
FAST MATRIX
MULTIPLICATION

 OLGA HOLTZtz
UC Berkeley

 WACT 2025

Bochum, Germany

THEORY AND PRACTICEctice

ABSTRACTCT

WHY WHY MATRIX MULTIPLICATION??

Real-world problems of data science, physics,
engineering are solved through linearization.

This requires manipulating huge amounts of
data organized as rectangular arrays = matrices.

Matrix multiplication is the workhorse of
numerical linear algebra.

Arithmetic complexity (= number of
arithmetic operations performed) of matrix
multiplication determines arithmetic
complexity of all direct matrix algorithms.

STRASSEN’S FAST MATRIX MULTIPLICATION

[Strassen 1969]

Compute 2 x 2 matrix multiplication
using only 7 multiplications (instead of 8).

Apply recursively (block-wise)

M1 = (A11 + A22) × (B11 + B22)
M2 = (A21 + A22) × B11
M3 = A11 × (B12 - B22)
M4 = A22 × (B21 - B11)
M5 = (A11+ A12) × B22
M6 = (A21 - A11) × (B11 + B12)
M7 = (A12 - A22) × (B21 + B22)

C11 = M1 + M4 - M5 + M7
C12 = M3 + M5
C21 = M2 + M4
C22 = M1 - M2 + M3 + M6

C21 C22

C11 C12n/2

n/2 A21 A22

A11 A12

B21 B22

B11 B12

=

T(n) = 7×T(n/2) + O(n2)
ÞT(n) = Q(nw)
w = log27 » 2.81 < 3

POST-STRASSEN IMPROVEMENTS
• Compute n0 x n0 matrix multiplication

using only n0
w multiplications

(instead of n0
3).

•w»Apply recursively (block-wise)

2.81 [Strassen 1969] works fast in practice
2.79 [Pan 1978]
2.78 [Bini 1979]
2.55 [Schönhage 1981]
2.50 [Pan Romani, Coppersmith Winograd 1984]
2.48 [Strassen 1987]
2.376 [Coppersmith Winograd 1990]
2.373 [Vassilevska Williams 2011]
2.37287 [Le Gall 2014]
2.37286 [Alman Vassilevska Williams 2020]
2.37155 [Vassilevska Williams Xu Xu Zhou 2023]

T(n) = n0
w ×T(n/n0) + O(n2)

ÞT(n) = Q(nw)

n/n0

=

TENSORS AND MATRIX TRIPLES

The complexity	of	matrix	
multiplication	is	measured	
by	the	rank, or rather, the
border rank of	the matrix	
multiplication	tensor.

THE LASER METHOD

• Strassen’s	laser	method starts	with	a	tensor	of	near-minimal
border	rank	and	builds	a	large	tensor	from	it,	which	admits	a
degeneration	to	a	large	matrix	multiplication	tensor

• All	advances	since	1987	so far were	based	on	the
Coppersmith-Winograd tensor

• Barriers	to	upper	bounds were	found and clarified over the
past decade,	including	a geometric	identification	of	the
barriers	inspired	by	quantum information	theory

New methods to overcome those barriers were just
recently set forth by algebraic geometry

•

AI FINDS NEW FAST MATRIX MULTIPLICATION

MAIN IDEA:

Attack 3D tensor
decomposition
problem (which is
NP hard) via deep
reinforcement
learning (DRL)
instead of earlier
strategies such as
human search or
continuous
minimization.

NEW ALTERNATIVE METHODS

Karstadt and Schwartz [2020] developed a method to pre-
and post-process the matrix triple U, V, W before using
them. This does not change the exponent of the
corresponding matrix multiplication method but improves
(sometimes substantially) its leading cofficients. Further
work is ongoing, jointly with many people.

Kauers and Moosbauer [2023] suggested random walks on
the so-called flip graphs to find new fast matrix
multiplication algorithms. These graphs, where vertices
represent algorithms and edges local transformations or
”flips,” encode the landscape of possible MatMul algorithms.

FLIP GRAPH METHODD

VERTICES:

MatMul algorithms

EDGES:

WHAT TO DO:

Connected by flips

Random walk on this graph!

FLIPS:

ALTERNATIVE BASIS METHODD
IMPROVEMENTS:

HOW?

SOME VERY RECENT RESULTS

MAIN IDEA:

Just sparsify U, V, and W!

A FEW HIGHLIGHTS:

MORE RESULTS

COMMUNICATION (I/O) COMPLEXITY

Two kinds of costs:
Arithmetic (FLOPs)

Communication: moving data between
levels of a memory hierarchy (sequential case)

over a network connecting processors (parallel case)
Communication-minimizing algorithm:

Save time, save energy.

CPU
Cache

RAM

CPU
RAM

CPU
RAM

CPU
RAM

CPU
RAM

MOORE’S LAW

Source: Graham, Snir and Patterson, eds.
Getting up to Speed: The Future of Supercomputing

CPU:
Mflops/sec
(SPECfp)

DRAM:
Mword/sec

Hardware trends: exponential growth with large gaps

PROGRESS ON I/O COMPLEXITY
Lower (and matching upper) bounds for:

BLAS, LU, Cholesky, LDLT, and QR factorizations,
eigenvalues and singular values, i.e.,

essentially all direct methods of linear algebra.

Dense or sparse matrices
In sparse cases: BW a function of the actual FLOPs count.

Sequential, hierarchical, and parallel models

Bandwidth and latency

Compositions of linear algebra operations

Certain graph optimization problems

Fast matrix multiplication

GEOMETRIC INEQUALITIES USED

Volume of box
V = x·y·z

= (xz · zy · yx)1/2

Thm: (Loomis & Whitney, 1949)
Volume of 3D set
V ≤ (area(A shadow)

· area(B shadow)
· area(C shadow)) 1/2

x
z

z

y

x
y

A B
C

“A shadow”

“C shadow”

A B
C

V V

Thm: (Loomis & Whitney, 1949)
 Volume of 3D set
 V ≤ (area(A shadow) �

 · area(B shadow) �
 · area(C shadow)) 1/2

“A shadow”

“C shadow”

A
 B

C

V

Matrix multiplication form:

∀(i,j) ∈ n x n,
C(i,j) = Σk A(i,k)B(k,j),

Geometric Embedding
Follows [Irony,Toledo,Tiskin 04], based on [Loomis & Whitney 49]

How	many	useful	FLOPs	can	we	perform		
with	access	to	S		inputs	and	outputs?	
With	O(M)	inputs/outputs	we	can	
compute	O(M3/2)	FLOPs.	
⇒We	have	to	perform
Ω(M/M3/2) I/O	per	FLOP.	
⇒	

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω= 2/1

3

M
nBW

“A shadow”

“C shadow”

A
 B

C

V

GEOMETRIC EMBEDDINGG
[Ballard, Demmel, H, Schwartz 2011a]
Follows [Irony,Toledo,Tiskin 04], based on [Loomis & Whitney 49]

Generalized form:

⎟
⎠

⎞
⎜
⎝

⎛ ⋅Ω
PM

FLOPs 1#
2/1

⎟
⎠

⎞
⎜
⎝

⎛Ω 2/1

#
M
FLOPs

() () () ()()
() ()()

)argumentsother
,...,...,

,,,,
,,,,(,,,

,21

22,,

11,,,

2

1

ji

kji

kjiji

Skk
jkBkiAg
jkBkiAgfjiCSji

∈

=∈∀

S1

S2

S3

Read	

Read	

Read	

Read	

Read	

Read	

Write	

Write	

Write	

FLOP	

FLOP	

FLOP	

FLOP	

FLOP	

FLOP	

Ti
m

e

 ..
.

M	

Example	of	a	parKKon,	
M	=	3	

For	a	given	run	(algorithm,	machine,	input)	
1. ParKKon	computaKons	into	segments	

of	M	reads	/	writes	

2. Any	segment		S	has	3M	inputs/outputs.	

3. Show	that	#mulKplicaKons	in	S	≤	k	

4. The	total	communicaKon	BW	is	
BW	=	BW	of	one	segment	⋅	#segments		
	≥		M	⋅	#mults	/	k	=	M	⋅	n3	/	k		
	

5. By	Loomis-Whitney:	
BW	≥	M	⋅	n3	/	(3M)3/2			

	
	

 ..
.

GEOMETRIC EMBEDDINGG	

For a given run (Algorithm, Machine, Input)

1. Consider the computation DAG: G = (V, E)
V = set of computations and inputs
E = dependencies

2. Partition G into segments S of Θ(Mω/2) vertices
(correspond to time / location adjacency)

3. Show that every S has
≥ 3M vertices with incoming / outgoing edges
⇒ perform ≥ M read/writes.

4. The total communication BW is
BW = BW of one segment ⋅ #segments

 = Ω(M) ⋅ Θ (nω) / Θ(Mω/2)
 = Ω(nω / Mω/2 -1)

M
M

M M

M

S

RS

WS

V

The partitioning argument

S1

S2

S3

Read

Read

Read

Read

Read

Read

Write

Write

Write

FLOP

FLOP

FLOP

FLOP

FLOP

FLOP

Ti
m

e

 ..
.

GRAPH EXPANSION

Input / Output
Intermediate value
Dependency

Computation DAG

S

RS

WS

V

RS	

WS	

S

EXPANSION
	The Computation Directed Acyclic Graph

CommunicaKon	Cost	is		
Graph	Expansion

Input / Output
Intermediate value
Dependency

\V SS
V

(Small-Sets)	

Let	G = (V,E)	be	a	graph	

A	is	the	normalized	adjacency	matrix		
of	a	regular	undirected	graph,	with	eigenvalues:

1 = λ 1 ≥ λ 2 ≥ … ≥ λ n
 γ ≡ 1 - max {λ2, | λn|}

Thm:		[Alon-Milman84,	Dodziuk84,	Alon86]	

Small	sets	expansion:	

1
2 2hγ γ≤ ≤

\V SS

EXPANSION
[Ballard, Demmel, Holtz, S. 2011b], in the spirit of [Hong & Kung 81]

()
()SE
SSE

h
V

SS

,
min

2
, ≤

≡

()
()SE
SSE

h
sSSs

,
min
, ≤

≡

M1 = (A11 + A22) ⋅ (B11 + B22)
M2 = (A21 + A22) ⋅ B11
M3 = A11 ⋅ (B12 - B22)
M4 = A22 ⋅ (B21 - B11)
M5 = (A11+ A12) ⋅ B22
M6 = (A21 - A11) ⋅ (B11 + B12)
M7 = (A12 - A22) ⋅ (B21 + B22)

C11 = M1 + M4 - M5 + M7
C12 = M3 + M5
C21 = M2 + M4
C22 = M1 - M2 + M3 + M6

The	DAG	of	Strassen,	
n	=	2	

`	
		

7 5 4 1 3 2 6

1,1 1,2 2,1 2,2

1,1 1,2 2,1 2,2 1,1 1,2 2,1 2,2

Enc1A

Dec1C

Enc1B

Enc1
	B	Enc1A	

Dec1C	

`	
		

The	DAG	of	Strassen,	n=4	
Dec1C

1,1 1,2 2,1 2,2 One	recursive	level:	
•	Each	vertex	splits	into	four.	
•	MulKply	blocks	
	

Enc1
	B	Enc1A	

Dec1C	

Enc1A Enc1B

Enclg n BEnclg nA

Declg nC

n2

n2

nω0

lg n

Dec1C

The	DAG	of	Strassen:	further	
recursive	steps	

1,1 1,2 2,1 2,2

Recursive construction
Given DeciC, Construct Deci+1C:
1. Duplicate 4 times
2. Connect with a cross-layer of Dec1C

ω0 = lg 7	

EsKmaKng	the	edge	expansion-	
Combinatorially	

• Dec1C is a consistency gadget:
 Mixed pays ≥ 1/12 of its edges.

• The fraction of S vertices is consistent
 between the 1st level and the four 2nd levels
 (deviations pay linearly).

In S

Not in S

Mixed

Enclg n BEnclg nA

Declg nC

n2

n2

nω0

lg n

ω0 = lg 7	

Is	Strassen’s	Graph	a	Good	
Expander?	

S1

S2 S3

S5

S4

()
()SE
SSE

h
V

SS

,
min

2
, ≤

≡

()
()SE
SSE

h
sSSs

,
min
, ≤

≡

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛Ω=
n

nCDech
lg

lg 7
4

() 7lg,
7
4

02/

lg

lg 0
=⎟

⎠

⎞
⎜
⎝

⎛Ω=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛Ω= ωωM
MCDech

M

M

() ⎟
⎠

⎞
⎜
⎝

⎛Ω= 2/lg 0
2/0 ωω M

MCDech nM

⎟
⎠

⎞
⎜
⎝

⎛Ω= 2/0
0

ω
ω

M
MnBW

For	n-by-n	matrices:	

For	M1/2-by-M1/2	matrices:	

For	M1/2-by-M1/2	sub-matrices		
(or	other	small	subsets):	

Summing	up	(the	parKKon	argument)	

ADVERTISEMENTT

Organizers: Peter Bürgisser (TU Berlin), Olga Holtz (UC Berkeley), Daniel
Kressner (EPFL), J.M. Landsberg (Texas A&M), Oded Schwartz (Hebrew U
Jerusalem), Nikhil Srivastava (UC Berkeley).

THANK YOU!

QUESTIONS?

	Blank Page
	s41586-022-05172-4.pdf
	Discovering faster matrix multiplication algorithms with reinforcement learning

	Algorithms as tensor decomposition

	Algorithm 1

	DRL for algorithm discovery

	Neural network architecture

	Synthetic demonstrations

	Change of basis

	Data augmentation

	Algorithm discovery results

	Discovery of matrix multiplication algorithms

	Analysing the symmetries of matrix multiplication algorithms

	Beyond standard matrix multiplication

	Rapid tailored algorithm discovery

	Discussion

	Online content

	Fig. 1 Matrix multiplication tensor and algorithms.
	Fig. 2 Overview of AlphaTensor.
	﻿Fig. 3 Comparison between the complexity of previously known matrix multiplication algorithms and the ones discovered by AlphaTensor.
	Fig. 4 Algorithm discovery beyond standard matrix multiplication.
	Fig. 5 Speed-ups of the AlphaTensor-discovered algorithm.
	Extended Data Fig. 1 Algorithm for multiplying 4 × 4 matrices in modular arithmetic () with 47 multiplications.
	Extended Data Fig. 2 Algorithm for multiplying 4 × 5 by 5 × 5 matrices in standard arithmetic with 76 multiplications.
	Extended Data Fig. 3 AlphaTensor’s network architecture.
	Extended Data Fig. 4 Detailed view of AlphaTensor’s architecture, included torso, policy and value head.
	Extended Data Table 1 Rank results obtained by combining decompositions (in standard arithmetic).
	Extended Data Table 2 Result of applying AlphaTensor to the tensor representing the cyclic convolution operation.

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

