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m matches best known quantitative parameters [BDS22].

2/22



Multivariate polynomials can be computed by small algebraic circuits, e.qg.

/.\ m size 7
m depth 2
X —y?=(xty)x-y) ~ + +

ANVASEL

X y X y . m (total) degree 2

The size is the number of nodes.

Goal (Algebraic Complexity Theory)

Find explicit polynomials requiring algebraic circuits of super-polynomial size.
parameters:

m depth: maximum length of input-output path
m [F: domain of constants appearing in circuit
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Let the variables be partitioned into X = X1, -+ ,Xg. A monomial is set-multilinear
if is a product of one variable per Xx;, e.qg. Hf’zl Xij,. A polynomial is set-multilinear
if all monomials are set-multilinear. A circuit is set-multilinear if all gates compute
set-multilinear polynomials.
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This talk:

m LST22 gave super-polynomial lower bounds against constant-depth algebraic
circuits, in large characteristic fields

m low-depth homogenization via the Newton identities, in /arge characteristic fields
m low-depth set-multilinearization (of homogeneous circuits), over any field
m strong lower bounds against constant-depth set-multilinear circuits, over any field

m this work: LST22 over any field

m proof 1 (logical): proof LST22 is sufficiently “algebraic” so a proof in
characteristic zero implies a proof over any field

m proof 2 (constructive): low-depth set-multilinearization (of general circuits), via
the Binet-Minc identity, over any field

Open Questions:

m low-depth homogenization over any field?

Thanks!
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