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ABSTRACT

' "In theory there is
=T 9y . no difference
“ LS ! between theory and

| practice. In practice
+ there is."

Yogi Berra



WHY MATRIX MULTIPLICATION?
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Real-world problems of data science, physics,
engineering are solved through linearization.

This requires manipulating huge amounts of
data organized as rectangular arrays = matrices.

Matrix multiplication is the workhorse of
numerical linear algebra.

Arithmetic complexity (= number of
arithmetic operations performed) of matrix
multiplication determines arithmetic
complexity of all direct matrix algorithms.



STRASSEN'’S FAST MATRIX MULTIPLICATION

[Strassen 1969]

Compute 2 x 2 matrix multiplication
using only 7 multiplications (instead of 8).
Apply recursively (block-wise)

M;= (A1 +Ay) - (Byy+ By) n/2 Cy | Cp Ay | Ap B, | B
M, = (A +Ay) - By = °
M3 A11 ) (B12 - B22) n/2 G | €y Ay | A By, | By
M, = Az - (Byy-Byy)
Ms = A A(A)11+(g12) 'B|32§
= (A21-Aqq1) - (Byy T By
M7= (Az-Ayy) - (Byy + Byy) T(n) =7-T(n/2) + O(n?)
=T(n) = O(n®)

=log,7 = 2.81<3
Cy1 =My + M- Mg+ M7
Ci2= M; + M
Cy = M, + M,

Co =M;-M, + M; + Mg



POST-STRASSEN IMPROVEMENTS

« Compute n, x ny matrix multiplication
using only ny,® multiplications

(instead of ny3). ningd.

;DNAppIy recursively (block-wise)

2.81 [Strassen 1969] works fast in practice

2.79 [Pan 1978]

2.78 [Bini 1979]

2.55 [Schonhage 1981]

2.50 [Pan Romani, Coppersmith Winograd 1984]
2.48 [Strassen 1987]

2.376  [Coppersmith Winograd 1990]

2.373 [Vassilevska Williams 2011]

2.37287 [Le Gall 2014]

2.37286 [Alman Vassilevska Williams 2020]
2.37155 [Vassilevska Williams Xu Xu Zhou 2023]

T(n) = ny®-T(n/ny) + O(n?)
=T(n) = ©(n®)



TENSORS AND MATRIX TRIPLES

a b c
my={a,+a,)(b, +b,)
€, €y a a b, by my={ag+a,) b, 10 1 L 1 1 0
(Ca cJ): (a! a‘)-(bs b‘) ] ) u-| 000 0 10 1
my=a, (b,—b,} 0o 1 o 0 0 1
m,=a,(by—b,) 11 0 1 0 0 -
b, 4
b, ‘ -:'.‘26 my=(a, +a,)b, 11 0 4 0 1 0o
s R Qe 1 T e vl {0008 DS
¢ b b o m,=(8;—a, by +b,) i 0 40 1 0 1
‘ ‘ ‘1 Ca =My + = Mg+ My 10 0 1 40 1
‘ Cy=my+m; wo| oo 1 e 100
o 1 a 1 o 0 0
4 a; ay 8 g =My + 1My 111 o 0o 1 0

€y =My — My + My + My

Fig.1|Matrix multiplication tensorandalgorithms. a, Tensor T, representing
the multiplication of two 2 = 2 matrices. Tensorentries equal tolare depicted
in purple, and 0 entries are semi-transparent. The tensor specifieswhichentries
fromtheinputmatricestoread, and where towrite the result. Forexample,
asc,=a,b, + a,b,, tensor entries located at(a,, b,, c,)and (a,, b,, c,) areset to L.

The complexity of matrix
multiplication is measured
by the rank, or rather, the
border rank of the matrix
multiplication tensor.

b, Strassen's algorithm? for multiplying 2 » 2 matrices using 7 multiplications.
¢, Strassen's algorithm in tensor factor representation. The stacked factors
U, Vand W (green, purple and yellow, respectively) provide a rank7
decomposition of T; (equation (1)). The correspondence between arithmetic
operations (b) and factors (c) is shown by using the aforementioned colours.

Algorithm 1

"
A meta-algorithm parameterized by {u™, v, w{r}},=1 for computing
the matrix product C=AB. It is noted that R controls the number of
multiplications between input matrix entries.

Parameters: {u™, v}, w“}if length-n? vectors such that
= ZL u” @ v @ w'

Input: A, B: matrices of size nxn

Output: C=AB

(1) for r=1.....Rdo

(2 m, < (ua+---+ula, 2) (Vb + - +vVb2)

(3) fori=1,...n" do

(1) gewm+ - +wFmg

return G



THE LASER METHOD

 Strassen’s laser method starts with a tensor of near-minimal
border rank and builds a large tensor from it, which admits a
degeneration to a large matrix multiplication tensor

e All advances since 1987 so far were based on the
Coppersmith-Winograd tensor

* Barriers to upper bounds were found and clarified over the
past decade, including a geometric identification of the
barriers inspired by quantum information theory

 New methods to overcome those barriers were just
recently set forth by algebraic geometry



Al FINDS NEW FAST MATRIX MULTIPLICATION
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Improving the efficiency of algorithms for fundamental computations can havea
widespread impact, asit can affect the overall speed of a large amount of computations.
Matrix multiplication is one such primitive task, socurring in many systems—from
newral networks to scientific computing routines. The automatic discovery of
algorithms using machine learning offers the prospect of reaching beyond human
intuition and cutperforming the current best human-designed algorithms. However,
automating the algorithm discovery procedureisintricate, as the space of possible
algorithms isenormous. Here we report a deep reinforcement learmning approach
based on AlphaZero! for discovering efficient and provably correct algorithms for the
multiplicationof arbitrary matrices. Our agent, AlphaTensor, is trained to play a
single-player game where the objective is finding tensor decompositions withina
finite factor space. AlphaTensor discovered algorithms that outperform the state-
of-the-art complexity for many matrix sizes. Particularly relevant isthecase of 4 = 4
matricesina finite field, where AlphaTensor's algorithm improves on Strassen’s two-
lewel algorithm for the first time, toour knowledge, sinceits discovery 50 vearsago®.

We further showcase the Aexibility of AlphaTensor through different use-cases:
algorithms with state-of-the-art complexity for structured matrix multiplication and
improved practical efficiency by optimizing matrix multiplication for runtime on
specific hardware. Ourresults highlight AlphaTensor's ability to accelerate the
process of algorithmic discovery on a range of problems, and to optimize for different
criteria.

MAIN IDEA:

Attack 3D tensor
decomposition
problem (which is
NP hard) via deep
reinforcement
learning (DRL)
instead of earlier
strategies such as
human search or
continuous
minimization.



NEW ALTERNATIVE METHODS

Karstadt and Schwartz [2020] developed a method to pre-

and post-process the matrix triple U, V, W before using
them. This does not change the exponent of the
corresponding matrix multiplication method but improves
(sometimes substantially) its leading cofficients. Further
work is ongoing, jointly with many people.

Kauers and Moosbauer [2023] suggested random walks on
the so-called flip graphs to find new fast matrix
multiplication algorithms. These graphs, where vertices
represent algorithms and edges local transformations or
"flips,” encode the landscape of possible MatMul algorithmes.



FLIP GRAPH METHOD
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WHAT TO DO:
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ALTERNATIVE BASIS METHOD

Matrix Multiplication, a Little Faster

ELAYE KARSTADT and QODED SCHWARTY, The Hebrew University of Jerusalem

Strassen’s algorithm (1969 was the first sub-cubic matric multiplication algorithm. Wimogmd (1571) @m-
proved the l=ading coefficient of its complexity from 6 to 7. There have been many subssquent asympéotic
improvements. Unfortunately, most of thess haove the dimdvantage of very large, often gigantic, hidden con-
stants. Consequently, Strassen-Winograd’s O(n!%82 7} algorithm often outperforms other fast matric multipli-
cation algorithms for afl feasible matrix dimensions. The leading coefficient of Stmssen W inograd's algorithm
hns been generally believed tn be optimal for matric multiplication algorithms with o 2 % 2 base case, doe to
the lower bounds by Probest (1976) and Behouty (1995).

Surprisingly, we obtain a fuster matric multiplication algorithm, with the same base case size and asymp-
totic complevity os Strassen-Winograd's algorithm, but with the leading coefficient redoced from 6 to 5. To
this end, we extend Bodrato’s (2010) method for matrix squaring, and transform matrices to an alternative
basiz We also prove a genemalization of Probert's and Bshouty's lower bounds that holds onder change of
basiz, showing that for matrix multiplication algorithms with a 2% 2 base cose, the leading coefficient of
our algorithm cannot be further reduced, and is therefore optimal. We apply our method to other fast ma-
trix multiplication algorithms, improving their arithmetic and communication costs by significant constant
factors.

CC5 Concepts: « Mathematics of computing — Computations on matrices; » Computing methodol

| IMPROVEMENTS:

Table 1. 23 2 Fast Matrix Multiplication Algorithms?

gies — Linear algebra algorithms;
Additional Key Words and Fhmses: Fast matrix multiplication, bilinear algorithms
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- - Arithmetic .
Algorithm Audditions Complexity [0-Compleity
T J E’T
Strassen [58] 18 T 6’ | 12-M(V3-E) T - 18
Strassen-Winograd [61] 15 GmBa7 _ gy ]u_g.,u[.ﬁ._ﬂ?' o 1552
saeT_ g | 9-M(VE- )
COhurs 12 + 3 logy m -l
+ 0. lng2|.ﬁ-—iﬁ—]
Table 2 Alternative Basis Algorithms
Alcrithm Linear Improved Limear Arithmetic Improved Leading | Computations
gom [Iperations Operations | Leading Coefficient CoeHicient Baved
{2, 7 [51] 15 1z & 3 16.6%
{3, 2, 3;15) [56] &4 52 951 7. 17.375%
{Z 3, ; 203 [ 56] 78 E T 7.46 16.18%
13,3, 3, 23) [56] a7 75 721 .57 8.97%
{8, 3, 3; a0} [ 56] 1245 192 5563 236 83.17%

HOW?

wl(u-A) e (V- B)=

—

A

- B.

v(A-B) =v(WT(U-AoV-B) = Wo")T (U - §(A) oVy~ - y(B)).




SOME VERY RECENT RESULTS

Altermative Bases for New Fast Matrix Multiplication Algorithms

Olgn Haoltx* Abroham Hsu®
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MAIN IDEA:

Just sparsify U, V, and W!

A FEW HIGHLIGHTS:
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MORE RESULTS
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COMMUNICATION (I/0) COMPLEXITY

Two kinds of costs:
Arithmetic (FLOPSs)
Communication: moving data between
levels of a memory hierarchy (sequential case)
over a network connecting processors (parallel case)

Communication-minimizing algorithm:
Save time, save energy.

1A



MOORE’S LAW

Hardware trends: exponential growth with large gaps

10000
\!
cd
olo\\( "
1000 ?\) %) PR S St
B
CJ o T N
. ® :' . g ’0‘ v
_ 100 — S <l
¢ CPU: $ i :: P T8
Mflops/sec . . < *a |°
(SPECfp) p ‘.

A DRAM: ./‘ﬁ/% DRAM 3% T Year

Mword/sec

Source: Graham, Snir and Patterson, eds.
Getting up to Speed: The Future of Supercomputing



PROGRESS ON /O COMPLEXITY

Lower (and matching upper) bounds for:

BLAS, LU, Cholesky, LDL', and QR factorizations,
eigenvalues and singular values, i.e.,
essentially all direct methods of linear algebra.

Dense or sparse matrices
In sparse cases: BW a function of the actual FLOPs count.

Sequential, hierarchical, and parallel models
Bandwidth and latency
Compositions of linear algebra operations

Certain graph optimization problems

Fast matrix multiplication



GEOMETRIC INEQUALITIES USED

“C shadow”

«X

A |B ~ A|B

Thm: (Loomis & Whitney, 1949)
Volume of 3D set
V < (area(A shadow)

- area( )
- area(C shadow) ) 12

Volume of box
V=xvyz
= (xz - zy - yx)12



Geometric Embedding
Follows [Irony, Toledo, Tiskin 04], based on [Loomis & Whitney 49]

Matrix multiplication form:
V(ij) Enxn,  C()) =2, A>GK)B(k)),

How many useful FLOPs can we perform
with access to S inputs and outputs?
With O(M) inputs/outputs we can o

compute O(M3/2) FLOPs. @ c
= We have to perform — (B
Q(M/M?32) 1/0 per FLOP.
=
3 “A shadow”
BW =Q ——
M Thm: (Loomis & Whitney, 1949)

Volume of 3D set
V < (area(A shadow)
- area(B shadow)
- area(C shadow) ) 1/?



GEOMETRIC EMBEDDING

[Ballard, Demmel, H, Schwartz 2011a]
Follows [Irony, Toledo, Tiskin 04], based on [Loomis & Whitney 49]

Generalized form:
Vi, j)es,  Cl.j)=f,( g . (Alk) Bk, j))

8i.jk, (A(i, k, ), B(kz ) J))a
s k,k,,.ES,

i,j

other arguments)

“C shadow”

# FLOPs —
HFLOPs 1) A
oriore 144




GEOMETRIC EMBEDDING

For a given run (algorithm, machine, input)

1. Partition computations into segments
of M reads / writes

2. Anysegment S has 3M inputs/outputs.

3. Show that #multiplications in S = k

Time

4. The total communication BW is
BW = BW of one segment - #segments
> M- -#mults/k=M-n3/k

5. By Loomis-Whitney:

! BW = M - n3 / (3M)3/2

Example of a partition,
M=3




Time

Read
Read
Read

Write

Read
Read

Read

Write
Write

For a given run (Algorithm, Machine, Input)

1. Consider the computation DAG: G = (V, E)
V = set of computations and inputs
E = dependencies

2. Partition G into segments S of ©(M“2) vertices
(correspond to time / location adjacency)

3. Show that every S has
> 3M vertices with incoming / outgoing edges
= perform = M read/writes.

4. The total communication BW is
BW = BW of one segment - #segments
= QQ(M) - O (n®) / O(M»/2)
— Q(nm/ Moo/2 -1)



11 12 21 22

Dec,C

GRAPH EXPANSION

2,2

1.1 1,2 21

Enc,B

11 1,2 21 22

Enc,A

Computation DAG

Input / Output
o Intermediate value

¥~ Dependency




EXPANSION
The Computation Directed Acyclic Graph

@ Input/ Output
® Intermediate value

. Dependency

Communication Cost is
(Small-Sets) Graph Expansion




EXPANSION

[Ballard, Demmel, Holtz, S. 2011b], in the spirit of [Hong & Kung 81]

Let G = (V,E) be a graph

E@j]
h = min
sis<'l E(S)

A is the normalized adjacency matrix

of a regular undirected graph, with eigenvalues:
I=A,2A,2...2,
y=1-max{A, | A}

Thm: [Alon-Milman84, Dodziuk84, Alon86]

%yshs@

Small sets expansion:

= i @@S]

TS [E(S)




The DAG of Strassen,
n = 2 Dec,C

1,1 1,2 21 272

M;=(A;+Ay) (B + By)
M, = (Ay; + Ay) - By,

M; = Aj - (Bj;- By)
M, = Ay (By - Byy)
Ms=(A;+App) By
Mg=(Ay-Ay) “(By+ B
M;=(A};-Ay) (By + By)

C,=M,+M,-M;+ M,
C,=M;+ M,
C,,=M,+ M,
Cpr=M,-M, +M; + M,

1,1 1,2 21 2.2 1,1 1,2 21 2.2
Enc,A Enc,B



The DAG of Strassen, n=4

One recursive level:

e Each vertex splits into four.

e Multiply blocks

Enc,B

Enc,A



The DAG of Strassen: further
2, recursive steps  ,.c

1,1 1,2 21 2,2

Dec,, ,C | lgn

A

n®

|‘ ;I 0)02 lg 7

Enc,, ,A Enc,, ,B

|

I’l2

Recursive construction

Given Dec,C, Construct Dec,, ,C:

1. Duplicate 4 times

2. Connect with a cross-layer of Dec,C




Estimating the edge expansion-

Combinatorially
1

A ns Dec,, ,C | lgn
D Notin S | H |
|4 ;| a)0= lg 7
2\ Mixed
Enc,, ,A Enc,, ,B

|

nZ

* Dec,C is a consistency gadget:
Mixed pays = 1/12 of its edges.

 The fraction of S vertices is consistent
between the 15t level and the four 2" |evels
(deviations pay linearly).



Is Strassen’s Graph a Good

Expander? oy

For n-by-n matrices: /W\ Ign
4 Ign | ‘E S,El L =i
h(DeclgnC)= Q ; h = Imin M/\ Encig, B
s,|s|s@ E(S) . ,|
For M!2-by-M!”? matrices: n?
lgm
4 M

h(Declng)= G2 (;) = Q(Mwo/z ), w, =1g7

For M'2-by-M'"? sub-matrices
(or other small subsets):

thO/z(DeclgnC)=Q( M ) h, = min

M @2 S |S|ss

Summing up (the partition argument)

BW = Q(n al )

MCUO/Z




ADVERTISEMENT

Organizers: Peter Burgisser (TU Berlin), Olga Holtz (UC Berkeley), Daniel
Kressner (EPFL), J.M. Landsberg (Texas A&M), Oded Schwartz (Hebrew U

Jerusalem), Nikhil Srivastava (UC Berkeley).

Home

Complexity and Linear
Algebra

Tuesday, Sept. 2 - Friday, Dec. 12, 2025




THANK YOU!

QUESTIONS?
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