Sequences of three-tensors and algorithms for hard problems

8th Workshop on Algebraic Complexity Theory (WACT 2025) 3 April 2025

> Petteri Kaski Department of Computer Science Aalto University

- Based on joint work with Andreas Björklund (Lund), Radu Curticapean (Copenhagen & Regensburg), Thore Husfeldt (Copenhagen), Tomohiro Koana (Kyoto), Mateusz Michałek (Konstanz), Jesper Nederlof (Utrecht), Kevin Pratt (New York)
- Talk outline:
 - 1. Tensors, tensor rank, asymptotic rank / tensor exponents
 - 2. The asymptotic rank conjecture
 - The set cover conjecture is inconsistent with the asymptotic rank conjecture (STOC'24)
 - A faster deterministic algorithm for chromatic number under the asymptotic rank conjecture (SODA'25)
 - 3. A universal sequence of tensors for the asymptotic rank conjecture (ITCS'25)
 - 4. Work in progress:

Kronecker scaling in sequences, the balanced tripartitioning tensors, the permanent

- For a nonnegative integer d, we write $[d] = \{0, 1, \dots, d-1\}$
- ► We work in coordinates, all tensors have order three
- An element $T \in \mathbb{C}^{d \times d \times d}$ is a **tensor** of **shape** $d \times d \times d$
- ► For $i, j, k \in [d]$, we write $T_{i,j,k}$ for the entry of T at position (i, j, k)
- ► Example.

The $4 \times 4 \times 4$ tensor MM_2 is displayed below:

- ► A tensor $T \in \mathbb{C}^{d \times d \times d}$ has **rank one** if there exist three nonzero vectors $a, b, c \in \mathbb{C}^d$ such that $T_{i,j,k} = a_i b_j c_k$ for all $i, j, k \in [d]$
- ► The **rank** R(T) of a tensor $T \in \mathbb{C}^{d \times d \times d}$ is the least nonnegative integer *r* such that *T* can be written as a sum of *r* rank one tensors
- *Example*. The rank of MM₂ is 7

Preliminaries: Kronecker product and Kronecker powers

- Let $S \in \mathbb{C}^{d \times d \times d}$ and $T \in \mathbb{C}^{e \times e \times e}$ be tensors
- ► The **Kronecker product** $S \boxtimes T \in \mathbb{C}^{de \times de \times de}$ is defined for all $i, j, k \in [d]$ and $u, v, w \in [e]$ by

$$(S \boxtimes T)_{ie+u, je+v, ke+w} = S_{i,j,k} T_{u,v,w}$$

- For S ∈ C^{d×d×d} and a positive integer p, we write S^{⊠p} ∈ C^{d^p×d^p×d^p} for the Kronecker product of p copies of S
- We say that $S^{\boxtimes p}$ is the p^{th} **Kronecker power** of *S*

$$P = \left[\begin{array}{c|c} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{array} \right]$$

Tensor exponents and asymptotic rank

- ► The **exponent** $\sigma(T)$ of a tensor $T \in \mathbb{C}^{d \times d \times d}$ is the infimum of all $\sigma > 0$ such that $R(T^{\boxtimes p}) \leq d^{\sigma p + o(p)}$ holds
- Equivalently, the **asymptotic rank** of T is $\tilde{R}(T) = \lim_{p \to \infty} R(T^{\boxtimes p})^{1/p} = d^{\sigma(T)}$
- Exponents of *constant-size* tensors are fundamental to the study of algorithms
 - The exponent ω of square matrix multiplication satisfies $\omega = 2\sigma(MM_2)$ [Strassen 1986/1988]
 - ► The set cover conjecture fails if the exponent of a specific 7 × 7 × 7 tensor is sufficiently close to 1 [Björklund & K. 2024] (see also [Pratt 2024])
 - If specific large but constant-size tensors have their exponents sufficiently close to 1, then the chromatic number of a given *n*-vertex graph can be computed in O(1.99982ⁿ) time [Björklund, Curticapean, Husfeldt, K., & Pratt 2025]

Example: The $7 \times 7 \times 7$ tensor [Björklund & K. 2024]

If $\sigma(S) \leq 1.001$ then the Set Cover Conjecture is false

Strassen's theory-the asymptotic spectrum

Wigderson and Zuiddam give a comprehensive modern survey and development: https://www.math.ias.edu/~avi/PUBLICATIONS/ WigdersonZu_Final_Draft_Oct2023.pdf • Define the **worst-case** tensor exponent for $d \times d \times d$ tensors by

 $\sigma(d) = \sup_{T \in \mathbb{C}^{d \times d \times d}} \sigma(T)$

- It is immediate that σ(1) = 1; it is a nontrivial consequence of the geometry of tensors that σ(2) = 1; already σ(3) is unknown—it is known that σ(3) = 1 implies ω = 2
- ► Strassen (1988, implicit) has shown that $\sigma(d) \le 2\omega/3$ for all $d \ge 1$; the following bold conjecture has been made by many
- ► Conjecture. (Asymptotic rank conjecture) For all $d \ge 1$ it holds that $\sigma(d) = 1$
- [Strassen (1994) has conjectured $\sigma(T) = 1$ for tight and concise tensors T.]

But how to approach the asymptotic rank conjecture?

Universal objects for the asymptotic rank conjecture?

- Strassen's result $\sigma(d) \le 2\omega/3$ can be rewritten as $\sigma(d) \le \frac{4}{3}\sigma(MM_2)$
- Could one identify an explicit "universal" tensor U_d with $\sigma(d) = \sigma(U_d)$?

A universal sequence of tensors [K. & Michałek 2025]

- ► We present an explicit sequence U_d of tensors that is universal and consists of zero-one-valued tensors
- ► Towards this end, let us extend the definition of the exponent of a tensor T to a sequence T = (T_j ∈ C^{s_j×s_j×s_j : j = 1, 2, ...) of nonzero tensors}
- ► The exponent $\sigma(\mathcal{T})$ of \mathcal{T} is the infimum of all $\sigma > 0$ such that $\mathbb{R}(T_j) \leq s_j^{\sigma+o(1)}$ holds
- ► Remark.

The exponent $\sigma(S)$ of $S \in \mathbb{C}^{d \times d \times d}$ agrees with the exponent $\sigma(S)$ of the **Kronecker power sequence** $S = (S^{\boxtimes q} : q = 1, 2, ...)$

► Theorem (A universal sequence of tensors for fixed *d*). For all d = 1, 2, ... there is an explicit sequence \mathcal{U}_d with $\sigma(\mathcal{U}_d) = \sigma(d)$

Proof ideas/sketch – the Kronecker power map $K_{d,q}$

► For positive integers *d* and *q*, the **Kronecker power map**

 $\mathrm{K}_{d,q}: \mathbb{C}^{d \times d \times d} \to \mathbb{C}^{d^q \times d^q \times d^q}$ takes a tensor $S \in \mathbb{C}^{d \times d \times d}$ to its q^{th} Kronecker power $\mathrm{K}_{d,q}(S) = S^{\boxtimes q}$

- ► For a tensor $T \in \mathbb{C}^{d^q \times d^q \times d^q}$, it is convenient to index the entries $T_{I,J,K} \in \mathbb{C}$ with *q*-tuples $I = (i_1, i_2, \dots, i_q) \in [d]^q$, $J = (j_1, j_2, \dots, j_q) \in [d]^q$, $K = (k_1, k_2, \dots, k_q) \in [d]^q$
- ► The image $K_{d,q}(S) = S^{\boxtimes q}$ of a tensor $S \in \mathbb{C}^{d \times d \times d}$ is defined entrywise for all $I, J, K \in [d]^q$ by

$$S_{l,J,K}^{\boxtimes q} = S_{i_1,j_1,k_1} S_{i_2,j_2,k_2} \cdots S_{i_q,j_q,k_q}$$

- ► The linear span of the image $K_{d,q}(\mathbb{C}^{d^q \times d^q \times d^q})$ has dimension $I_{d,q} = \binom{d^{3-1+q}}{d^{3-1}}$, which grows *only polynomially in q* when *d* is constant
- ► The linear span has an explicit zero-one-valued basis $B^{(d,q,i)} \in \mathbb{C}^{d^q \times d^q \times d^q}$ with $i \in [I_{d,q}]$
- ► Take $U^{(d,q)} = \bigoplus_{i \in [I_{d,q}]} B^{(d,q,i)}$ to get the universal sequence $\mathcal{U}_d = \{U^{(d,q)} : q = 1, 2, ...\}$

Work point: The tensors $U^{(d,q)}$ are invariant under a diagonal action of S_q

Can use representation theory to approach the asymptotic rank conjecture ?

Work point:

Are there other natural sequences of tensors than the Kronecker power sequence $S, S^{\boxtimes 2}, S^{\boxtimes 3}, \dots$ of a tensor S?

Sequences that are "almost" Kronecker power sequences?

Work in progress (1/2) – [Björklund, K., Koana, Nederlof]

- ► A tensor sequence $\mathcal{T} = (T_n \in \mathbb{C}^{s_n \times s_n \times s_n} : n = 1, 2, ...)$ has the **Kronecker scaling property** if for all $\delta > 0$ there exist infinitely many d = 1, 2, ... such that for all large enough n = 1, 2, ... in an arithmetic progression the tensor T_n is a sum of at most $2^{\delta n}$ tensors, each of which is a restriction of $T_d^{\boxtimes s}$ for $s \le (1 + \delta)n/d$
- ► *Example.* Kronecker power sequences have the Kronecker scaling property
- ► Theorem. [Björklund, K., Koana, Nederlof] The tensor sequence P = (P_n ∈ C⁽³ⁿ⁾(×(³ⁿ_n)×(³ⁿ_n)) : n = 1, 2, ...) consisting of the balanced tripartitioning tensors

$$P_n(x, y, z) = \sum_{\substack{A, B, C \in \binom{[3n]}{n} \\ A \cup B \cup C = [3n]}} x_A y_B z_C$$

has the Kronecker scaling property

• *Remark.* It is known that $1 \le \sigma(\mathcal{P}) \le H(1/3)^{-1}$, where *H* is the binary entropy function

Work in progress (2/2) – [Björklund, K., Koana, Nederlof]

- The **permanent** of a square matrix $A \in \mathbb{C}^{n \times n}$ is per $A = \sum_{\pi \in S_n} \prod_{i \in [n]} A_{i,\pi(i)}$
- ► The best general algorithm known is due to Ryser (1963), who presented a simple inclusion-exclusion formula that can be used to compute the permanent with O(2ⁿn) arithmetic operations
- Theorem. [Björklund, K., Koana, Nederlof]

For all $\epsilon > 0$ there exists an algorithm that given *n* as input runs in time $O(2^{H(1/3)(\sigma(\mathcal{P})+\epsilon)n})$ and outputs an arithmetic circuit of size $O(2^{H(1/3)(\sigma(\mathcal{P})+\epsilon)n})$ for the $n \times n$ permanent

Remark. It is open whether σ(P) < H(1/3)⁻¹, but under the asymptotic rank conjecture it follows from Kronecker scaling that σ(P) = 1

Work point: Prove or disprove $\sigma(\mathcal{P}) < H(1/3)^{-1}$

Can representation theory be used here?

- Based on joint work with Andreas Björklund (Lund), Radu Curticapean (Copenhagen & Regensburg), Thore Husfeldt (Copenhagen), Tomohiro Koana (Kyoto), Mateusz Michałek (Konstanz), Jesper Nederlof (Utrecht), Kevin Pratt (New York)
- Talk outline:
 - 1. Tensors, tensor rank, asymptotic rank / tensor exponents
 - 2. The asymptotic rank conjecture
 - The set cover conjecture is inconsistent with the asymptotic rank conjecture (STOC'24)
 - A faster deterministic algorithm for chromatic number under the asymptotic rank conjecture (SODA'25)
 - 3. A universal sequence of tensors for the asymptotic rank conjecture (ITCS'25)
 - 4. Work in progress:

Kronecker scaling in sequences, the balanced tripartitioning tensors, the permanent