � 15 2k + 2k

Domain and codomain have equal dimension for k = 7, and indeed, in that
case, the generic fiber is finite of cardinality 3.
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example minimal problem for calibrated cameras

Question: Let 2 calibrated cameras take pictures of k points:

� :(SO(3)⇥ R3)2 ⇥ (P3)k �! (P2)k ⇥ (P2)k

cameras points image 1 image 2

How many points do you need to recover the cameras, i.e., such that � has
generically finite fibers?

Observation: We can mod out G = {
⇥
R t
0 �

⇤
2 GL4 | R 2 SO(3)}:

� :
⇣
SO(3)⇥ R3)2 ⇥ (P3)k

⌘
/G �! (P2)k ⇥ (P2)k

dim: (3 + 3) · 2 + 3k � 7 2k + 2k

Domain and codomain have equal dimension for k = 5, and indeed, in that
case, the generic fiber is finite of cardinality 20.
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another minimal example for calibrated cameras

Given: point, point on line & point on line on each 2d-image
Goal: compute point, point on line & point on line in 3-space, and

positions c1, c2, c3 2 R3 & orientations R1,R2,R3 2 SO(3) of cameras

Generally has 312 complex solutions (modulo G ).

Gröbner basis methods won’t terminate . . .
Homotopy continuation can solve in 660ms on average on Intel core
i7-7920HQ processor with 4 threads Fabbri et. al.: TRPLP – Trifocal
Relative Pose from Lines at Points, CVPR 2020
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Gröbner basis methods won’t terminate . . .
Homotopy continuation can solve in 660ms on average on Intel core
i7-7920HQ processor with 4 threads Fabbri et. al.: TRPLP – Trifocal
Relative Pose from Lines at Points, CVPR 2020

10 / 23



Fundamental Research Questions

Miraldo et al ECCV 2018

1. Can we list all minimal problems?
2. How many solutions do they have?

We do not only want to work with points, 

but also with lines and their incidences!



Our Result
We provide the first complete 

classification of all minimal problems 

when all points and lines are visible in 
each given image.



Our Result
We provide the first complete 

classification of all minimal problems 

when all points and lines are visible in 
each given image.

The 5-point problem has 20 solutions.



Our Result
We provide the first complete 

classification of all minimal problems 

when all points and lines are visible in 
each given image.

This problem has 312 solutions
  (counted over the complex numbers).

First solver for 
such a high-
degree problem 
based on state-of-
the-art algorithms 
from numerical 
algebraic 
geometry:

TRPLP – Trifocal 
Relative Pose from 
Lines at Points, 
Fabbri et. al., 
CVPR 2020



Our Result
We provide the first complete 

classification of all minimal problems 

when all points and lines are visible in 
each given image.

We measure the complexity of each 

minimal problem by computing its 
number of solutions 
(counted over the complex numbers).



What about projective cameras?

Theorem (K. Kiehn, A. Ahlbäck, K. Kohn): For projective cameras, all
minimal problems involving points and lines are:
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m (p f , pd , l f , l a ), algebraic degree

(0,0,9,0), 363636 (1,0,4,7), 666 (1,0,5,5), 232323 (1,0,6,3), 232323 (1,0,7,1), 151515 (2,0,0,12), 444 (2,0,1,10), 666 (2,0,1,10), 161616 (2,0,2,8), 444

(2,0,2,8), 121212 (2,0,2,8), 161616 (2,0,3,6), 222 (2,0,3,6), 999 (2,0,3,6), 151515 (2,0,3,6), 171717 (2,0,4,4), 999 (2,0,4,4), 121212 (2,0,4,4), 131313

(2,0,5,2), 888 (2,0,5,2), 999 (2,0,6,0), 777 (3,0,0,9), 444 (3,0,0,9), 444 (3,0,0,9), 444 (3,0,0,9), 101010 (3,0,0,9), 101010 (3,0,0,9), 121212

(3,0,1,7), 222 (3,0,1,7), 777 (3,0,1,7), 222 (3,0,1,7), 777 (3,0,1,7), 101010 (3,0,1,7), 111111 (3,0,2,5), 222 (3,0,2,5), 555 (3,0,2,5), 777

(3,0,2,5), 888 (3,0,2,5), 999 (3,0,3,3), 666 (3,0,3,3), 666 (3,0,3,3), 666 (3,0,4,1), 333 (2,1,0,10), 444 (2,1,0,10), 444 (2,1,0,10), 444

3

(2,1,0,10), 444 (2,1,0,10), 101010 (2,1,0,10), 101010 (2,1,0,10), 101010 (2,1,0,10), 101010 (2,1,1,8), 222 (2,1,1,8), 777 (2,1,1,8), 101010 (2,1,1,8), 222

(2,1,1,8), 777 (2,1,1,8), 101010 (2,1,1,8), 101010 (2,1,1,8), 111111 (2,1,2,6), 222 (2,1,2,6), 555 (2,1,2,6), 555 (2,1,2,6), 555 (2,1,2,6), 555

(2,1,2,6), 555 (2,1,2,6), 555 (2,1,3,4), 222 (2,1,3,4), 222 (2,1,3,4), 222 (2,1,3,4), 222 (2,1,4,2), 111 (2,1,4,2), 111 (2,1,5,0), 111

(4,0,0,6), 222 (4,0,0,6), 555 (4,0,0,6), 222 (4,0,0,6), 555 (4,0,0,6), 666 (4,0,0,6), 555 (4,0,0,6), 777 (4,0,1,4), 333 (4,0,1,4), 555

(4,0,1,4), 555 (4,0,1,4), 666 (4,0,2,2), 333 (4,0,2,2), 444 (4,0,3,0), 333 (3,1,0,7), 222 (3,1,0,7), 222 (3,1,0,7), 222 (3,1,0,7), 222

(3,1,0,7), 222 (3,1,0,7), 555 (3,1,0,7), 555 (3,1,0,7), 555 (3,1,0,7), 555 (3,1,0,7), 222 (3,1,0,7), 555 (3,1,0,7), 666 (3,1,0,7), 555

Table 7: Minimal problems with their associated degree.
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m (p f , pd , l f , l a ), algebraic degree

(3,1,0,7), 666 (3,1,0,7), 666 (3,1,0,7), 222 (3,1,0,7), 555 (3,1,0,7), 222 (3,1,0,7), 555 (3,1,0,7), 555 (3,1,0,7), 555 (3,1,1,5), 111

(3,1,1,5), 111 (3,1,1,5), 222 (3,1,1,5), 222 (3,1,1,5), 222 (3,1,1,5), 333 (3,1,1,5), 333 (3,1,1,5), 333 (3,1,1,5), 333 (3,1,1,5), 333

(3,1,1,5), 444 (3,1,1,5), 444 (3,1,1,5), 444 (3,1,2,3), 111 (3,1,2,3), 111 (3,1,2,3), 111 (3,1,2,3), 111 (3,1,2,3), 111 (3,1,2,3), 111

(3,1,2,3), 111 (5,0,0,3), 222 (5,0,0,3), 333 (5,0,0,3), 444 (5,0,1,1), 333 (4,1,0,4), 111 (4,1,0,4), 111 (4,1,0,4), 111 (4,1,0,4), 222

3 (4,1,0,4), 111 (4,1,0,4), 222 (4,1,0,4), 333 (4,1,0,4), 333 (4,1,0,4), 333 (4,1,0,4), 222 (4,1,0,4), 333 (4,1,0,4), 333 (4,1,0,4), 333

(4,1,1,2), 111 (4,1,1,2), 111 (4,1,1,2), 222 (4,1,1,2), 222 (4,1,2,0), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111

(3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111

(3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (3,2,0,5), 111 (6,0,0,0), 333

(5,1,0,1), 111 (5,1,0,1), 222 (4,2,0,2), 111 (4,2,0,2), 111 (4,2,0,2), 111 (4,2,0,2), 111 (4,2,0,2), 111 (4,2,0,2), 222 (4,2,0,2), 111

(4,2,0,2), 111 (4,2,1,0), 111

Table 8: Minimal problems with their associated degree.
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m (p f , pd , l f , l a ), algebraic degree

(1,0,3,6), 222 (1,0,4,4), 252525 (1,0,5,2), 303030 (1,0,6,0), 121212 (3,0,0,7), 222 (3,0,0,7), 222 (3,0,0,7), 888 (3,0,0,7), 101010 (3,0,1,5), 555

(3,0,1,5), 666 (3,0,1,5), 101010 (3,0,2,3), 444 (3,0,2,3), 666 (3,0,2,3), 777 (3,0,3,1), 333 (2,1,0,8), 222 (2,1,0,8), 999 (2,1,0,8), 222

4 (2,1,0,8), 999 (2,1,0,8), 999 (2,1,0,8), 101010 (2,1,1,6), 555 (2,1,1,6), 101010 (2,1,1,6), 555 (2,1,1,6), 101010 (2,1,1,6), 111111 (2,1,2,4), 333

(2,1,2,4), 333 (2,1,2,4), 333 (2,1,2,4), 333 (2,1,3,2), 111 (2,1,3,2), 111 (2,1,4,0), 111 (5,0,0,2), 222 (5,0,0,2), 333 (5,0,1,0), 222

(4,1,0,3), 111 (4,1,0,3), 222 (4,1,0,3), 222 (4,1,0,3), 222 (4,1,0,3), 333 (4,1,0,3), 333 (4,1,1,1), 111 (3,2,0,4), 111 (3,2,0,4), 111

(3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111 (3,2,0,4), 111

Table 9: Minimal problems with their associated degree.
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m (p f , pd , l f , l a ), algebraic degree

(1,0,3,5), 666 (1,0,4,3), 353535 (1,0,5,1), 202020 (4,0,0,4), 333 (4,0,0,4), 444 (4,0,0,4), 777 (4,0,1,2), 333 (4,0,2,0), 222 (3,1,0,5), 222

5

(3,1,0,5), 222 (3,1,0,5), 222 (3,1,0,5), 444 (3,1,0,5), 666 (3,1,0,5), 666 (3,1,0,5), 444 (3,1,0,5), 444 (3,1,0,5), 555 (3,1,1,3), 111

(3,1,1,3), 111 (3,1,1,3), 222 (3,1,1,3), 222

6 (3,0,0,6), 333 (3,0,0,6), 555 (3,0,0,6), 121212 (3,0,1,4), 555 (3,0,1,4), 888 (3,0,2,2), 333 (3,0,2,2), 444 (2,1,0,7), 555 (2,1,0,7), 555

(2,1,0,7), 101010 (2,1,0,7), 101010 (2,1,1,5), 777 (2,1,1,5), 777 (2,1,1,5), 101010 (2,1,2,3), 111 (2,1,2,3), 111 (2,1,2,3), 111

7

(2,0,0,8), 333 (2,0,1,6), 101010 (2,0,2,4), 999 (2,0,2,4), 202020 (2,0,3,2), 666 (2,0,3,2), 999 (2,0,4,0), 333

8

(1,0,3,4), 101010 (1,0,4,2), 383838 (1,0,5,0), 888

9

(0,0,6,0), 114114114

Table 10: Minimal problems with their associated degree.
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Is the number of solutions an accurate complexity measure?
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Galois width example

The Galois width of finding the roots of a univariate polynomial of degree n is

⇢
3 , if n = 4
n , else

The roots of a general quartic can be expressed in terms of the roots of its
resolvent cubic and additional square roots thereof!
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Galois width of vision minimal problems

Let 2 projective cameras take pictures of 7 points:

� :
�
(PR3⇥4)2 ⇥ (P3)7

�
/PGL4 �! (P2)7 ⇥ (P2)7

has generic fibers of size 3 and GaloisWidth(�) = 3.

Let 2 calibrated cameras take pictures of 5 points:

� :
�
(SO(3)⇥ R3)2 ⇥ (P3)5

�
/G �! (P2)5 ⇥ (P2)5

has generic fibers of size 20 and GaloisWidth(�) = 10.
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Joint-image varieties

well-known theorem:

For a fixed camera pair (P1,P2) with distinct kernels, the image of their joint
picture-taking map

�P1,P2 : P3 �! P2 ⇥ P2,

X 7�! (P1X ,P2X )

is a hypersurface.

It is defined by a bilinear equation, i.e., of the form
{(x , y) 2 P2 ⇥ P2 | x>Fy = 0} for some 3⇥ 3 matrix F = FP1,P2 , called
fundamental matrix of the camera pair.

pairs of projective cameras (P1,P2) mod PGL4 are 1-to-1 with rank-2
matrices FP1,P2 .

pairs of calibrated cameras (P1,P2) mod G are 2-to-1 with rank-2
matrices FP1,P2 that have coinciding singular values.

First reconstructing FP1,P2 and afterwards (P1,P2) explains
deg(�) = 20 = 10 · 2 = GaloisWidth(�) · 2 in the calibrated case.
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Triangulation

Typically, we need up to thousands of points to reconstruct the cameras
involved in a 3D scene, but want to reconstruct up to millions of points to
obtain a dense point cloud.

For a known camera pair (P1,P2), noisy image points (x̃ , ỹ) 2 P2 ⇥ P2 do
not lie on their joint image, i.e., x̃>F ỹ 6= 0 for F = FP1,P2 . Triangulation is
the problem of finding the best X 2 P3 such that (x̃ , ỹ) ⇡ (P1X ,P2X ):

To make sense of the latter, we pass to a�ne charts x̃ = (x̃1, x̃2, 1) and
ỹ = (ỹ1, ỹ2, 1):

min
x1,x2,y1,y2

(x1 � x̃1)
2 + (x2 � x̃2)

2 + (y1 � ỹ1)
2 + (y2 � ỹ2)

2,

(x1, x2, 1)F (y1, y2, 1)
> = 0

This optimization problem has 6 critical points generically, and its Galois
width is 6.
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2 + (y2 � ỹ2)
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Weighted triangulation

Can we find �1,�2,�3,�4 > 0 such that

min
x1,x2,y1,y2

�1(x1 � x̃1)
2 + �2(x2 � x̃2)

2 + �3(y1 � ỹ1)
2 + �4(y2 � ỹ2)

2,

(x1, x2, 1)F (y1, y2, 1)
> = 0

has less critical points?

Yes!
First, after a coordinate change (via rotating and translating), the original
unweighted problem becomes

min
z1,...,z4

(z1 � z̃1)
2 + (z2 � z̃2)

2 + (z3 � z̃3)
2 + (z4 � z̃4)

2,

a1z
2
1 � a1z

2
2 + a2z

2
3 � a2z

2
4 = 0.
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2 + �4(y2 � ỹ2)
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Weighted triangulation

Theorem (F. Rydell, G. Bökman, F. Kahl, K. Kohn):
The number of critical points of

min
z1,...,z4

�1(z1 � z̃1)
2 + �2(z2 � z̃2)

2 + �3(z3 � z̃3)
2 + �4(z4 � z̃4)

2,

a1z
2
1 � a1z

2
2 + a2z

2
3 � a2z

2
4 = 0

is generically

2 if � = (µa1, ⌫a1, µa2, ⌫a2) for some µ, ⌫ > 0,

4 if (�1,�3) = µ(a1, a2) for µ > 0 or (�2,�4) = ⌫(a1, a2) for ⌫ > 0,

6 otherwise.
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Open problem

The analogous problem for camera triples (P1,P2,P3) given noisy image
points (x̃ , ỹ , z̃) 2 R2 ⇥ R2 ⇥ R2 is

min
x1,x2,y1,y2,z1,z2

(x1 � x̃1)
2+(x2 � x̃2)

2+(y1 � ỹ1)
2+(y2 � ỹ2)

2+(z1 � z̃1)
2+(z2 � z̃2)

2,

(x1, x2, 1) ⌘ P1X

(y1, y2, 1) ⌘ P2X

(z1, z2, 1) ⌘ P3X

for some X 2 P3.

It has 47 critical points generically, and its Galois width is 47.

Can you find weights �1, . . . ,�6 > 0 such that the generic number of critical points
is as low as possible? How low can it even get?
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important challenge: algebra-geometry foundations of

rolling-shutter cameras that are the vast majority of today’s cameras:
take pictures by scanning across the scene, capturing the image row by row

(by Cmglee @ Wikipedia
https://creativecommons.org/licenses/by-sa/3.0/deed.en

changes: added black separating line)Algebraically:

The image of a line is typically a higher-degree curve.

A 3D point can appear more than once in the image.
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Algebraic Neural Network Theory . . .

is the study of neural networks with polynomial (or more generally, piecewise
rational) activation function.

Note: They can approximate arbitrary neural networks by Weierstrass approximation.

An Algebraic Complexity Theory Problem:

Fix a polynomial � 2 K[x ] of degree r > 1. A Multi-Layer Perception

(MLP) with weights W = (W1, . . . ,WL), where Wi 2 Rdi⇥di�1 , is the map
'W : Kd0 ! KdL given by the composition

'W = WL � � � . . . � � �W1,

where � is applied coordinate-wise.

Theorem (V. Shahverdi, G. Marchetti): Let char(K) = 0 or > r . For every
f 2 K[x1, . . . , xd0 ]

dL , there is an MLP such that 'W = f .

What is the smallest such MLP?
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Also...

linear convolutional networks arise by composing convolutional tensors

(generalization of sparse Toeplitz matrices), which is equivalent to
multipliying certain sparse multivariate polynomials.

Toeplitz matrices correspond to univariate polynomials: For S 2 Z>0, let

⇡S : Rk �! R[xS ]k�1,

v 7�! v0x
S(k�1) + v1x

S(k�2) + . . .+ vk�2x
S + vk�1.

Then, composing Toeplitz matrices of strides sL, . . . , s1 is equivalent to

⇡SL(wL) · · ·⇡S1(w1), where Si := s1 · · · si�1.

22 / 23
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S(k�2) + . . .+ vk�2x
S + vk�1.

Then, composing Toeplitz matrices of strides sL, . . . , s1 is equivalent to

⇡SL(wL) · · ·⇡S1(w1), where Si := s1 · · · si�1.
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Open PhD Position in my group on Algebraic Geometry in Neural

Network Theory !!!

machine learning algebraic geometry

sample complexity & expressivity dimension, degree, covering number

subnetworks & implicit bias singularities

identifiability & hidden symmetries fibers of the parametrization

optimization & gradient descent critical point theory, discriminants,
dynamical invariants
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