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WHY WHY MATRIX MULTIPLICATION??

Real-world problems of data science, physics, 
engineering are solved through linearization.

This requires manipulating huge amounts of 
data organized as rectangular arrays = matrices.

Matrix multiplication is the workhorse of 
numerical linear algebra.

Arithmetic complexity (= number of 
arithmetic operations performed) of matrix 
multiplication determines arithmetic 
complexity of all direct matrix algorithms.



STRASSEN’S FAST MATRIX MULTIPLICATION 

[Strassen 1969]

Compute 2 x 2 matrix multiplication 
using only 7 multiplications  (instead of 8). 

Apply recursively (block-wise)

M1 = (A11 + A22) × (B11 + B22)
M2 =  (A21 + A22) × B11
M3 =    A11 × (B12 - B22) 
M4 =    A22 × (B21 - B11)
M5 =  (A11+ A12) × B22
M6 = (A21 - A11) × (B11 + B12)
M7 = (A12 - A22) × (B21 + B22)

C11 = M1 + M4 - M5 + M7
C12 = M3 + M5
C21 =                 M2 + M4
C22 = M1 - M2 + M3 + M6

C21 C22

C11 C12n/2

n/2 A21 A22

A11 A12

B21 B22

B11 B12

=

T(n) = 7×T(n/2) + O(n2)
ÞT(n) = Q(nw)
w = log27 » 2.81 < 3



POST-STRASSEN IMPROVEMENTS 
• Compute n0 x n0 matrix multiplication

using only n0
w multiplications

(instead of n0
3).

•w»Apply recursively (block-wise)

2.81 [Strassen 1969] works fast in practice 
2.79 [Pan 1978]
2.78 [Bini 1979]
2.55 [Schönhage 1981]
2.50       [Pan Romani, Coppersmith Winograd 1984] 
2.48       [Strassen 1987]
2.376 [Coppersmith Winograd 1990] 
2.373     [Vassilevska Williams   2011]
2.37287 [Le Gall 2014]
2.37286 [Alman Vassilevska Williams 2020] 
2.37155 [Vassilevska Williams Xu Xu Zhou 2023]

T(n) = n0
w ×T(n/n0) + O(n2)

ÞT(n) = Q(nw)

n/n0

=



TENSORS AND MATRIX TRIPLES 

The complexity	of	matrix	
multiplication	is	measured	
by	the	rank, or rather, the 
border rank of	the matrix	
multiplication	tensor.



THE LASER METHOD

• Strassen’s	laser	method starts	with	a	tensor	of	near-minimal
border	rank	and	builds	a	large	tensor	from	it,	which	admits	a
degeneration	to	a	large	matrix	multiplication	tensor

• All	advances	since	1987	so far were	based	on	the
Coppersmith-Winograd tensor

• Barriers	to	upper	bounds were	found and clarified over the
past decade,	including	a geometric	identification	of	the
barriers	inspired	by	quantum information	theory

New methods to overcome those barriers were just 
recently set forth by algebraic geometry 

•



AI FINDS NEW FAST MATRIX MULTIPLICATION

MAIN IDEA:

Attack 3D tensor 
decomposition 
problem (which is  
NP hard) via deep 
reinforcement 
learning (DRL) 
instead of earlier 
strategies such as 
human search or 
continuous 
minimization.



NEW ALTERNATIVE METHODS

Karstadt and Schwartz [2020] developed a method to pre- 
and post-process the matrix triple U, V, W before using 
them. This does not change the exponent of the 
corresponding matrix multiplication method but improves 
(sometimes substantially) its leading cofficients. Further 
work is ongoing, jointly with many people.

Kauers and Moosbauer [2023] suggested random walks on 
the so-called flip graphs to find new fast matrix 
multiplication algorithms. These graphs, where vertices 
represent algorithms and edges local transformations or 
”flips,” encode the landscape of possible MatMul algorithms.



FLIP GRAPH METHODD

VERTICES:

MatMul algorithms

EDGES:

WHAT TO DO:

Connected by flips

Random walk on this graph!

FLIPS:



ALTERNATIVE BASIS METHODD
IMPROVEMENTS:

HOW?



SOME VERY RECENT RESULTS

MAIN IDEA:

Just sparsify U, V, and W!

A FEW HIGHLIGHTS:



MORE RESULTS



COMMUNICATION (I/O) COMPLEXITY

Two kinds of costs:
Arithmetic (FLOPs)

Communication: moving data between 
levels of a memory hierarchy (sequential case) 

over a network connecting processors (parallel case)
Communication-minimizing algorithm:

Save time, save energy.

CPU
Cache

RAM

CPU
RAM

CPU
RAM

CPU
RAM

CPU
RAM



MOORE’S LAW

Source: Graham, Snir and Patterson, eds.
Getting up to Speed: The Future of Supercomputing

CPU:
Mflops/sec
(SPECfp)

DRAM:
Mword/sec

Hardware trends: exponential growth with large gaps



PROGRESS ON I/O COMPLEXITY
Lower (and matching upper) bounds for:

BLAS, LU, Cholesky, LDLT, and QR factorizations, 
eigenvalues and singular values, i.e., 

essentially all direct methods of linear algebra.

Dense or sparse matrices
In sparse cases: BW a function of the actual FLOPs count.

Sequential, hierarchical, and parallel models

Bandwidth and latency

Compositions of linear algebra operations

Certain graph optimization problems

Fast matrix multiplication



GEOMETRIC INEQUALITIES USED

Volume of box
V = x·y·z

= ( xz · zy · yx)1/2

Thm: (Loomis & Whitney, 1949)
Volume of 3D set
V   ≤ (area(A shadow) 

· area(B shadow)
· area(C shadow) ) 1/2

x
z

z

y

x
y

A B
C

“A shadow”

“C shadow”

A B
C

V V



Thm: (Loomis & Whitney, 1949) 
 Volume of 3D set 
 V   ≤ (area(A shadow) �

 ·  area(B shadow) �
 ·  area(C shadow) ) 1/2


“A shadow”


“C shadow”


A
 B

C


V

Matrix multiplication form:

∀(i,j) ∈ n x n, 
C(i,j) = Σk A(i,k)B(k,j), 

Geometric Embedding 
Follows [Irony,Toledo,Tiskin 04], based on [Loomis & Whitney 49]

How	many	useful	FLOPs	can	we	perform		
with	access	to	S		inputs	and	outputs?	
With	O(M)	inputs/outputs	we	can	
compute	O(M3/2)	FLOPs.	
⇒We	have	to	perform
Ω(M/M3/2) I/O	per	FLOP.	
⇒	

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω= 2/1
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M
nBW



“A shadow”


“C shadow”
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GEOMETRIC EMBEDDINGG 
[Ballard, Demmel, H, Schwartz  2011a] 
Follows [Irony,Toledo,Tiskin 04], based on [Loomis & Whitney 49]

Generalized form: 
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S1

S2

S3

Read	

Read	

Read	
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Write	

Write	

Write	
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Example	of	a	parKKon,	
M	=	3	

For	a	given	run	(algorithm,	machine,	input)	
1. ParKKon	computaKons	into	segments	

of	M	reads	/	writes	

2. Any	segment		S	has	3M	inputs/outputs.	

3. Show	that	#mulKplicaKons	in	S	≤	k	

4. The	total	communicaKon	BW	is	
BW	=	BW	of	one	segment	⋅	#segments		
	≥		M	⋅	#mults	/	k	=	M	⋅	n3	/	k		
	

5. By	Loomis-Whitney:	
BW	≥	M	⋅	n3	/	(3M)3/2			

	
	

 ..
.  

 

GEOMETRIC EMBEDDINGG	



For a given run (Algorithm, Machine, Input) 

1. Consider the computation DAG: G = (V, E)
V = set of computations and inputs
E = dependencies

2. Partition G into segments S of Θ(Mω/2) vertices
(correspond to time / location adjacency)

3. Show that every S has
≥ 3M vertices with incoming / outgoing edges
⇒ perform ≥ M read/writes.

4. The total communication BW is
BW = BW of one segment  ⋅  #segments

 =  Ω(M)            ⋅  Θ (nω) / Θ(Mω/2) 
 =  Ω(nω / Mω/2 -1) 

M 
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M M 

M 
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The partitioning argument
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GRAPH EXPANSION

Input / Output 
Intermediate value 
Dependency

Computation DAG

S

RS

WS

V



RS	

WS	

S 

EXPANSION
	The Computation Directed Acyclic Graph 

CommunicaKon	Cost	is		
Graph	Expansion

Input / Output 
Intermediate value 
Dependency 

\V SS
V 

(Small-Sets)	



Let	G = (V,E)	be	a	graph	

A	is	the	normalized	adjacency	matrix		
of	a	regular	undirected	graph,	with	eigenvalues: 

1 = λ 1 ≥ λ 2 ≥ … ≥ λ n 
 γ ≡ 1 - max {λ2, | λn|}

Thm:		[Alon-Milman84,	Dodziuk84,	Alon86]	

Small	sets	expansion:	

1
2 2hγ γ≤ ≤

\V SS

EXPANSION  
[Ballard, Demmel, Holtz, S.  2011b], in the spirit of [Hong & Kung 81] 
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M1 = (A11 + A22)  ⋅ (B11 + B22)
M2 = (A21 + A22) ⋅  B11
M3 =      A11 ⋅ (B12 - B22)
M4 =      A22 ⋅ (B21 - B11)
M5 = (A11+ A12)  ⋅ B22
M6 = (A21 - A11)  ⋅ (B11 + B12)
M7 = (A12 - A22)  ⋅ (B21 + B22)

C11 = M1 + M4 - M5 + M7
C12 = M3 + M5
C21 = M2 + M4
C22 = M1 - M2 + M3 + M6

The	DAG	of	Strassen,	
n	=	2	

`	
		

7 5 4 1 3 2 6

1,1 1,2 2,1 2,2 

1,1 1,2 2,1 2,2 1,1 1,2 2,1 2,2 

Enc1A 

Dec1C 

Enc1B 



Enc1
	B	Enc1A	

Dec1C	

`	
		

The	DAG	of	Strassen,	n=4	
Dec1C 

1,1 1,2 2,1 2,2 One	recursive	level:	
•	Each	vertex	splits	into	four.	
•	MulKply	blocks	
	

Enc1
	B	Enc1A	

Dec1C	

Enc1A Enc1B 



Enclg n BEnclg nA

Declg nC

n2

n2

nω0

lg n

Dec1C

The	DAG	of	Strassen:	further	
recursive	steps	

1,1 1,2 2,1 2,2 

Recursive construction 
Given DeciC, Construct Deci+1C:
1. Duplicate 4 times
2. Connect with a cross-layer of Dec1C

ω0 = lg 7	



EsKmaKng	the	edge	expansion-	
Combinatorially	

• Dec1C is a consistency gadget:
 Mixed pays ≥ 1/12 of its edges. 

• The fraction of S vertices is consistent
   between the 1st level and the four 2nd levels 
 (deviations pay linearly). 

In S 

Not in S 

Mixed 

Enclg n BEnclg nA

Declg nC

n2

n2

nω0

lg n

ω0 = lg 7	



Is	Strassen’s	Graph	a	Good	
Expander?	
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For	n-by-n	matrices:	

For	M1/2-by-M1/2	matrices:	

For	M1/2-by-M1/2	sub-matrices		
(or	other	small	subsets):	

Summing	up	(the	parKKon	argument)	



ADVERTISEMENTT

Organizers: Peter Bürgisser (TU Berlin), Olga Holtz (UC Berkeley), Daniel 
Kressner (EPFL), J.M. Landsberg (Texas A&M), Oded Schwartz (Hebrew U 
Jerusalem), Nikhil Srivastava (UC Berkeley).



THANK YOU!

QUESTIONS?
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