
Low-depth algebraic circuit lower bounds over any field

Michael A. Forbes
miforbes@illinois.edu

University of Illinois at Urbana-Champaign

Appeared in CCC 2024 (Best Paper)

April 4, 2025

1 / 22



Theorem

Let F be a field. There is an

explicit

n-variate degree-d polynomial requiring size

nd
1

exp(Θ(∆))
,

to be computed by algebraic circuits over F, when the depth is ∆; for d ≲ log n.

Remark

extends breakthrough of Limaye, Srinivasan, Tavenas 22 to any field, not just

when char(F ) > d (or char(F) = 0)
matches best known quantitative parameters [BDS22].
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Multivariate polynomials can be computed by small algebraic circuits, e.g.

x2 − y2 = (x + y)(x − y) ∼

×

+

x y

+

x y

−1

.

size 7

depth 2

any F
(total) degree 2

The size is the number of nodes.

Goal (Algebraic Complexity Theory)

Find explicit polynomials requiring algebraic circuits of super-polynomial size.

parameters:

depth: maximum length of input-output path

F: domain of constants appearing in circuit

3 / 22



Goal

Find explicit polynomials requiring

depth-3

algebraic circuits of super-polynomial size.

e.g.

f (x1, . . . , xn) =

s∑
i=1

D∏
j=1

(
αi ,j ,0 +

n∑
k=1

αi ,j ,kxk

)
, αi ,j ,k ∈ F

=
∑
i

∏
j

ℓi ,j(x), deg ℓi ,j ≤ 1

size ≈ sDn.
known results:

Ω(n2) [SW01], in large characteristic

Ω̃(n3) [KST16]

nΩ(
√
log n) [LST22], in large characteristic
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Goal

Super-polynomial depth-3 algebraic circuit lower bounds, over every field.

Definition

The characteristic char(F ) of the field F is the minimum p ≥ 1 such that
1 + 1 + · · ·+ 1︸ ︷︷ ︸

p

= 0, or 0 if no such p exists. fact: char(F ) = 0 or char(F ) is prime.

e.g.

Q, R, C are of characteristic 0
Fp = {0, 1 . . . , p − 1} is of characteristic p
Q(x , y , z) =

{
f (x ,y ,z)
g(x ,y ,z) : f , g ∈ Q[x , y , z ], g ̸= 0

}
is of characteristic 0

regimes:

large characteristic: char(F )≫ 0 (or char(F ) = 0)
small characteristic
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Question

How does the power of algebraic circuits depend on the characteristic?

some algebraic reasoning requires large characteristic:

notable polynomial identities

Fischer’s identity√
1 + x = 1 + 1

2
x − 1

8
x2 + 1

16
x3 + · · · .

Newton identities, e.g. esymn,2 =
∑
i<j xixj =

(∑
i
xi
)2

−
(∑

i
x2i

)
2

.

applications of polynomial identities to algebraic complexity theory

reduction to depth-3 [GKKS13]

small algebraic circuits can be factored efficiently [Kal89]

lower bounds for constant-depth circuits [LST22]

some algebraic reasoning requires small characteristic:

(x + y)p = xp + yp

permanent efficiently computable in characteristic 2.

⇒⇐⇒ small and large characteristic fields are incomparable in difficulty
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lower bounds in small characteristic have several applications:

AC0[p]-Frege proofs can be simulated by O(1)-depth algebraic-circuit (IPS)
proofs over Fp [GP14]
⇒⇐⇒ “strong enough” O(1)-depth algebraic “circuit lower bounds” over Fp yield

breakthrough AC0[p]-Frege lower bounds

polynomial identity testing over Fp from “strong enough” algebraic circuit lower
bounds over Fp, via algebraic hardness-vs-randomness
settling whether notable polynomial identities (e.g., the Newton identities) have

analogues over fields of small characteristic.

“better understand” LST22
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Theorem (F24)

Let F be a field. There is an explicit n-variate degree-d polynomial requiring size

nd
1

exp(Θ(∆))
,

to be computed by algebraic circuits over F, when the depth is ∆

= 3

; for d ≈ log n,
if char(F ) > d (or char(F ) = 0.)

Proof.

1 small depth-3 circuit ⇒⇐⇒ small homogeneous depth-5 circuit

2 small homogeneous depth-5 circuit ⇒⇐⇒ small set-multilinear depth-5 circuit

3 find explicit f that has no small set-multilinear depth-5 circuit

Remark

(1) requires large characteristic, while (2) and (3) work over any field.
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Definition

A polynomial is homogeneous if all monomials that appear have the same degree d .

A circuit is homogeneous if all gates compute homogeneous polynomials.

e.g. the elementary symmetric polynomial

esymn,d =
∑

S⊆[n],|S|=d

∏
i∈S
xi ,

is homogeneous of degree d .

Definition

Let the variables be partitioned into x1,1, . . . , x1,n, . . . , xd ,1, . . . , xd ,n = x1, . . . , xd .

A monomial is set-multilinear if is a product of one variable per x i , e.g.
∏d
i=1 xi ,ji . A

polynomial is set-multilinear if all monomials are set-multilinear. A circuit is

set-multilinear if all gates compute set-multilinear polynomials.

e.g. the rectangular permanent

permn,d =
∑

σ:[d ]↪→[n]

d∏
i=1

xi ,σ(i)

is set-multilinear. When d = n this is the standard permanent.
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Question

General circuits versus homogeneous circuits?

fact: small circuit ⇒⇐⇒ small homogeneous circuit; but depth blows up.

Theorem (SW01,LST22)

size s depth-3 circuit
char(F )>d⇒⇐⇒ homogeneous depth-5 circuit of size poly(s, 2

√
d).

Theorem (SW01)

The elementary symmetric polynomial esymn,d =
∑
S⊆[n],|S|=d

∏
i∈S xi has a

homogeneous depth-4 circuit of size poly(n, 2
√
d), if char(F ) > d (or char(F ) = 0).

Proof.

use Newton identities relating esymn,d and pown,d =
∑n
i=1 x

d
i (char(F ) > d)

count integer partitions
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Theorem (SW01,LST22)

size s depth-3 circuit
char(F )>d⇒⇐⇒ homogeneous depth-5 circuit of size poly(s, 2

√
d).

idea: elementary symmetric polynomials are “homogenization complete”

Proof.

f homogeneous degree d , f =
∑s
i=1

∏D
j=1(αi ,j ,0 +

∑n
k=1 αi ,j ,kxk)

suffices to homogenize each product gate individually∏D
j=1(βj ,0 +

∑n
k=1 βj ,kxk)

≈
∏D
j=1(1 + yj)

= (1 + y1)(1 + y2) · · · (1 + yD)
= 1 + esymD,1(y) + · · ·+ esymD,d(y) + · · ·

the relevant component is esymD,d(y)

apply depth-4 homog circuit for esymD,d to homogeneous yj ←
∑n
k=1 βj ,kxk
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Question (LST22b, GHT22, FLST23)

Compute esymn,d by size poly(n, 2
√
d) homog depth-4 circuit, over any field?

Compute esymn,d by size poly(n,Od(1)) homog O(1)-depth circuit, over any field?

Answer

1 I don’t know.

2 no “Newton-like” identities for esymn,d in small characteristic [FLST23]

Question

What else can we do?
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Theorem

Let F be a field. There is an explicit n-variate degree-Θ(log n) polynomial requiring
size nΩ(

√
log n) to be computed by depth-3 algebraic circuits over F.

idea: transfer the result over characteristic zero to arbitrary fields, via “logic”

Lemma

p(x) ∈ Z[x ], F any field. p(x) = 0 (in Z[x ])⇒⇐⇒ p(x) = 0, in F[x ].

det(X ) det(Y ) = det(XY )

Cayley-Hamilton theorem

restate as identity in Z[X ]
prove identity over C using analytic methods

⇒⇐⇒ proof over any F

Goal

Express LST as polynomial identity over Z, then transfer identity to every F.
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Metafact

Most algebraic circuit lower bounds proven through rank methods, including LST.

P(x) has small ckt ⇒⇐⇒ matrix MP with rank

F

MP small

each entry of MP is a

(often integer)

linear combination of the coefficients of P

Mg+h = Mg +Mh
rankMg+h ≤ rankMg + rankMh

exhibit f (x) with rankFMf large

⇒⇐⇒ f requires large circuits

Example

P(x) = ax2 + bx + c .

MP =

[
a b/2
b/2 c

]

P = α(x − β)2 iff b2 − 4ac = 0 iff detMP = 0 iff rankMP = 1.
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Question

Phrase the rank method as a polynomial identity?

Lemma

M matrix, M ∈ Fn×m. rankFM ≤ r iff all (r + 1)× (r + 1) submatrices M|S×T have

detM|S×T = 0, S ⊆ [n], T ⊆ [m], |S | = |T | = r + 1.

Corollary

M matrix, M ∈ Zn×m. F any field. rankQM ≤ r ⇒⇐⇒ rankFM ≤ r .

Proof.

rankQM ≤ r ⇒⇐⇒ det(M|S×T )
Q
= 0 ⇒⇐⇒ det(M|S×T )

Z
= 0 ⇒⇐⇒ det(M|S×T )

F
= 0

all S,T⇒⇐⇒ rankFM ≤ r .
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M matrix, M ∈ Zn×m. F any field. rankQM ≤ r ⇒⇐⇒ rankFM ≤ r .

Proof.

rankQM ≤ r ⇒⇐⇒ det(M|S×T )
Q
= 0 ⇒⇐⇒ det(M|S×T )

Z
= 0 ⇒⇐⇒ det(M|S×T )

F
= 0

all S,T⇒⇐⇒ rankFM ≤ r .
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Question

Phrase the rank method as a polynomial identity?

Corollary

M matrix, M ∈ Z[w ]n×m. F any field. rankQ(w)M(w) ≤ r ⇒⇐⇒ rankF(w)M(w) ≤ r .

Corollary

M matrix, M ∈ Z[w ]n×m. γ over field F. rankF(w)M(w) ≤ r ⇒⇐⇒ rankFM(γ) ≤ r .
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Proposition (existence of (depth-3) universal circuits [Raz10])

Exists P(x ,w) with a size poly(s)-size depth-3 circuit, over variables x ,w and

coefficients from Z that is a universal depth-3 circuit. Any f with size-s depth-3
circuit has f (x) = P(x , γ) for some γ from F.

Corollary

Rank method of LST implies that P(x ,w) yields matrix MP with low rank.

Proof.

View P as polynomial in Z[w ][x ] ⊆ Q(w)[x ].
P has a poly(s)-size depth-3 circuit in variables x , with coefficients from

Z[w ] ⊆ Q(w), and char(Q(w)) = 0.
MP is a matrix entries that are integer linear combinations of coefficients of P

⇒⇐⇒ MP has entries from Z[w ].
⇒⇐⇒ rankQ(w)MP(w) is small
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Theorem

Let F be a field. There is an explicit n-variate degree-Θ(log n) polynomial requiring
size nΩ(

√
log n) to be computed by depth-3 algebraic circuits over F.

idea: transfer the result over characteristic zero to arbitrary fields, via “logic”

proof:

fact(universal depth-3 circuit): exists P(x ,w) with a size poly(s)-size depth-3

circuit, over variables x ,w and coefficients from Z, any f with size-s depth-3
circuit has f (x) = P(x , γ) for some γ from F [Raz10]
interpret P as polynomial over x with coeffs from Z[w ] ⊆ Q(w); charQ(w) = 0.

LST22: P small depth-3 ckt
char 0⇒⇐⇒ matrix MP over Z[w ] has rankQ(w)MP small

f (x) = P(x , γ) ⇒⇐⇒ Mf = MP(γ)

rankFMf = rankFMP(γ) ≤ rankF(w)MP(w)
lem
≤ rankQ(w)MP(w) ≤ small

LST22 exhibits f with rankFMf large for any F
⇒⇐⇒ this f cannot have a small depth-3 ckt over any F
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Theorem

Let F be a field. There is an explicit n-variate degree-Θ(log n) polynomial requiring
size nΩ(

√
log n) to be computed by depth-3 algebraic circuits over F.

idea: combine efficient homogenization and set-multilinearization steps

proof 2 (constructive):

depth-3 ckt

homog depth-5 ckt

set-mult depth-5 ckt

Ne
wto
n Id
ent
itie
s gate simulation

cha
r(F)

≫ 0 any F
Binet-Minc identity

any F

LST22 gives explicit polynomial without small set-mult depth-5 circuit, any F.
⇒⇐⇒ same polynomial has no small depth-3 circuit
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Definition

Let the variables be partitioned into x = x1, · · · , xd . A monomial is set-multilinear

if is a product of one variable per x i , e.g.
∏d
i=1 xi ,ji . A polynomial is set-multilinear

if all monomials are set-multilinear. A circuit is set-multilinear if all gates compute

set-multilinear polynomials.

Theorem (Binet-Minc)

The rectangular permanent permn,d =
∑

σ:[d ]↪→[n]
∏d
i=1 xi ,σ(i) has poly(n, d

d)-size

depth-4 set-multilinear circuit, over any F.

Example

permn,2(x , y) =
∑
i ̸=j xiyj = (

∑n
i=1 xi)(

∑n
j=1 yj)−

∑
i xiyi

permn,3(x , y , z) =
∑

|{i ,j ,k}|=3 xiyjzk
= (

∑
i xi)(

∑
j yj)(

∑
k zk)− (

∑
i xiyi)(

∑
k zk)− · · ·

+

3

∑
i xiyizi
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Proposition (F24)

The rectangular permanent is “complete” for set-multilinearization.

Proof.

for depth-3 circuits, with two sets of variables x , y .

suffices to extract set-multilinear each product gate individually

∏D
k=1(γk +

∑
i αk,ixi +

∑
j βk,jyj) ≈

∏
k(1 + Xk + Yk)

= (1 + X1 + Y1) · · · (1 + XD + YD)
= permD,2(X ,Y ) + (non-set-mult terms)

apply depth-4 set-mult circuit for permD,2

to set-mult Xi ←
∑
k βk,ℓxℓ, Yj

Corollary

size s depth-3 circuit

any F⇒⇐⇒ depth-5 set-multilinear circuit of size poly(s, dd).
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= (1 + X1 + Y1) · · · (1 + XD + YD)
= permD,2(X ,Y )

+ (non-set-mult terms)

apply depth-4 set-mult circuit for permD,2

to set-mult Xi ←
∑
k βk,ℓxℓ, Yj

Corollary

size s depth-3 circuit

any F⇒⇐⇒ depth-5 set-multilinear circuit of size poly(s, dd).
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This talk:

LST22 gave super-polynomial lower bounds against constant-depth algebraic
circuits, in large characteristic fields

low-depth homogenization via the Newton identities, in large characteristic fields

low-depth set-multilinearization (of homogeneous circuits), over any field

strong lower bounds against constant-depth set-multilinear circuits, over any field

this work: LST22 over any field

proof 1 (logical): proof LST22 is sufficiently “algebraic” so a proof in

characteristic zero implies a proof over any field

proof 2 (constructive): low-depth set-multilinearization (of general circuits), via

the Binet-Minc identity, over any field

Open Questions:

low-depth homogenization over any field?

Thanks!
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